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Abstract: Large-scale deforestation may affect the surface energy budget and consequently 

climate by changing the physical properties of the land surface, namely biophysical effects. 

This study presents the potential energy budget change caused by deforestation in 

Northeastern China and its climate implications, which was evaluated by quantifying the 

differences in MODIS-observed surface physical properties between cropland and forest. 

We used the MODIS land products for the period of 2001–2010 in 112 cells of 0.75° × 0.75° 

each, within which only best quality satellite pixels over the pure forest and cropland pixels 

are selected for comparison. It is estimated that cropland has a winter (summer) mean albedo 

of 0.38 (0.16), which is 0.15 (0.02) higher than that of forest. Due to the higher albedo, 

cropland absorbs 16.84 W∙m−2 (3.08 W∙m−2) less shortwave radiation than forest. Compared 

to forest, cropland also absorbs 8.79 W∙m−2 more longwave radiation in winter and  

8.12 W∙m−2 less longwave radiation in summer. In total, the surface net radiation of cropland 

is 7.53 W∙m−2 (11.2 W∙m−2) less than that of forest in winter (summer). Along with these 

radiation changes, the latent heat flux through evapotranspiration over cropland is less than 

that over forest, especially in summer (−19.12 W∙m−2). Average sensible heat flux increases 

in summer (7.92 W∙m−2) and decreases in winter (−8.17 W∙m−2), suggesting that conversion 

of forest to cropland may lead to warming in summer and cooling in winter in Northeastern 
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China. However, the annual net climate effect is not notable because of the opposite sign of 

the energy budget change in summer and winter. 
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1. Introduction 

Land cover changes caused by human activities are important forcings of climate [1]. Over the past 

300 years, 15%–30% of the global natural forest has been converted to pasture or cropland [2]. Over the 

same period in China, the forested area has decreased by 9.2% [3]. During the past two decades, this 

area has decreased by 8.52 × 105 hectare (hm2) because of cropland expansion, particularly in 

Northeastern China [4]. Such large-scale deforestation can affect climate through both biogeochemical 

and biophysical processes. Biogeochemical effects of land cover change (e.g., changes in carbon sinks) 

can alter the concentration of atmospheric greenhouse gases and affect global climate [5–7]. Biophysical 

effects (e.g., changes in albedo, surface roughness, and soil texture) can affect near-surface net radiation 

and the partitioning of this energy into sensible and latent heat [8–11]. Previous studies have reported 

that, unlike biogeochemical effects, which affect climate on a global scale, biophysical effects usually 

act at regional or local scales and may counteract or enhance biogeochemical processes [12,13]. 

However, recent studies have shown that regional biophysical effects can also have global climate 

impacts through changes in circulation and precipitation, despite small changes in mean global 

temperature [14]. 

Forests have lower albedo than areas covered with herbaceous plants or short vegetation because of 

their darker surface. Consequently, the replacement of forests by croplands decreases the absorption of 

shortwave radiation, which can lead to local cooling [8]. On the other hand, forests have higher 

evapotranspiration (ET) and surface roughness, so deforestation can also lead to local warming [10]. 

Furthermore, deforestation at different latitudes can have different impacts on climate [10,15–17]. It is 

widely known that deforestation in tropical regions can lead to warming through decreased ET, and that 

at high latitudes it can lead to cooling through increased albedo. However, there are varied effects of 

deforestation in temperate regions [10,18]. 

The biophysical effects of deforestation on climate have been extensively studied by comparing 

outputs of climate models using different land cover scenarios for example, forest scenario and  

non-forest scenario [18]. Biophysical parameters for forest, such as lower albedo and higher surface 

roughness used in models are different from those for cropland, which can lead to different impacts on 

climate. Climate model is a powerful tool to study the effects of land cover change on climate, simulating 

interactions among atmosphere, land surface, and oceans using a set of complicated numerical equations. 

However, differences in climate model structures, physical processes, and parameterization may 

generate conflicting results [19,20]. Furthermore, it is a challenge to accurately evaluate local climate 

effects using climate models because of their coarse spatial resolution [11]. 

