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Abstract: Empirical relationships between field-derived Leaf Area Index (LAI) and Leaf 

Angle Distribution (LAD) and polarimetric synthetic aperture radar (PolSAR) based 

biophysical indicators were created and applied to map S. alterniflora marsh canopy 

structure. PolSAR and field data were collected near concurrently in the summers of 2010, 

2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. 

Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator 

variables equaled or exceeded those of vegetation water content (VWC) correspondences. 

In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained 

LAI variance, and the HH-VV coherence and phase information accounted for the 

remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity 

and backscatter mechanism followed by coherence information dominated the final three 

regressor model that explained 74% of the LAD variance. Regression results applied to 2009 

through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although 

the direct cause was not substantiated, following a release of freshwater in response to the 

2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was 

more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure 

generally progressed back toward the 2009 uniformity; however, the trend was more 

disjointed in oil impact marshes.  
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1. Introduction 

1.1. Optical Landcover Mapping and Canopy Structure 

Marshes occupy a unique interface between water bodies and upland landscapes. They are critical 

and essential for exchange of land-to-water fluxes, for providing habitat, and, in coastal settings, 

protection of people and facilities. In the coastal interface, they experience high frequency shifts in 

inundation modulated by terrestrial runoff and coastal ocean tides and storms. These dynamic 

modulations create a spatially complex landscape exhibiting various wetland communities and canopy 

structure forms, even within monotypic marshes in the same region. In addition, the details of wetland 

management can have substantial impacts on the biophysical and compositional structure of the marshes and 

the animal communities dependent on these habitats. The biophysical and structural characteristics of these 

coastal marshes must be monitored and documented to track their health and function. 

Remote sensing can provide this information by linking the optical canopy reflectance to wetland 

status on multiple spatial and temporal scales. However, multiple canopy contributors such as plant cover 

percent and background variability [1–4] complicate the linking the plant leaf condition to canopy 

reflectance. Even accounting for background influences, the canopy reflectance as represented in the 

remote sensing signal reflects the intertwined contributions of the leaf optical properties and plant 

canopy structure, i.e., density and orientation [5–12]. Structure information can be purposely 

incorporated into the classification by fusing radar backscatter and optical image data [13–15]. In other 

cases where the target canopies exhibit largely “full and uniform coverage” or the leaf and structure are 

considered a combined land class unit, the decoupling of the leaf optical and plant-canopy structure 

contributions to the canopy reflectance can be of little consequence. However, when the objective is 

mapping the canopy structure or capturing subtle changes in plant leaf pigments that accompany changes 

in canopy condition, the determination of canopy structure or its contribution, including background, to 

the canopy reflectance can be critical to detecting desired changes. The incorporation of canopy structure 

into calibration advances remote sensing mapping of subtle changes as well as bulk canopy changes. 

1.2. Standardization of Canopy Architecture 

Common methods used to transform remote sensing data to estimates of biomass are based on 

vegetation indexes (VI) adapted from the concept of Tucker [16]. Successful application of VI to map 

biomass, however, has necessitated widespread modifications of the simple VI index that include 

changes in form and variable input (e.g., [17]) or optimization (e.g., [18]). These modifications enhance 

performance for specific landscapes but lead to a plethora of vegetation indexes, particularly in complex 

canopies [19–21]. Relationships that link radar backscatter to biomass can also be constrained in 

specificity of the landscape composition (e.g., [22]). This abundance of vegetation and site specific VI 

is a limitation of the VI approach, reducing its general applicability. 
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Even though broadly useful, VI mapping success is to some degree dependent on the consistency of 

canopy structure throughout the mapped spatial extent so that the biomass composition and canopy 

reflectance relationship remains substantially unaltered. That consistency and VI-based biomass mapping 

success at some level appears to be dependent on the live biomass to total biomass composition  

consistency [14,17,23,24]. While many applications indicate that consistency is often realized, a more 

robust remote sensing estimator of the canopy structure would insure more complete and timely accounting 

of biomass changes in complex canopies exhibiting highly variable structures and compositions.  

1.3. Marsh Canopy Structure and Vertical Profiling 

The vegetative canopy can be represented in terms of its structure as the “spatial arrangement of plant’s 

aboveground organs in plant communities” [25]. Watson [26] standardized the leaf area index (LAI) as 

one component of structure describing the total one-sided leaf area per ground area (m2/m2). Since these 

early works, numerous review articles have documented limitations and advantages of direct and indirect 

measurement of LAI (e.g., [20,21,23,27–29]). Some of those articles have also reported measures related 

to the orientations of the vegetative canopy elements, dominantly leaves and stems (e.g., [27,30,31]), 

which in this paper are aggregately represented as the Leaf Angle Distribution (LAD). Of the studies 

that report vegetation structure, most describe forest and agriculture landscapes. Although advantageous 

for proper monitoring and development of physical dynamics, incorporation of canopy structure profile 

measurements into terrestrial mapping strategy is lacking, particularly in grasslands, and within those, 

especially marshes.  

The necessity of tracking marsh structure and vertical profile is not only based on the need for a 

consistent measure amenable to remote sensing, but also because of the interdependence of the marsh 

structure and coastal zone biophysical function. Biophysical values such as LAI have proved useful in a 

number of environmental applications to represent biomass density. LAI and particularly the  

three-dimensional spatial variability of LAI in grasslands are needed to estimate key components in biochemical 

cycles [27,32]. These include surface water balance and productivity (and photosynthesis) [28,33–35], and 

ozone and CO2 assimilation [32,35,36]. In addition, the three-dimensional canopy description is useful 

for improving water flow estimates, advancing optical condition and change mapping, and fire burn 

dynamics and emission projections. LAI is an essential factor in climate, weather, and ecological studies, 

and thus, a factor in global climate [28,35]. 

1.4. Mapping LAI and LAD with Polarimetric Radar Data 

The choice of polarimetric radar data as the base for developing a remote sensing marsh structure 

mapping technology is founded primarily on the requirements for defining canopy structure and density 

(biomass, water content, LAI, LAD). Although mapping success varies, the advantage of cross 

polarization backscatter (HV or VH) or cross and like (HH or VV) polarization ratios in explaining 

density variance is well established (e.g., [13,37–44]). Less experience exists in applying full 

polarimetric (PolSAR) information in mapping vegetation density, especially in grassland landscapes; 

however, some operational mapping applications have utilized the full polarimetric information to 

account for canopy structural changes in grassland or marsh landscapes [22,45–48]. This research 

follows those latter studies by exploiting a combination of backscatter intensities, intensity ratios, 
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copolarization correlation and phase, backscatter spatial heterogeneity, and backscatter mechanism 

obtained by decomposition of the complex polarimetric data for canopy structure mapping development. 

Information gained from single and dual polarization radar mapping of vegetation density and orientation 

was also incorporated into the study to evaluate marsh change during a time interval extending from one 

year before the Deepwater Horizon (DWH) spill to two years after the spill. 