Like climate models, satellite observations are an effective tool for investigating the climate impact 

of land cover change [10]. Recently, empirical analysis based on remote sensing data has produced some 

new results that differ from climate model simulation studies [18,21]. For example, although most 
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climate models indicate that deforestation in temperate regions would result in decreased temperatures [10], 

using moderate resolution imaging spectroradiometer (MODIS) land surface temperature (LST) data, 

Wickham et al. [18] showed that the temperate forests in the continental United States are not a heat 

source relative to other classes of land cover. Houspanossian et al. [13] used MODIS data to investigate 

how changes in land cover affect the radiation budget. Observations from satellites enable the 

investigation of biophysical parameters of the land surface after changes in land cover at high resolution 

and can therefore improve the understanding of the local effects of deforestation on climate [11]. 

Historically, Northeastern China was heavily forested but is now the main agricultural region in 

China, having undergone significant deforestation over the last 300 years. This land cover conversion 

has potentially affected the regional environment and climate. The effects of deforestation on climate in 

Northeastern China have been investigated in the past. Gao et al. [22] , who used the RegCM2 model, 

found increased annual surface temperatures together with deforestation in the southern part of 

Northeastern China. Yu et al. [23] and Zhang et al. [24] found that deforestation in Northeastern China 

caused decreasing temperatures using a multi-model ensembles method. However, studies by  

Zhang et al. [24] using different regional climate models (RegCM3 versus WRF) showed contradicting 

results. Using MODIS data, Peng et al. [25] found a warming effect due to afforestation in areas north 

of 45°N. The results above show that climate effect studies of forest in Northeastern China produced 

varying outcomes. Therefore, more studies are needed for this region.  

The objective of the present study is to investigate the energy budget change caused by deforestation 

and its climate implications in Northeastern China. In this article, we characterize the seasonal and spatial 

patterns of biophysical variables in forest and cropland based on the best quality MODIS pixels. Next, 

the energy budget is calculated and analyzed based on these biophysical parameters. The goal of the 

study is to obtain information on the effects of temperate forests on climate that may be useful to both 

policymakers and researchers. 

2. Data and Methods 

2.1. Study Area 

The study area, Northeastern China (115°05′–135°02′E and 38°40′–53°34′N) includes the three 

provinces of Liaoning, Jilin, and Heilongjiang, as well as Eastern Inner Mongolia (Figure 1). It is located 

in a temperate climate zone and covers an area of approximately 1,450,000 km2. Northeastern China has 

long, extremely cold and dry winters, and short, mild, and moist summers. The mean January (July) 

temperature ranges from −30 °C (18 °C) in the north to −5 °C (24 °C) in the south. The annual 

precipitation ranges from 1000 mm in the southeastern Changbai Mountains to 200 mm on the Inner 

Mongolia Plateau. More than two thirds of the annual precipitation occurs during the summer [26]. The 

area is one of the main agricultural regions in China, and its cultivated land accounts for about 20% of 

the country’s total cultivated area [27].  
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Figure 1. The study area, Northeastern China. Each outlined cell contains sufficient number 

of forest and cropland pixels (at least > 20 each) for comparisons. In the study, the 

comparison of biophysical variables and energy budget changes between forest and cropland 

is restricted to these cells. 

2.2. MODIS Data 

We used MODIS shortwave albedo (MCD43B3), ET (MOD16A2), LST and emissivity (MYD11A2) 

data spanning 2001–2010 (Table 1) for surface energy budget estimates. The MODIS albedo 

(MCD43B3) products include white-sky albedo and black-sky albedo. To isolate the dependence of 

albedo on surface characteristics [28], we used white-sky albedo in this study, and the bias of MODIS 

albedo is generally less than 5% [29]. The land surface temperature and emissivity data (MYD11A2) 

consist of daytime (~13:30 local time) and nighttime (~01:30 local time) temperature observations. In 

this study, afternoon (MODIS-AQUA) rather than morning (MODIS-TERRA) data were used, so 

daytime LST would reflect the daily temperature maxima [11,21]. Since the AQUA LST data start in 

July 2002, we used 2003–2010 data in this study. Unlike the MODIS albedo and LST data, which were 

retrieved directly from the satellite radiometric signals using a dedicated algorithm, MODIS ET data 

were derived using an improved Penman-Monteith model developed by Mu et al. [30,31].  

The best quality pixels were selected for analysis. The albedo quality assessment (QA) flag from 

MCD43B2 was used for albedo quality control. Only full bidirectional reflectance distribution function 

(BRDF) inversion pixels (QA = 0 processed, good quality) were used. Similarly, LST and emissivity 

data were retrieved from the quality control file. MODIS data such as albedo, ET, and LST used in this 

study were 8-day composite images with a total of 46 images per year. These data were averaged across 

the years from 2001 to 2010 for each of the 46 8-day observation periods to smooth out interannual 

variability. Finally, data for each biophysical variable (albedo, LST, and ET) were averaged to monthly, 

seasonal, and yearly values (winter = December, January, February (DJF); spring = March, April, May 

(MAM); summer = June, July, August (JJA); autumn = September, October, November (SON)). 
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Table 1. The MODIS products and other data used in this study. 

Dataset Type of Data Parameter Spatial Resolution Use 

MCD43B3 MODIS Albedo 1000 m 
Net shortwave radiation 

computation 

MCD43B2 MODIS Albedo QC 1000 m Albedo QC 

MYD11A2 MODIS 
Land surface temperature & 

emissivity 
1000 m 

Net longwave radiation 

computation 

MOD16A2 MODIS 
Evapotranspiration 

(ET)/latent heat flux (LE) 
1000 m Energy balance computation 

MOD12Q1 MODIS Land cover 1000 m Land cover mask 

Land cover CAS Land cover 1000 m Land cover mask 

SSRD ERA-interim 
Surface solar (shortwave) 

radiation downwards 
0.75° 

Net shortwave radiation 

computation 

STRD ERA-interim 
Surface thermal (longwave) 

radiation downwards 
0.75° 

Net longwave radiation 

computation 

2.3. Land Cover Data 

The 1-km land cover datasets (1-km percentage aggregate class) for 2000, 2005 and 2010 were 

acquired from the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy 

of Sciences (CAS). The datasets are based on Landsat TM\ETM+ images. The images were 

geometrically corrected and georeferenced, and an outdoor survey and random sample check confirmed 

that the average accuracy for the interpretation of land use changes exceeded 90% [4]. The percentage 

land cover map was derived from 30 m × 30 m spatial resolution TM data by zonal statistic within a  

1-km fishnet. Pure pixels rather than mixed pixels were selected in the study because a mixed pixel, 

which contains at least two land cover types, represents the spectral characteristics of multiple land cover 

types and is a source of error for remote sensing applications [32]. For example, a pixel was selected as 

a cropland pixel only if the proportion of cropland in that pixel was ≥ 90%. The analysis involved two 

land cover classes, forest and cropland. We defined forest as deciduous, evergreen mixed forest and 

shrubland. Cropland was defined based on the cropland class in the land cover dataset. Only cropland 

and forest pixels that had not changed between the 2000, 2005, and 2010 datasets were selected for 

further analysis. Note that the 2001 1-km MODIS Collection 4 land cover datasets (MOD12Q1) were 

used in this study because MODIS ET products were derived based on MOD12Q1 vegetation [30]. Due 

to the MODIS land cover data having some inconsistencies with the CAS land cover data [33], only 

pixels with the same land cover based on both MODIS and CAS data were used for further study via 

overlap analysis in the ArcGIS software.  