1.5. Coastal Description and Site Locations 

Located in the deltaic plains of the north-central Gulf of Mexico, the study region encompasses 

estuarine wetlands [49,50] (Figure 1) located in southern Louisiana. These marshes are scoured by 

hurricanes that push water with elevated salinity into inland marshes where channels, levees, and 

impoundments impede overland flow, lengthening marsh exposure to elevated salinity surge water and 

prolonged inundation that promote marsh alteration and deterioration [51,52]. Features such as water 

ponding in scattered small depressions are a constant and changing occurrence throughout these coastal 

marshes. Water masks created one year may over or under estimate previous or future occurrences of 

these features resulting at times in the over and under correction of input datasets used in landcover 

classifications. Because of the possible corrupting influence of extreme values in similarity-based 

classifications, over correction or over removal of the scattered open water ponds is preferred.  

 

Figure 1. The coastal marsh region of Louisiana located in the north-central Gulf of Mexico. 

The boxes locate Barataria Bay, Golden Meadow, and Rockefeller Refuge study regions. 

Golden Meadow and Rockefeller Refuge S. alterniflora field sites were occupied in  

2010–2012 and Barataria Bay field sites in 2011 and 2012. NASA/UAVSAR PolSAR data 

and field data collections were coordinated. PolSAR collections in Barataria Bay occurred 

from 2009 to 2012. 

As reported in Ramsey et al. [53], marsh canopy structure varies over time and from site to site, 

sometimes dramatically. This occurs between different marsh species and also within a single species. 

An added complexity and one core reason for advancing marsh structure mapping is the often abrupt 

changes in canopy density and orientation within the canopy vertical profile associated with lodging. 

Lodging is not as pervasive in S. alterniflora as in, for example, S. patens marshes; however, it does 

occur and can be acute [53]. S. alterniflora marshes also exhibit changes in form (height, leaf width, 
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density) dependent on provenance and growth stage. While variation in form was not a differential 

variable between the three physiographic regions used in this study, marsh form (not including leaf 

width) and biomass composition varied highly at each site and from year to year.  

2. Objectives 

The goal of this research is to develop an operational and robust polarimetric remote sensing estimator 

of marsh canopy structure. The first objective within that goal is to create an empirical relationship 

between PolSAR data and marsh canopy structure based on near-coincident PolSAR and field data 

collections. The relationship is based on field-based LAI and LAD marsh structure and PolSAR-based 

indicators. The second objective is to apply the empirical relationship in order to provide a direct 

example of using structure information to track marsh status trends. That objective was accomplished 

by mapping marsh structural change over a period of time that encompassed the Deepwater Horizon oil 

spill impact to these marshes. The Deepwater Horizon spill was initiated on 20 April 2010, and continued 

releasing oil into the Gulf of Mexico approximately 50 miles from the Louisiana coast until the well was 

capped in July 2010. The radar data set begins in 2009 with images of the Louisiana coast pre-spill, 

continues in 2010 when data were collected during the spill, and follows with near-anniversary 

collections in 2011 and 2012. Marsh oiling from the spill was extensive only in the northeastern Barataria 

Bay. None of the study sites are known to have received direct oiling from the spill, and only the 

Barataria Bay sites were in close proximity to heavily oiled marshes. In contrast, the PolSAR data for 

all years covered the extended wetlands, from the coast inland, both oiled and unimpacted. 

3. Methods 

NASA Uninhabited Aerial Vehicle SAR (UAVSAR) conducted flights over coastal Louisiana in response 

to the Deepwater Horizon oil spill and its possible long-term effects on exposed coastal resources [54,55]. 

Specific to this study, PolSAR data were collected in June to July 2010, 2011, and 2012 of the Rockefeller 

Refuge, Golden Meadow and Barataria Bay study areas (shown in Figure 1). In addition, UAVSAR PolSAR 

was collected of Barataria Bay in June 2009, prior to the Deepwater Horizon accident. Nearly concurrent 

with PolSAR summer collections, field data were collected at seven sites in non-impacted and impacted 

marshes located in the Louisiana coastal zone. In 2010, field data were collected in the Rockefeller Refuge 

and Golden Meadow sites only, and at all sites in 2011 and 2012. 

PolSAR and field data collections are located in three dynamically diverse regions of the coastal 

landscape. The furthest sites to the east lie within Barataria Bay directly adjacent to the location in the 

Mississippi River delta that was heavily impacted by the Deepwater Horizon oil spill in 2010 [55]. 

Outside the oil spill impacted area and further to the west in the Golden Meadow region are located 

inland marsh sites that are not exposed to wave and storm energy as is marsh in Barataria Bay, although 

they do experience tidal water level variations. Further west in the Rockefeller Refuge and closer to the 

shoreline are located the remaining sites, which lie within protected impoundments that while retaining 

a direct connection to the coastal ocean provide protection from wave erosion. Both the Barataria Bay 

and Golden Meadow regions are dominated by S. alterniflora marsh while different estuarine marshes 

create a spatial patchwork of dominance throughout the Rockefeller Refuge [50]. S. alterniflora 

comprised 100% or nearly 100% of marsh at all seven sites in this study. 
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3.1. Field Measurements and Post-Analyses 

High variability was associated with a regional dieback centered on the Golden Meadow region [14]. 

Whether this event was also reflected as form and composition variation measured in the Barataria Bay 

and Rockefeller Refuge marshes is unclear. What was observed, however, was high variability in marsh 

height, density, live and dead composition, and the vertical distribution of these measures from site to 

site and year to year. Field data collection within 30 m by 30 m S. alterniflora plots followed a standard 

sampling strategy that provides reproducible measures within these structurally variable marshes (for 

detailed descriptions, see Ramsey et al. [14,53,56]). Biomass was measured within a 1 m2 area chosen 

to represent the typical marsh at each site, separated into live and dead portions, dried, and weighed (for 

method, see [14,57]). Vertical profiles of photosynthetic active radiation (PAR) attenuation, sampled at 

20 cm increments from bottom to top of the canopy, were measured every 3 m along 30 m east–west 

and north–south transects [14,53,56].  

3.1.1. Calculation of Site-specific LAI and LAD 

The site averaged PAR vertical profiles were parameterized as marsh canopy LAI profiles and 

average leaf-stem LAD using the method of Ramsey et al. [56]. For use in calibrating the PolSAR data, 

the vertical LAI profiles were aggregated as a single total LAI per site and time.  

3.1.2. Correction of Biophysical Field Measures for Water Level 

At the times of the PolSAR acquisitions, above-surface water levels at the field sites were obtained 

from nearby hydrologic stations operated by the Coastwide Reference Monitoring System as described 

in the Strategic Online Natural Resources Information System [58]. Shallow (11 cm) aboveground and 

subcanopy flooding occurred during the 2012 Rockefeller Refuge UAVSAR overflight. Similarly, in 

2009, possible shallow (7 cm) subcanopy flooding was indicated at one of the three hydrologic stations 

in marshes surrounding Barataria Bay [55]. At Golden Meadow, however, subcanopy surface flooding 

was present during all UAVSAR collections. To account for the loss of accessible biomass, the LAI 

profiles and measured water depth were used to adjust measured biomass and LAI remaining above the 

water surface at the time of the UAVSAR collections [14]. These adjusted biomass metrics offered a 

more accurate depiction of PolSAR-based variable and biomass relationships, improving interpretability 

and extendibility of regression results. 