2.4. Other Data 

Downward shortwave and longwave radiation data (Rs↓ and Rl↓), acquired from the European Center 

for Medium Range Weather Forecasts (ECMWF) ERA-Interim reanalysis dataset were used to calculate 

radiative forcings (RF). This dataset has a spatial resolution of 0.75° × 0.75° and was carefully quality 

controlled [34]. Monthly mean radiation datasets were used for energy balance calculations (Table 1). 
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2.5. Analysis Method 

To compare the biophysical variables between forests and croplands, Northeastern China was divided 

into 0.75° × 0.75° grid cells to match the resolution of the ERA-interim meteorological forcing data 

(Figure 1). Comparison of forest and cropland biophysical variables and energy budget was restricted in 

each 0.75° × 0.75° cell. This setting ensures that 1-km resolution forest and cropland pixels within a cell 

acquire the same downward radiation data. In a 0.75° × 0.75° cell, there are potentially about 6000 1-km 

pixels per class. However, we made our comparison using a very stringent control. First, we only used 

pure forest or pure cropland pixels (> 90% areal coverage) rather than mixed pixels in a cell. Moreover, 

we only used best quality MODIS pixels, which inevitably results in missing data within a cell. For 

example, there are less valid albedo or LST data for winter in Northeastern China due to unfavorable 

atmospheric conditions such as cloud contamination. The 112 cells that were eventually selected had a 

sufficient number of forest and cropland observations (at least 20 pixels each) to permit statistical 

comparisons and 60% of the cells contained at least 100 or more pixels for each vegetation type. In 

addition, to minimize the effect of elevation, we only selected paired pixels for which the elevation 

difference was in the range of ±100 m using a DEM filter in each cell. 

Shortwave and longwave RF were used to quantify the change in Northeastern China’s energy budget 

resulting from conversion of forests to cropland. The term “radiative forcing” refers to the change in net 

(down minus up) radiative flux (shortwave plus longwave radiation in W∙m−2) caused by an imposed 

change such as an increase in CO2 or a change in albedo. Positive RFs, either shortwave or longwave, 

can increase mean temperature [13,28]. Non-radiative components, such as sensible heat and latent heat 

were also calculated to evaluate the energy budget. It has already been stressed that non-radiative impacts 

of land cover change have a similar magnitude, but may be of opposite sign (although non-radiative 

components are not part of RF) [15]. 

Surface shortwave RF from altered albedo in a cell is defined as the change in net shortwave radiation 

(downward minus upward) before and after conversion of land cover. It is calculated as:  

(1 ) (1 )shortwave cropland forests s
RF R R 

 
     (1) 

where Rs↓ is the monthly downward shortwave flux, and αcropland and αforest are the monthly albedo values 

of cropland and forest, respectively. 

Surface longwave RF from altered LST and emissivity in a cell is defined as the change in net 

longwave radiation (downward minus upward) at the surface and is calculated as: 

4 4( ) ( )longwave cropland forest crop cropland forest forestl
RF R T T     


   

 (2) 

where Tcropland and Tforest denote LST of cropland and forest, with the corresponding emissivity being 

εcropland and εforest, Rl↓ is the monthly downward longwave flux, and σ (5.67 × 10−8 W∙m−2 K−4) is the  

Stefan–Boltzmann constant.  

The climate effects of non-radiative forcings were investigated through the redistribution of sensible 

heat and latent heat. The regional climate impacts of non-radiative forcings are as important as the RFs 

that have recently gained much attention. Soil heat fluxes can be ignored in monthly or annual 

calculations and the energy balance equation becomes Rn = H + LE, where Rn is net radiation, H is 

sensible heat, and LE is latent heat. In the present study, the change in net radiation (ΔRn) after the 
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conversion from forest to cropland can be calculated as ΔRn = RFshortwave + RFlongwave. Using the latent 

heat of vaporization λ, the change of latent heat flux λ·ΔET is obtained from the comparison of MODIS 

ET between forest and cropland. Therefore, the ΔH can be estimated as: 

n shortwave longwaveH R ET RF RF ET        (3) 

3. Results 

3.1. Differences between Cropland and Forest Albedo 

The change in land surface albedo due to land cover change is considered the main anthropogenic 

impact on climate change because altered albedo can affect the shortwave radiation budget. It is well 

known that areas covered with short vegetation, such as grasses or crops, have a brighter surface than 

forested areas. Therefore, deforestation leads to a large increase in surface albedo, particularly in areas 

where snow falls because short vegetation, like cropland, is easily buried by snow. Consequently, 

deforestation tends to increase land surface albedo and induces negative shortwave RF, leading to local 

cooling. The average annual difference in albedo between forest and cropland within the selected cells 

in Northeastern China is 0.05 ± 0.06 (Table 2). In summer, the albedo difference between cropland and 

forest is small. The zonally averaged albedo over these cells in August is 0.17 and 0.14 for cropland and 

forest, respectively. In winter, the albedo of cropland is much higher than that of forest, especially when 

snow is present. For example, the average albedo for February is 0.42 and 0.25 for cropland and forest, 

respectively (Figures 2 and 3).  

 

Figure 2. Albedo averaged over all selected cells. (a) Seasonal variations; (b) variations 

from 40°N to 50°N latitude for DOY 25 (winter). 

The latitudinal and seasonal variations in albedo for croplands and forests in the study area (Figure 2) 

indicate that long-term snow cover plays an important role in determining the surface albedo in 

Northeastern China, which is the coldest part of the country. Snow flags in the “Snow_BRDF_Albedo” 

dataset (MCD43B2) were used to identify the duration of snow cover in the region for the period from 

November (day of year (DOY) 305) to March of the next year (DOY 81). Cropland and forest albedo 

formed a U-shaped pattern (Figure 2a), which implies that high albedo values are strongly influenced by 

snow cover during this period. The albedo around DOY 25 in January increases with increasing latitude 
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(Figure 2b) because snow cover becomes more prevalent at high latitudes. This is different from the 

situation in low-latitude regions [35], where albedo increases with latitude mainly because of sparse 

vegetation due to land degradation or drought. In Northeastern China, spring wheat, spring corn, and 

rice are the main crops. The growing season of these crops is from about May to September. Early in the 

growing season, the albedo of bare moist black soil or irrigated rice paddies is low, increases as crops 

are planted, and drops as the crops grow. We find that forest albedo is a bit higher than cropland albedo 

around DOY 150 in May (Figure 2a). This is likely because of the growth of new leaves of forest during 

that period when the increased reflectance related to the bright surfaces of those leaves enhances the 

forest albedo. 

 

Figure 3. Mean seasonal variation of differences (cropland minus forest) in (a) albedo,  

(b) daily LST, (c) daytime LST, and (d) nighttime LST. The lines and shaded areas represent 

the mean and standard deviation (SD) of all sample cells, respectively. 

3.2. Differences between Cropland and Forest LST 

Altered LST due to the conversion of forest to cropland modifies the longwave radiation budget. 

Overall, average daytime LST for forest is lower than average daytime LST for cropland in all seasons 

except in winter (Table 2, Figure 3). In contrast, average nighttime LST for forest is higher than average 

nighttime LST for croplands throughout the year. This is consistent with a previous study that found that 

forests were warmer than open fields at night because of downwelling of heat related to the higher 

surface roughness of forests [36]. The annual average difference in daytime and nighttime LST between 

croplands and forests within the selected cells is 0.50 K and −1.36 K, respectively (Table 2). The largest 
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daytime LST difference is observed in summer, when the LST of croplands was 2.97 K higher than that 

of forests. This indicates that the forest surface is much cooler than the cropland surface. In Northeastern 

China, where most precipitation occurs during summer, larger latent heat fluxes accompanying 

evapotranspiration over forests can reduce the surface temperature. The average nighttime LST 

differences range from −0.51 K to −2.30 K between the two types of vegetation and the greatest 

difference is observed in winter. In summer, cooler forest daytime temperatures offset warmer forest 

nighttime temperatures, leading to daily average temperatures in forests that are cooler than those in 

croplands. In winter, because daytime and nighttime temperatures in forest are warmer than those of 

cropland, the daily average temperatures of forest are warmer than those of croplands. 

Table 2. Changes in surface biophysical properties for potential conversion from forests to 

croplands (cropland minus forest) in Northeastern China and associated changes in energy 

budget components. 