3.2. UAVSAR PolSAR Data 

The day and night mapping capabilities offered with radar systems are further extended by the 

UAVSAR airborne platform offering rapid response in emergencies and agility in tracking  

time-varying features. UAVSAR’s precision repeat-track capability to within 5 m ([54]) enables direct 

comparison between revisit data collections, and its high transmitted power results in a higher  

signal-to-noise ratio compared to satellite radars. The high signal-to-noise ratio, a quantity that indicates 

how much of the measured signal comes from surface backscatter relative to what is generated by noise 

in the instrument electronics, is particularly important when using HV intensities, which are lower signal 

level than the HH or VV returns. A previous evaluation of the UAVSAR L-band data found that noise 
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intensities remained below HV backscatter associated with marshes located in the near- to far-range with 

the possible exception of non-vegetated land covers [54,55]. The L-band 1217.5 to 1297.5 MHz (23.8 

cm wavelength) frequency of the SAR system could provide more consistent subcanopy information as 

suggested in inundation flood mapping [52,59], and its quadrature polarized capability, recording 

intensities and phases of the HH, VV, and cross-polarization (HV and VH) backscatter, allow a more 

complete characterization of the scattering properties [60].  

This study used UAVSAR’s ground range projected, calibrated, and multilooked complex image data 

referred to as GRD (georeferenced) products [61]. These image data reflect the amplitude and phase of 

the electromagnetic wave measured by the PolSAR sensor representing the complex elements of the 

scattering matrix [55]. The cross-polarized channels, HV and VH, are combined into a single channel 

based on the assumption that the HV and VH backscatter is equal for natural surfaces [62]. The GRD 

data at 5.338 m by 6.159 m and effective looks of 3 and 12 in the azimuth and range directions were 

rectified to a UTM map projection at a 5 m by 5 m pixel resolution. The NASA GRD product provided 

a readily usable and high fidelity polarimetric data source of high spatial resolution and repeat targeting 

that enabled determination and direct comparison of canopy structure between the 2009, 2010, 2011, 

and 2012 revisit data collections. 

PolSAR-Based Biophysical Indicators 

PolSAR data were extracted at each site by using a 5 by 5 and a 7 by 7 pixel rectangle centered over 

the field collection areas. The 2009, 2010, 2011, and 2012 PolSAR data were used to calculate site mean 

HH (horizontal send and receive), VV (vertical send and receive), and HV intensities. These backscatter 

intensities were combined to form the copolarization ratios, HH/VV, HH/(VV−HH),  

(HH−VV)/(HH+VV), and VV/(VV+HH), HH/HV and VV/HV, the depolarization ratios, HV/HH, 

HV/VV, and (HH+VV)/2HV, and ratios related to volume scatter, HV/(HH+HV) and HV/(VV+HV).  

The SAR Polarimetric Workstation software module imbedded within the PCI image processing 

software toolkit [63] provided the site average HH–VV phase difference as a measure of the polarization 

properties at each marsh site, the HH and VV correlation magnitude and the real and imaginary 

correlation coefficient components that comprise the HH and VV correlation. In addition, produced were 

the coefficient of variation related to the maximum and minimum power in the polarization signature, 

and the pedestal height of the signature plot indicating, somewhat similar to the coefficient of variation, 

the heterogeneity of scattering properties within the site average.  

Following a number of studies (e.g., [39,44–47,55, 64]), decomposition models were applied to the 

complex polarimetric backscatter components of the GRD data in order to categorize the dominant 

backscatter into distinct mechanisms that could reveal the structure of the vegetation [65,66].  

Freeman–Durden (FD) is a physical model decomposition used to transform the scatter matrix into 

estimates of surface, volume, and double-bounce scatter mechanism. Cloude–Pottier (CP) 

decomposition extracts three eigenvectors from either the covariance or coherence matrix representation 

of the scatter matrix. The eigenvector values and angles are used to derive secondary variables, namely 

entropy, anisotropy, and alpha and beta angles that combined represent different scatter mechanisms. Revised 

solutions to improve FD overestimation of volume scatter (negative nonphysical solutions) in certain 
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environments have been offered [67,68]; however, overestimation of volume scatter was not observed in the 

land applications. 

3.3. Defining the PolSAR-Based Indicators and Marsh Structure Relationship 

Development of the empirical relationship between marsh structure and PolSAR data is based on 

multivariate regression analyses. The use of statistical means for this development is a first step in 

identifying PolSAR-based variable interactions that provide marsh structure information. First, 

identification should advance understanding of the physical mechanism underlying these interactions, 

enhancing transition to operational physical models (after Titin-Schnaider [69]). Second, sound 

regression models fulfill an immediate need to advance marsh condition monitoring while building a 

body of knowledge concerning PolSAR marsh structure mapping (after Titin-Schnaider [69]).  

3.3.1. Examining the PolSAR-Based Indicator Dataset 

Simple relationships were examined within and between all biophysical measurements and  

PolSAR-based indicators in order to identify errors in data entry and variable redundancies, and reveal 

simple correspondences. Entry errors were corrected and redundant PolSAR variables removed before 

conducting multiple regression analyses. 

3.3.2. Developing Statistical Predictor Equations 

Stepwise regressions (SAS® Enterprise) were conducted to determine the best set of PolSAR 

indicator variables for explaining the Biomass, LAI and LAD variances. To decrease autocorrelation of 

PolSAR-based regressor variables entered into the regression analyses, PolSAR indicator variables were 

eliminated that exhibited direct correspondence as noted in the scatter plots. Not all autocorrelations in the 

PolSAR variables were removed. In order to estimate autocorrelation of the regressors, the tolerance (TOL) 

and variance inflation factor (VIF) were calculated within the stepwise procedure. The TOL and VIF indicate 

multicolinearity of the regression coefficients and a TOL < 0.1 and a corresponding VIF > 10 indicate that 

the importance of the regression variable cannot be interpreted based solely on the associated coefficient 

magnitude (e.g., [70–72]). In order to strengthen interpretation and robustness of the regression 

relationship and promote comparisons, the stepwise regressions were limited to those with maximum 

TOL ≥ 0.1 and VIF ≤ 10. 

3.3.3. Mapping Marsh Canopy LAI and LAD 

Regression equations and the corresponding regression coefficients were applied to the stepwise 

selected PolSAR indicator images (independent regression image variables). The resultant LAI and LAD 

images were calculated by multiplying the coefficient and associated image data of each independent 

regression variable and then summing these products and the regression intercept to obtain the LAI or 

LAD pixel value. Calculations were carried-out with embedded image processing tools [63]. As a 

demonstration of LAI and LAD capabilities for monitoring marsh structural change, the study used 

UAVSAR PolSAR image data collected in 2009, 2010, 2011, and 2012 before and after the 2010 

Deepwater Horizon oil spill.  
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Composite LAI and LAD classifications were obtained by applying a centroid-based clustering 

procedure [63]. The cluster procedure simply identified spatially covarying groups within each yearly 

set of LAI and LAD images and produced a set of classes representing these groupings for each year. 

Individual classifications by year were used in order to emphasize the unique LAI-LAD features 

comprising each year’s marsh landscape. Comparison then involved describing similar and unique 

classes and their changing coverages throughout the four-year period. Changes within the extensive 

interior marshes outside the expected oil penetration and those exposed and potentially exposed to oil 

during the 2010 Deepwater Horizon oil spill were described. 

4. Results 

4.1. Site-Specific Biophysical Data 

Marsh biomass quantity and composition and calculated LAI and LAD varied highly between sites 

and over time (Table 1) [56]. Live and dead dry weight compositions highly aligned with total biomass  

(R2 > 0.87, n = 17, Figure 2), while LAI exhibited weak correspondence with dead biomass (R2 = 0.29,  

n = 17) and no correspondence with total or live biomass. Although a marsh dieback was documented 

for the Golden Meadow region [14], and the Deepwater Horizon oil spill impacted Barataria Bay 

marshes [55] over this time period, no noticeable pattern of biomass and composition grouping was 

clearly exhibited in the field data per region or time. The S. alterniflora marsh dataset exhibited a broadly 

distributed dataset range well suited for accomplishing the study objectives [56].  

 

Figure 2. Total Biomass Dry Weight = 1.67 × Live Biomass Dry Weight + 190.28,  

R2 = 0.91, MSE = 26,716.40 (gr/m2) (n = 17). Dashed line represents the 95% confidence 

limits. For data and site labels refer to Table 1. 
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Table 1. Field Measured and Calculated Biophysical Variables. Site labels include the site 

name and year collected (RF = Rockefeller Refuge, BA = Barataria Bay, GM = Golden 

Meadow). All entries were adjusted for the water level recorded at the time of UAVSAR 

collection. The Biomass Percent refers to the magnitude of that adjustment. Note: There are 

two biomass weights, the dry weights and water weights. 

Site Dried Biomass Weight   Structure Biomass Water Weight 

  Total Live Dead Biomass LAI LAD Total Live Dead 

  gr/m2 gr/m2 gr/m2 Percent     gr/m2 gr/m2 gr/m2 

RF3-10 1417.1 795 622.1 100% 2.75 0.88 3238 1792.8 1445.1 

RF3-11 392.3 173 219.3 100% 2.6 0.69 346.6 234.4 112.3 

RF4-11 543.4 179.5 364 100% 2.41 0.72 485.8 284 201.8 

RF3-12 1113.6 600.2 513.4 89% 2.13 0.67 1149.2 725.6 423.6 

RF4-12 623.9 328.8 295.1 89% 1.9 0.82 781.7 428 353.7 

BA25-11 520.3 191.6 328.7 100% 5.03 0.5       

BA27-11 839.9 334.9 505.1 100% 3.15 0.78       

BA33-11 681.4 229 452.4 100% 3.46 0.39       

BA25-12 1137.7 555.8 581.9 100% 3.92 0.31 3634.6 1297 2337.6 

BA27-12 2351.1 1095.1 1256 100% 4.34 0.58 4417.5 2045 2372.6 

BA33-12 571.9 429.8 142.1 100% 1.24 0.38 2408.2 1590.9 817.3 

GM397-10 1020.8 529.3 491.5 66% 3.26 1.04 444.8 252.7 192.1 

GM978-10 1320 670.3 649.7 88% 3.91 0.52 3755.2 2023.5 1731.7 

GM397-11 496 177.8 318.2 94% 3.07 0.59 587.3 272 315.3 

GM978-11 353.7 5.3 348.3 75% 2.38 0.67 305.2 10.7 294.5 

GM397-12 412 249.9 162.1 39% 1.6 0.4 270.6 118.2 152.3 

GM978A-12 313.1 166.8 146.3 29% 0.94 0.39 247.3 82.1 165.2 

4.2. PolSAR-Based Biophysical Indicators 

Scatter plots revealed that most of the more complex intensity ratios directly covaried with simpler 

ratios. The redundant ratios removed from the regression analyses included HH/(VV−HH),  

(HH−VV)/(HH+VV), and VV/(VV+HH), HV/(HH+HV) and HV/(VV+HV). FD volume scatter was 

removed because it replicates the HV backscatter variance. In addition, only the linear values associated 

with each of the FD scatter mechanisms were used in the regression analyses. Close and similar 

correspondences also were noted between some additional PolSAR-based variables and these are 

discussed when pertinent to those variables selected in the stepwise regression. Although of interest in 

analyzing polarimetric mapping of these marshes, a full discussion of the covariances between the 

PolSAR indicators set is not directly pertinent to this analysis and is not included here. The final PolSAR 

dataset entered into the regression analyses is contained in Table 2. 

4.3. Linking PolSAR Indicators and Site-Specific Marsh Canopy Biophysical Structure 

4.3.1. Biomass and PolSAR Data Regressions 

First calculated were relationships between dry biomass and biomass water quantities in Table 1 and 

the set of PolSAR-based variables listed in Table 2. In the dry biomass weight stepwise regressions, site 
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27-12 (notation is site-year) was an extreme outlier; however, there is no evidence that biomass 

measurements at that site were incorrect. Including all 17 sites, a four variable solution explained 53% 

of the live biomass variance and two variable solutions accounted for 42% and 39% of the total and dead 

biomass variance, respectively. Biomass water weight stepwise regressions used all 14 sites (three sites 

had missing values). A two variable solution explained 70% of the total biomass water weight, 76% of 

the dead biomass water weight, and 63% of the live biomass water weight (Table 3). Because water 

content is commonly used, and its explained variance is substantially higher, only PolSAR-biomass 

water regression statistics are included in Table 3. 

4.3.2. LAI and LAD and PolSAR Data Regressions 

All 17 sites were input into the LAI and LAD stepwise regressions (Tables 1 and 2). The HV/VV 

PolSAR indicator singularly explained 49% of the LAI variance (Table 3). The prediction equation with 

the highest explanation (R2 = 0.95) of LAI variance included nine PolSAR-based indicators; however, 

some variables in the relationship contained TOLs and VIFs indicating high multicolinearity among the 

selected PolSAR indicators. The maximum TOLs and VIFs included in the prediction was reduced to 

acceptable levels by eliminating variables selected in the 95% solution. A reduced six variable solution 

accounted for 77% of the LAI variance (Table 3, Figure 3a). A three variable solution explained 74% of 

the LAD variance (Table 3, Figure 3b).  

 

Figure 3. (a) LAI Observed = 1.00 ± 0.14 (p < 0.001) × LAI Predicted + 2.40E-14 ± 0.416  

(p = 1.0) R2 = 0.77, Mean Square Error = 0.30 LAI, (n = 17). (b) LAD Observed =  

1.00 ± 0.15 (p < 0.001) × LAD Predicted + 2.24E-14 ± 0.096 (p = 1.0) R2 = 0.74, Mean 

Square Error = 0.011 LAD, (n = 17). Dashed line represents the 95% confidence limits 

(SAS® Enterprise). For observed data and site labels refer to Tables 1 to 2. 
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Table 2. PolSAR Biophysical Indicator Variables (Site labels as in Table 1.). 