-- Annual Winter Spring Summer Autumn 

ΔAlbedo 0.05 ± 0.06 0.15 ± 0.02 0.01 ± 0.01 0.02 ± 0.02 0.04 ± 0.02 

ΔLSTdaily −0.93 ± 1.08 −1.93 ± 1.33 0.08 ± 1.10 1.23 ± 0.70 −0.87 ± 1.04 

ΔLSTdaytime 0.50 ± 1.25 −1.64 ± 1.91 1.91 ± 1.68 2.97 ± 1.20 0.59 ± 1.19 

ΔLSTnighttime −1.36 ± 0.83 −2.30 ± 1.23 −1.13 ± 0.71 −0.51 ± 0.72 −1.74 ± 0.93 

RFshortwave −6.37 ± 3.23 −16.84 ± 11.16 −2.23 ± 4.91 −3.08 ± 2.51 −4.08 ± 2.68 

RFlongwave −0.37 ± 3.34 8.79 ± 8.75 −2.06 ± 5.24 −8.12 ± 5.58 −0.38 ± 3.43 

ΔRn −7.31 ± 3.99 −7.53 ± 9.78 −4.28 ± 9.01 −11.20 ± 5.93 −4.46 ± 3.93 

ΔLE −7.27 ± 4.12 0.56 ± 1.33 −7.30 ± 3.71 −19.12 ± 8.93 −3.24 ± 2.66 

ΔH 0.21 ± 3.56 −8.17 ± 9.63 3.01 ± 8.17 7.92 ± 6.53 −1.22 ± 4.15 

The values reported here represent the spatial averages of each variable across all 0.75° × 0.75° cells 

where potential land cover conversions occur; units are K for LST and W∙m−2 for energy budget components. 

3.3. Shortwave RF and Longwave RF 

The average annual shortwave RF after conversion of forest to cropland in northeastern China is 

−6.37 W∙m−2. This is larger than longwave RF, which is only −0.37 W∙m−2 (Table 2). The surface 

shortwave flux decreased for all seasons, as expected from the increased albedo caused by deforestation. 

The shortwave radiation change in summer (−3.08 W∙m−2) is smaller than that in winter (−16.84 W∙m−2). 

This is consistent with the seasonal variation in albedo. Therefore, the decreased shortwave RF in winter 

has more impact than the change in shortwave RF in summer. 

Average annual longwave RF induced by LST change following conversion of forest to cropland is 

small in magnitude compared to the corresponding shortwave RF induced by albedo change (Table 2). 

However, longwave RF is particularly noticeable in summer and winter, when it reaches −8.12 W∙m−2 

and 8.79 W∙m−2 respectively. This indicates that the conversion to croplands decreases the longwave 

energy flux in the summer, which enhances the warming effect by shortwave RF. In winter, the LST of 

forest is higher than that of cropland, which leads to a higher loss of upward longwave radiative flux. 

Thus, the change in longwave RF is positive, with an average difference of 8.79 W∙m−2. Overall, 

longwave RF resulting from conversion of forest to cropland is small compared to shortwave RF. 
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3.4. Net Radiation Change and Re-Partitioning of Sensible and Latent Heat 

The combination of surface shortwave and longwave RF yields changes in surface net radiation that 

are mostly negative for conversion from forest to cropland in Northeastern China (Table 2). The average 

annual change in surface net radiation decreases by about 7.31 W∙m−2 after land cover change. The 

decreased shortwave radiation due to the change in albedo is the main contributor to the change. 

Generally, more water evaporates from forest than from cropland, releasing more latent heat. This 

makes the forest surface cooler than the cropland surface. In northeastern China, the annual reduction in 

latent heat is about 7.27 W∙m−2 for the conversion from forest to cropland, which is comparable to the 

reduction in the shortwave RF (6.37 W∙m−2) due to albedo change. The largest difference in latent heat 

between forest and cropland is about −19.12 W∙m−2 in summer. This is because summer is the wet season 

in Northeastern China and forest has higher ET than cropland. Therefore, the decreased latent heat 

caused by conversion to croplands may cause warming. 