Site Average Target Intensity Average Ratio (VV+HH) HH+2HV Copolar Pedestal  Coefficient 

 HH HV VV HH/VV HV/HH HV/VV /(2HV) +VV HH+VV Height of 

  Intensity Intensity Intensity Ratio Ratio Ratio Ratio Intensity Intensity Linear Variation 

RF3-10 0.0379 0.0038 0.0058 6.541 0.0995 0.6506 5.796 0.0512 0.0436 0.0051 0.0468 

RF3-11 0.0188 0.0031 0.0068 2.762 0.1644 0.4541 4.142 0.0317 0.0256 0.0041 0.0791 

RF4-11 0.0185 0.0018 0.0157 1.185 0.0996 0.1180 9.260 0.0379 0.0342 0.0061 0.0469 

RF3-12 0.0215 0.0036 0.0104 2.061 0.1662 0.3424 4.470 0.0391 0.0319 0.0066 0.0826 

RF4-12 0.0271 0.0033 0.0099 2.727 0.1233 0.3362 5.543 0.0437 0.0370 0.0061 0.0607 

25-11 0.0341 0.0052 0.0079 4.341 0.1534 0.6659 4.010 0.0525 0.0420 0.0066 0.0678 

27-11 0.0185 0.0025 0.0029 6.414 0.1324 0.8491 4.365 0.0264 0.0214 0.0025 0.0561 

33-11 0.0223 0.0035 0.0059 3.796 0.1566 0.5943 4.035 0.0352 0.0282 0.0051 0.0753 

25-12 0.0338 0.0070 0.0103 3.294 0.2078 0.6845 3.137 0.0581 0.0440 0.0090 0.1037 

27-12 0.0215 0.0036 0.0058 3.715 0.1667 0.6194 3.806 0.0344 0.0272 0.0045 0.0776 

33-12 0.0146 0.0032 0.0131 1.112 0.2217 0.2466 4.282 0.0341 0.0276 0.0058 0.1038 

397-10 0.0159 0.0021 0.0105 1.508 0.1319 0.1990 6.304 0.0305 0.0264 0.0057 0.0650 

978-10 0.0154 0.0023 0.0032 4.836 0.1496 0.7235 4.033 0.0232 0.0186 0.0027 0.0698 

397-11 0.0131 0.0033 0.0140 0.936 0.2495 0.2334 4.147 0.0337 0.0272 0.0064 0.1123 

978-11 0.0259 0.0034 0.0068 3.827 0.1328 0.5084 4.747 0.0396 0.0327 0.0060 0.0623 

397-12 0.0060 0.0013 0.0142 0.420 0.2223 0.0935 7.599 0.0229 0.0202 0.0031 0.0462 

978A-12 0.0093 0.0013 0.0164 0.569 0.1448 0.0823 9.526 0.0284 0.0257 0.0042 0.0398 

Water 0.0004 0.0002 0.0008 0.488 0.5564 0.2715 2.740 0.0017 0.0012 0.0003 0.1260 

Table 2. Cont.  

Site Freeman-Durden Cloude-Pottier HH + VV HH+VV Correlation  

 Double Surface Entropy Anisotropy Alpha Beta Phase Magnitude Coefficient 

  Bounce Scatter         Difference   Real Imaginary 

RF3-10 0.0001 0.0322 0.5526 0.2009 43.51 12.77 24.96 0.2792 0.2531 0.1178 

RF3-11 0.0022 0.0141 0.7257 0.3121 40.21 16.45 −5.14 0.3737 0.3722 −0.0334 

RF4-11 0.0115 0.0171 0.7185 0.7255 41.04 9.95 −53.44 0.3535 0.2105 −0.2839 

RF3-12 0.0060 0.0152 0.7843 0.4382 42.41 11.22 −15.44 0.2771 0.2671 −0.0738 

RF4-12 0.0061 0.0209 0.7096 0.4501 41.62 9.66 −23.85 0.3075 0.2812 −0.1243 

25-11 0.0263 0.0000 0.6785 0.2466 45.99 18.16 −44.36 0.2086 0.1491 −0.1458 

27-11 0.0000 0.0149 0.5884 0.1941 44.72 18.75 −12.20 0.2187 0.2137 −0.0462 

33-11 0.0012 0.0165 0.7149 0.2601 45.89 15.79 5.58 0.1636 0.1628 0.0159 

25-12 0.0000 0.0232 0.7774 0.1649 46.60 14.18 −15.94 0.2002 0.1925 −0.0550 

27-12 0.0004 0.0161 0.6999 0.2098 42.65 18.91 6.11 0.3126 0.3108 0.0333 

33-12 0.0071 0.0108 0.8214 0.5231 41.96 19.41 −36.12 0.3047 0.2461 −0.1797 

397-10 0.0071 0.0130 0.7727 0.6266 40.22 11.77 9.75 0.2689 0.2650 0.0455 

978-10 0.0000 0.0120 0.6463 0.1272 43.89 17.14 31.07 0.3202 0.2743 0.1652 

397-11 0.0073 0.0101 0.8455 0.5470 42.09 29.49 9.57 0.2244 0.2213 0.0373 

978-11 0.0199 0.0025 0.6919 0.3491 47.66 14.50 63.17 0.1102 0.0497 0.0983 

397-12 0.0133 0.0030 0.6683 0.5664 53.68 8.66 −128.51 0.3886 −0.2419 −0.3041 

978A-12 0.0162 0.0054 0.6517 0.6491 49.94 7.35 −103.38 0.4626 −0.1071 −0.4500 

Water 0.0005 0.0001 0.8635 0.3371 48.75 22.45 −41.08 0.0899 0.0678 −0.0591 
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Table 3. Regression models used to estimate the field-based biophysical variables.  

FDDB = Freeman–Durden Double Bounce, CPAlpha = Cloude–Pottier Alpha angle, 

HHVVPhDif = Phase difference, HHVVIM = Imaginary Correlation Coefficient,  

CoefVAR = Coefficient of Variation, MSE = Model Mean Square Error. Highlighted cells 

denote model parameters used to produce the LAI and LAD images. 

Biophysical  Regression Model  

 PolSAR Variables Parameters Parital R2 Pr > F Tol–VIF  R2 (#Obs) MSE 

Dead Biomass Water  Intercept  −317 ± 277  0.28  0.64 (14) 2.72E+05 

 HV 2901 ± 633 0.64 0.0006    

Dead Biomass Water  Intercept  −2767 ± 1062  0.0245  0.76 (14) 1.97E+05 

 HV/VV 5302 ± 1149 0.64 0.0006 0.22– 4.55   

 VV 151,201 ± 63,919 0.12 0.0374 0.22– 4.55   

Live Biomass Water  Intercept 1425 ± 219  <0.0001  0.55 (14) 2.94E+05 

 FDDB  −90,379 ± 23,653 0.55 0.0024    

Live Biomass Water  Intercept 709 ± 491  0.1765  0.63 (14) 2.60E+05 

 HV/VV 13,191 ± 822 0.09 0.137 0.56–1.76   

 FDDB  −59,189 ± 29,540 0.55 0.0704 0.56–1.76   

Total Biomass Water  Intercept  −428 ± 538  0.44  0.61 (14) 1.02E+06 

 HV/VV 5304 ± 1229 0.61 0.001    

Total Biomass Water  Intercept 921 ± 894  0.3249  0.70 (14) 8.61E+05 

 HV/VV 3521 ± 1497 0.61 0.0384 0.57–1.76   

 FDDB  −97,330 ± 53,790 0.09 0.0978 0.57–1.76   

Total Biomass Water  Intercept  −2099 ± 2291  0.3811  0.75 (14) 7.88E+05 

 HV/VV 6503 ± 2540 0.61 0.0284 0.18–5.55   

 FDDB  −09253 ± 5157 0.09 0.103 0.56–1.77   

 VV 182,252 ± 128,231 0.05 0.1857 0.22–4.57   

LAI  Intercept 1.45 ± 0.41  0.0029  0.49 (17) 0.6624 

 HV/VV 3.16 ± 0.82 0.49 0.0016    

LAI  Intercept 1.39 ± 0.40  0.0036  0.56 (17) 0.6154 

 HV/VV 5.98 ± 2.09 0.49 0.0016 0.14–6.89   

 HH/VV  −0.40 ± 0.27 0.07 0.1651 0.14–6.89   

LAI  Intercept 6.60 ± 2.59   0.029   0.77 (17) 0.4432 

  HV/VV 6.35 ± 1.86 0.49 0.0066 0.13–7.6     

  HH/VV  −0.437 ± 0.232 0.07 0.09 0.14–7.1     

  FDDB 69.21 ± 28.00 0.03 0.033 0.58–1.7     

  CPAlpha  −0.126 ± 0.063 0.05 0.072 0.53–1.9     

  HHVVPhDif  −0.0234 ± 0.011 0.04 0.059 0.10–10.2     

  HHVVIM 7.69 ± 3.23 0.09 0.038 0.10–10.1     

LAD  Intercept 2.14 ± 0.43  0.0002  0.58 (17) 1.97E−02 

 HV/HH −2.42 ± 0.84 0.38 0.008 0.95–1.06   

 CPAlpha −0.026 ± 0.0099 0.2 0.021 0.95–1.06   

LAD Intercept 2.81 ± 0.43   <0.0001   0.74 (17) 0.0131 

  CoefVAR  −6.47 ± 1.47 0.34 0.0007 0.83–1.21     

  CPAlpha  −0.039 ± 0.0089 0.33 0.0008 0.78–1.28     

  HHVVIM 0.398 ± 0.196 0.08 0.0637 0.79–1.26     

4.4. Mapping Marsh Canopy LAI and LAD 

The black and white 2009 to 2012 continuous images in Figure 4 represent the density (LAI) and 

average orientation (LAD) of the marshes surrounding Barataria Bay. The LAI images were produced 

with a common continuous look-up table, providing direct comparability. Higher LAIs are brighter and 
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lower LAIs are darker. Black–white 2009 to 2012 LAD reproductions were produced similarly. LAI and 

LAD yearly ranges are obtainable from Table 4.  

 

Figure 4. LAI (top 2009 to 2012) and LAD (bottom 2009 to 2012) were mapped based on 

regression models shown in Table 3. Brightness representing increasing LAI or LAD  

(Table 4) is directly comparable from year to year. The box shown on the 2010 LAI map 

approximately outlines the core oil impact region in Barataria Bay. 
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Table 4. Classes are aligned to best match similar LAI and LAD class means from year to year 

(Figure 5). Grey shading signifies a comparable class was not found in one year that existed in 

another year. The same color in each year signifies a similar LAI and often a similar LAD. The 

class colors assigned in the table match the class colors applied in Figure 5. CLS = Class,  

OBS = the observations (or pixels) comprising each class and MN = Mean.  

2009 2010 2011 2012 

CLS OBS 
MN 

LAD 

MN 

LAI 
CLS OBS 

MN 

LAD 

MN 

LAI 
CLS OBS 

MN 

LAD 

MN 

LAI 
CLS OBS 

MN 

LAD 

MN 

LAI 

        1 13,280 0.4 11                 

        2 33,362 0.4 9.2 1 65,121 0.31 8.8         

        3 109,761 0.43 7.9 2 223,559 0.42 7.2         

1 36,353 0.42 6.5 4 275,644 0.5 6.6 3 501,057 0.45 5.9 1 249,634 0.41 6.3 

2 252,305 0.44 4.8 5 787,565 0.62 5.3 4 912,760 0.52 4.8 2 950,110 0.45 5 

3 798,197 0.55 3.6 6 1,596,081 0.72 4 5 1,201,247 0.61 3.7 3 1,392,628 0.52 3.9 

4 1,558,891 0.66 2.6 7 867,038 0.67 2.6 6 797,528 0.68 2.5 4 1,066,460 0.61 2.8 

5 1,178,380 0.67 1.6                         

Included in the LAD images were values less than zero. With the exception of the negative values, 

the lowest LAD values generally were above 0.2. The highest numbers of these negative LADs occurred 

in 2010 and 2012 grouped in the most interior north and northeast marshes. Although there was possible 

shallow surface water in 2009 (<7 cm), surface flooding was not indicated in the hydrologic stations 

surrounding Barataria Bay at the time of the 2010 to 2012 collections. Inspection of the PolSAR image 

data suggested that the negative LADs could be associated with possible flooding or small open  

water-filled depressions (ponds). Assessment of the selected PolSAR indicator variables (Table 2) 

showed that the coefficient of variation, imaginary correlation coefficient, and the copolar phase 

difference exhibited substantial sensitivity to subcanopy flooding when over 60% of the canopy was 

submerged. Similar copolar phase difference sensitivity to flooded vegetation has been noted [44]. 

However, as noted in Table 1, a number of field sites were flooded at the times of PolSAR collections, 

particularly in Golden Meadow, and these sites did not exhibit abnormal responses in the regression 

model (Figure 3a,b). It seems more likely that ephemeral features such as ponded open water moved the 

calibration response outside its operational limits. This would prove a limitation of this polarimetric 

mapping. The cause of the invalid LAD estimates is being pursued, and once confirmed, the limitation 

will be reported and avoidance incorporated into the mapping. Neighborhood pixels should also be 

cautiously interpreted when they exhibit extreme LAI and LAD values. Negative outcomes were 

excluded from subsequent analyses by combining them into the open-water mask. Excluding the areas 

covered by the water mask, the LAI and LAD image pairs were used to produce the LAI-LAD 2009 to 2012 

classified maps (Figure 5).  

Composite Marsh Canopy LAI and LAD Changes 

Composite LAI-LAD classifications were created to uncover the spatial relationship between LAI 

and LAD magnitudes. In order to improve interpretability of the 2009–2012 LAI-LAD classified maps, 

Table 4 was constructed so as to emphasize the year-to-year relationship of class means (MN) and 
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dominance in the marsh landscape per year. As seen in Table 4, except for Class 7 in the 2010 

classification, LAI progressively increases as LAD decreases. The table also reveals the change in marsh 

complexity as indicated by the number of classes. The least complex marsh landscapes were exhibited 

in 2009 and 2012, and the most complex in 2010 and 2011. Changes depicted in Table 4 show a shift in 

dominance in 2009 from a low to moderate LAI (1.6 to 2.5) to a moderately high LAI around 4 in 2010 

while retaining a mixed orientation canopy. Although proportionally of low abundance, three high LAI 

and more vertical (LAI > 7, LAD ~ 0.4, Table 4) classes appeared in 2010 as well as the loss of the 

lowest LAI (highest LAD) class occurring in 2009. By 2011, class dominance had shifted to a slightly 

decreased LAI and LAD, and while two of the highest LAI classes remained, the extreme LAI and LAD 

class (LAI = 11, LAD = 0.4) appearing in 2010 was absent. The class composition of 2012 retained only 

the lowest four of the six 2011 LAI classes, and aside from lacking the lowest LAI class, its class 

distribution displayed progressive similarity to that exhibited in 2009.  