Sensible heat warms the near-surface air, so increased sensible heat (ΔH >0) from the conversion of 

forest to cropland, regardless of the signs of ΔRn and ΔLE, would tend to increase local temperatures [28]. 

Overall, sensible heat in the study area shows an increasing trend (7.92 W∙m−2) in summer and a 

decreasing trend (−8.17 W∙m−2) in winter after the conversion of forest to cropland (Table 2). The 

sensible heat flux change due to conversion from forest to cropland in all 0.75° × 0.75° cells shows both 

a seasonal and spatial pattern (Figure 4). The altered land surface temperatures show the same seasonal 

variation and spatial dependence, indicating that energy imbalance tends to increase and decrease surface 

temperature and will eventually affect climate. 

 

Figure 4. Spatial patterns of seasonal ΔH (upper panel, unit: W∙m−2) and ΔLST (lower panel, 

unit: K) for potential land conversion from forest to cropland. The mapped values here represent 

the difference in energy budget and LST of forest and cropland in each selected cell. 
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4. Discussion 

The results of this study show that potential conversion of forest to cropland in Northeastern China 

may lead to warming in summer and cooling in winter, mainly as a result of changes to the sensible heat 

budget, which are 7.92 W∙m−2 in summer and −8.17 W∙m−2 in winter. Although the change in net surface 

radiation is negative (−7.31 W∙m−2) mainly as a result of decreased shortwave radiation, which tends to 

be cooling, the decreased ET counteracts this cooling effect, especially in summer. Therefore, the annual 

change in temperature is not notable because of the opposite signs of the sensible heat flux change in 

summer and winter. 

Snow cover played a critical role in the energy budget in Northeastern China. Snow cover enhances 

the difference in albedo between forest and cropland. Consequently, winter albedo in deforested regions 

is much higher than that in forests [37]. Betts [8] reported that the albedo range was 0.18–0.21 for 

cropland and 0.14–0.15 for evergreen coniferous forest under snow-free conditions while with snow 

cover the albedo value was 0.78 and 0.26 for cropland and forest, respectively. This is consistent with 

the present results except that the reported albedo for snow-covered cropland is higher than the winter 

maximum of 0.58 in the present study. The replacement of forest by cropland could increase the amount 

of outgoing shortwave flux and cause local cooling.  

Net radiation shows a negative change in all four seasons following conversion from forest to cropland 

in Northeastern China. This indicates that the decreased albedo-induced shortwave RF (−6.37 W∙m−2) is the 

main RF for regional climate, especially in regions where snow falls. This is consistent with the finding 

of Betts et al. [9] that the shortwave radiation change caused by deforestation reaches approximately −4 

to −5 W∙m−2 in mid-latitude regions such as Northern China. In contrast to shortwave radiation change, 

longwave radiation change caused by vegetation conversion is an important biophysical factor for the 

surface energy budget that has been ignored in many previous studies [28]. Although the LST-induced 

longwave radiation change is small at the top of the atmosphere and may be considered to have little 

impact on global climate, this longwave radiation change is comparable in magnitude to the albedo-

induced shortwave RF in regional or local climate evaluations [28]. In Northeastern China, although the 

annual longwave RF is only −0.37 W∙m−2, it reaches about 8.79 W∙m−2 and −8.12 W∙m−2 in winter and 

in summer, respectively. This indicates that LST-induced longwave RF should not be ignored when 

evaluating land surface net radiation.  