 

Figure 5. LAI-LAD classes (2009 to 2012). See Table 4 for the LAI-LAD color legend, 

which specifies the classes by number and color code, and their LAI and LAD means. The 

approximate core oil impact area is depicted in Figure 4 (LAI 2010). Most pixels fall into 

the moderate to moderate-high LAI classes (green through brown). Within these classes, the 

green classes have higher LAI than the brown (bright green = highest, dark brown = lowest), 

and lower LAD, although for LAD the brighter (darker) of the two green (brown) classes is 

not always the lowest (highest) LAD (exception in 2010). Red pixels have the highest 

(lowest) LAI (LAD). A detailed discussion is given in Section 4.4.1.  



Remote Sens. 2015, 7 11311 

 

The produced LAI-LAD maps exhibited substantial changes from 2009 to 2012 (Figure 5). As in 

construction of Table 4, yearly comparability of class distributions and changes are promoted by using 

the same color from year to year for similar classes. The 2009 classified map displayed a low LAI and 

high LAD class that although spatially extensive in 2009 was not uniquely present after 2009. By 2010, 

there was a fairly dramatic and ubiquitous increase in LAI accompanied by a slight increase in LAD. 

Associated with the overall density increase, marsh exhibiting the highest LAIs (LAI = 6.5 and 4.8, 

Table 4) found in the northeast of the 2009 map now extended throughout the interior marsh. A minor 

component contained within the heart of this expansion included more vertically oriented marshes of 

much higher LAIs (LAI > 7, Table 4, Figure 5). These highest LAI (lowest LAD) classes were spatially 

associated with the out-of-bounds LADs that indicated incompatibility of the inferred LAD relationship. 

Although invalid LADs were eliminated from the landcover classifications, their spatial alignment with 

the most extreme 2010 LAI-LAD classes warrants caution in interpreting these highest values. Also in 

2010, LAI increases in the core oil impacted marshes (Figure 5) followed the overall trend of the non-

impacted and more interior marsh; however, within some core islands LAI increases in the interior marsh 

lagged those in the more nearshore marsh facing the Barataria Bay entrance.  

There was a slight LAI and accompanying LAD decrease by 2011 in all marsh classes (Table 4, 

Figure 5). Within the overall LAI and LAD decreases, the most extreme 2010 LAI marsh class 

disappeared and the two remaining extreme classes of 2010 had diminished by 2011. The number of 

pixels containing invalid LADs also decreased from 2010 to 2011. The 2009 to 2010 spatial extension 

of the next highest LAI classes continued in 2011, increasingly dominating the interior marshes and 

occupying some nearshore marshes as well. Core island marshes tended to exhibit somewhat lower 

nearshore LAIs than in 2010, resulting in a more uniform marsh. Overall the 2011 classified map 

portrayed decreased extreme classes, a spatial expansion of moderately higher LAI and lower LAD 

marshes, and good preservation of marshes exhibiting somewhat lower LAIs and LADs relative to the 

2010 map.  

By 2012, the extreme classes first appearing in 2010 had disappeared and the expansion of moderately 

higher LAI classes had reversed. As a result, the lower classes expanded; however, the transforming 

marsh structure was associated with a more heterogenic interior marsh landscape than observed in 2010 

to 2011. Within the oil impact core region, however, the 2012 marsh landscape was reminiscent of 2009. 

High uniformity of the core marshes, particularly island marshes, was reestablished. Overall, the 2012 

marsh landscape seemed to be reverting toward the landscape of 2009.  

5. Discussion 

5.1. Regression Models 

S. alterniflora marsh canopy structure was related to PolSAR data by deriving empirical relationships 

between polarimetric SAR scattering properties and site-specific canopy biomass, LAI (density), and 

LAD (orientation) structure indicators. The site-specific polarimetric backscatter was represented by a 

combination of backscatter intensities, intensity ratios, copolarization correlation and phase, backscatter 

spatial heterogeneity, and backscatter mechanisms obtained by decomposition of the complex 

polarimetric data.  
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5.1.1. Regression Model Accuracy, Error, and Uncertainty 

Residual quantile and distribution of the residual plots indicate normality of the error in both the LAI 

and LAD regression models listed in Table 3. Residuals versus PolSAR independent variable plots are 

well distributed about zero also satisfying the statistical requirements for conducting regression analysis. 

The mean-square-error values indicate prediction accuracies of ±0.44 for LAI and ±0.13 for LAD with 

the suite of PolSAR-biophysical variables input into each regression. The observed vs. predicted plots 

confirm a one-to-one correspondence and zero bias on the prediction (Figure 3). The TOL and VIF 

values indicate low collinearity of the independent variables entered into the LAD regression, and 

although acceptable, higher collinearity of the independent variables in the LAI regression (Table 3). 

The higher collinearity means higher uncertainty in assessing the importance of each PolSAR variable 

in the LAI regression. However, the relatively low prediction errors, normal residual distributions, and 

nonbiased and one-to-one observed and predicted correlations combined with the stepwise partial 

regression R2 values allowed cautious examination of the PolSAR variable composition. 

5.1.2. Leaf Area Index 

PolSAR indicator variables comprising the LAI regression model were a mix of intensity ratios, 

backscatter mechanisms obtained through decomposition, and copolar phase difference and coherence 

(Table 3). The series of regression models obtained through incremental increases in the stepwise 

tolerance criteria shows that HV/VV (or VH/VV, absent in this dataset) dominates explanation of the 

LAI variance, a result that is well established in the literature. Most often the correspondence is with 

changes in gravimetric dry biomass weight or vegetation water content (VWC) and incorporates HV 

intensity singularly or as HV/VV or HV/HH intensity ratios. The result also conforms to the VWC 

regression results (Table 3). The HV/VV ratio was the dominant or one of the two dominant  

PolSAR-based regressors in the dead and total biomass stepwise regression models. Although the 

HH/VV ratio was of secondary importance in explaining LAI variance, the ratio has shown a relationship 

to biomass and LAI (e.g., [73,74]).  

Of the secondary variables, the FDDB and CPAlpha regressors (refer to Table 3 for definitions) 

captured changes in the scatter mechanism as defined in Freeman–Durden and Cloud–Pottier 

decompositions, respectively. The imaginary correlation coefficient (range 0.17 to –0.45) has a relatively 

high model partial R2 value, and, as manifested in borderline TOL and VIF, a high linear correspondence 

with the HH and VV phase difference (range 63° to –128°) (Table 3). The high covariation reflects the 

complex correlation influence on the phase difference [75]. Judging by the overall low magnitude real 

correlation coefficient (range of 0.18 ± 0.15), backscatter at HH and VV are largely uncorrelated [76]. 

The high ranges of the imaginary coefficient and phase difference and the uncorrelated HH and VV 

backscatter indicate the diverse structural complexity of the marshes sampled. This diversity is reflected 

in the regressor set that, although dominated by intensity ratios indicating volume scatter, includes 

secondary regressors reflecting the scatter coherence and other scatter mechanisms.  
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5.1.3. Leaf Angle Distribution 

The best two regressor solution for mapping LAD included the intensity ratio, HV/HH, and the 

Cloude–Pottier Alpha angle (CPAlpha) reflecting changes in the scatter mechanism (Table 3). Separate 

correlation analysis found the HV/HH ratio did not covary with the HV/VV ratio, the dominant LAI 

regressor. This finding supports uncorrelated backscatter at HH and VV, and shows the independence 

of the two volume scatter ratios as related to this S. alterniflora dataset. The three regressor model 

retained CPAlpha, and replaced the HV/HH ratio with the coefficient of variation (CoefVAR) and 

imaginary correlation coefficient (HHVVIM) (Table 3). In this dataset, HHVVIM is strongly related 

with the copolar phase difference. The coefficient of variation (range 0.11 to 0.040) corroborates the 

uncorrelated backscatter at HH and VV indicated by the real correlation coefficient and suggests the 

backscatter is mostly unpolarized, or that the spatial texture at each marsh site is generally homogenous.  

5.2. Applying the Regression Models to Map Marsh Canopy LAI and LAD 

The sets of yearly LAI and LAD continuous maps (Figures. 4 and 5) and the combined LAI-LAD 

classified maps exhibit a spatially extensive increase in marsh LAI from 2009 to 2010. Within that 

overall density increase, LAD, fairly uniform in 2009, divided into two broad groups. Lower LAD 

signifying more vertical oriented marsh spatially covaried with marsh of higher density (LAI), while 

more horizontal marshes were associated with the lower LAI ranges. Of the former classes, minor classes 

exhibiting the most extreme LAIs occupied the heart of the expanded regions and were more spatially 

aligned with invalid LAD values. While all pixels having invalid LAD’s were excluded in the 

classification, the highest LAIs represented in these classes should also be interpreted cautiously. 

However, the remaining classes dominated the relatively more vertical and dense marshes extending far 

beyond this highest LAI class found at the center of their expansion. The extensiveness and persistence 

of these more vertical and dense interior marshes through 2011 indicate a pattern of new growth in 2010. 

Overall, LAD became more spatially uniform and LAI broadly decreased by 2011 with some selectively 

higher decreases along marsh shorelines impacted in the 2010 oil spill. These trends continued into 2012 

with island marshes in the oil impact core portraying the sharpest LAI decline.  

Aside from the somewhat disjointed trends of islands marshes within the oil spill core impact, the 

2010 abrupt LAI increase in interior marshes may have been part of a regional trend. Optical and 

UAVSAR image data collected in 2010 to 2012 to the northwest and inland of Barataria Bay captured a 

dramatic dieback of marsh from 2010 to 2011 [14]. Results of the mapping found that in 2010 dieback 

marshes contained higher biomass quantity and live composition than surrounding non-dieback marshes. 

The cause of that 2011 sudden dieback was unresolved; however, in this case, there was an action in 

response to the oil spill that could have promoted increased coastal marsh growth in both these marshes 

and marshes surrounding Barataria Bay.  

In order to help prevent oil from reaching coastal wetlands during the DWH spill event, freshwater 

releases from the Mississippi River were increased or initiated from locations ranging from just upriver 

of New Orleans to downriver in the delta north of Barataria Bay [77–80]. The largest of these releases 

began on 30 April 2010, ten days after the DWH spill began, with the specific intent of lessening oil entry 

into Barataria Bay. The UAVSAR data were acquired during the spill on 23 June 2010. Whether this release 
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or other freshwater releases between the 2009 and 2010 UAVSAR acquisitions were responsible for the 

increased growth, and thereby a change in marsh structure from 2009 to 2010, has implications on whether 

backscatter changes in the oil core interior marshes as noted by Ramsey et al. [55] were a direct result of 

oil presence. Although the high changes in marsh structure were outside the core impact area, moderate 

increases in LAI also occurred in core oil impact marshes. Shoreline oiling and concurrent backscatter 

change were confirmed, as was the presence of low concentrations of oil in core interior marshes at the 

time of the documented backscatter change [81]. However, the causal mechanism of the backscatter 

change in the core interior marshes located straight inland of the oiled shorelines was not determined. 

These results indicate changes of backscatter in the interior marshes of the core impact area could have 

resulted fully or in part from a change in marsh structure from 2009 to 2010.  

The possible role of oil distributed into the interior marshes within the core region in combination 

with structure change is not directly determinable based on the 2009 to 2010 marsh structure maps. 

While oil related causes of backscatter in the interior marsh in 2010 are not excluded, changes after 2010 

suggest there could have been a longer-term differential response of structure within the core region. 

Nearly immediate changes to marsh have been noted, especially when exposed to oil during the growing 

season [82]. Longer-term changes associated with oil exposure were reported by Burk [83], and recent 

findings point to a longer-term response of marsh associated with oil contained in the sediment [84]. A 

more thorough examination is required into the relationships between the dramatic 2009 to 2010 marsh 

structure change, elevated freshwater inputs, the 2009 to 2010 backscatter change, and the combined 

occurrences of oil exposure and marsh structure change. Those relationships are being further explored 

and will be reported as analyses are completed.  

6. Conclusions 

Field measurements collected at seven S. alterniflora marsh sites over a two to three year period in 

coordination with polarimetric synthetic aperture radar (PolSAR) data collected from the NASA 

UAVSAR platform were used to create empirical relationships between the marsh leaf area index (LAI) 

and leaf angle distribution (LAD) and PolSAR-based biophysical indicators in order to advance 

observation of wetland vegetation type and health status through use of radar remote sensing. This study 

used field data acquired at seven test sites, three in Barataria Bay, two at Golden Meadows, and two at 

Rockefeller Refuge, and is unique in having one acquisition (2009) a year before the Deepwater Horizon 

spill occurred, one during the spill (2010), and two post-spill (2011–2012), with the post-spill 

acquisitions timed to nearly match tidal conditions of the 2010 acquisition. The results show that the 

explanatory power of the polarimetric relationships with LAI equaled or exceeded relationships with 

typical field collected data, namely dead, live, and total vegetation water content (VWC). The HV/VV 

intensity ratio singularly explained 49% of the LAI variance, and in a two regressor solution, HV/HH 

explained 38% of LAD variance. A six regressor model was necessary to explain 77% and a three 

regressor model for explaining 74% of the LAI and LAD variance, respectively. Secondary regressors 

in the six variable LAI regression model were HH and VV coherence and phase difference and variability 

in backscatter mechanics. Similar secondary information was used in the three variable LAD regression 

model, but no intensity ratio was included. Instead, a PolSAR-based regressor was selected emphasizing 

the fractional polarization or the homogeneity of the site area. Results of this work offer a methodology 
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where remote measurements of PolSAR parameters can be used in place of field measurements to 

increase the spatial extent and information content of marsh classifications.  

This study is unique in using data from UAVSAR, which is a fine resolution, low noise, L-band 

synthetic aperture radar, to obtain higher accuracy and greater sensitivity in the PolSAR parameters, 

which led to more accurate regression analysis for landscape mapping. Future studies could constrain 

the classes better if more sites were used. The study demonstrates the improved monitoring performance 

for appraising wetland condition and dynamics offered by polarimetric data, particularly when used to 

map canopy structure. Advanced performance was demonstrated in the mapping of previously unknown 

trends of marsh structure in and near oil impacted coastal wetlands that underwent widespread growth 

and subsequently a progressive decline in 2009–2012, the years encompassing the Deepwater Horizon 

spill. The near weather-independent and daylight-independent operational capabilities of radar-based 

landscape mapping enhance responsiveness to emergencies and adherence to planned collection 

strategies independent of weather conditions. Combined with optical mapping, these new polarimetric 

mapping capabilities will more fully describe, and therefore track, wetland status and trends.  
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