Our results are consistent with the findings of Peng et al. [25] who found, based on MODIS data, that 

afforestation could cause daytime and nighttime warming in winter and enhances ΔET but that ΔAlbedo 

is almost negligible in summer in areas north of 35°N. This implies that deforestation may cause cooling 

in winter and warming in summer in those regions. Our results are somewhat inconsistent with those of 

Yu et al. [23] and Zhang et al. [24], who reported a decreased temperature trend after deforestation in 

Northeastern China based on climate models. We found that the magnitude of decreased net radiation 

(−7.31 W∙m−2), which tends to have a cooling effect, was similar to the output of those climate models 

(−2 to −5 W∙m−2) [24]. However, the climate models detected an increase in ET (about 0.1–0.2 mm∙d−1, 

equal to 2.8–5.6 W∙m−2∙d−1) after deforestation [24]. In addition, they found a cooling effect not only in 

winter, but also in summer [23]. Using MODIS ET data, we and Peng et al. [25] found a decrease in ET 

due to conversion of forest to cropland. Although there is some uncertainty associated with MODIS ET 

data [30,38,39], Liu et al. [40] reported good performance of the MODIS ET data were observed at a 
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flux site of forest located in northeastern China. A number of studies mentioned that inconsistencies in 

estimating climate effects of temperate forests may arise from the uncertainties of models when 

evaluating ET [11,41,42]. There are some other possible factors that may have contributed to inconsistent 

results between climate models and empirical studies based on satellite observations. First, most climate 

model studies couple land surface and atmosphere models to evaluate the impact of land cover change 

on climate using air temperature as a metric, while satellite observations use LST. Near-surface air 

temperature and LST have different physical meanings, although they are closely coupled [11,43,44]. 

Warming and cooling effects deduced from LST may be different from effects deduced from air 

temperature. In this study, we show that ΔH due to the deforestation is consistent with ΔLST, not only 

with regard to their magnitude, but also in terms of their spatial pattern (Figure 4). Therefore, by  

cross-validation between ΔH and ΔLST, we can infer the trend of potential temperature change in 

summer and winter after deforestation in Northeastern China. Second, climate models use relatively 

coarse grids to evaluate climate change and actual land cover change may not be evident on a coarse 

scale. Most climate models use sensitivity tests such as replacing all forest with cropland to study the 

climate effects of land cover change. However, the actual impacts on climate may be small compared to 

the results of the sensitivity analysis. Therefore, high-resolution climate models should be used for climate 

effect studies [11]. 

There are some other uncertainties in our study. We defined forest as deciduous, evergreen, mixed 

forest, and shrubland. This may have underestimated or overestimated the actual cooling effect of the 

forest. The climate effect of forest does differ depending on forest type. Deciduous broadleaf forest tends 

to cool near-surface air locally while evergreen needleleaf forest tends to warm it compared to cropland 

in some places [28]. In Northeastern China, mixed forest covers a large area and it is difficult to 

distinguish between deciduous broadleaf and evergreen needleleaf forests with land cover data. In 

addition, the input data used to calculate the MOD16 ET dataset did not distinguish between dry cropland 

and irrigated cropland. However, in Northeastern China, there are many paddy fields that could generate 

more water evaporation. Therefore, our evaluation may have underestimated the cooling effect of cropland. 

To restore and improve the environment, a number of national afforestation policies, such as the Grain 

to Green Program (GTGP), have been implemented in China. From the perspective of climate change 

mitigation, although afforestation may cause warming in winter or throughout the year in some high-latitude 

regions, such as Northeastern China, a cooling effect during hot summers was observed in this study. 

Although the carbon sink from afforestation was offset by biophysical effects in some areas, afforestation 

and the avoidance of deforestation have other ecological benefits, such as preserving biodiversity and 

maintaining ecosystem services [45]. Therefore, experiences and lessons learned from afforestation 

programs in China [46] or other countries [47] should be used for future forest management. 

5. Conclusions 

In this study, MODIS data, land cover data, and meteorological forcing data were used to evaluate 

energy budget changes caused by potential conversion from forests to croplands in Northeastern China. 

The results suggest that deforestation tends to cause cooling in winter and warming in summer. In 

addition, we presented the spatial pattern of the energy budget change associated with land conversion. 

The altered land surface temperatures show the same seasonal variation and spatial dependence, 
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indicating that energy imbalance due to deforestation tends to increase and decrease surface temperatures 

and will eventually affect climate. The relationship between energy budget, radiative temperature, and 

air temperature is still worth investigating. Future studies should more accurately evaluate the climatic 

effects of deforestation by combining satellite observations, field observations, and climate models. 
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