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Abstract: The EnMAP-Box is a toolbox that is developed for the processing and analysis 

of data acquired by the German spaceborne imaging spectrometer EnMAP (Environmental 

Mapping and Analysis Program). It is developed with two aims in mind in order to 

guarantee full usage of future EnMAP data, i.e., (1) extending the EnMAP user community 

and (2) providing access to recent approaches for imaging spectroscopy data processing. 

The software is freely available and offers a range of tools and applications for the 

processing of spectral imagery, including classical processing tools for imaging 

spectroscopy data as well as powerful machine learning approaches or interfaces for the 

integration of methods available in scripting languages. A special developer version 

includes the full open source code, an application programming interface and an 

application wizard for easy integration and documentation of new developments. This 

paper gives an overview of the EnMAP-Box for users and developers, explains typical 

workflows along an application example and exemplifies the concept for making it a 

frequently used and constantly extended platform for imaging spectroscopy applications.  
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1. Introduction 

Imaging spectroscopy is a powerful remote sensing approach for mapping the Earth’s surface [1–4]. 

Successful applications with imaging spectroscopy data cover all environments, including the analysis 

of managed forests [5,6], agricultural areas [7–9], mining sites [10,11], urban areas [12–14], of 

unmanaged forests [15,16] and (quasi-)natural ecosystems [17–19], including deserts [20,21] or snow 

and ice [22,23], as well as inland waters and oceans [24,25]. Given the broad range of applications, a 

great variety of analysis approaches is used with imaging spectroscopy data, e.g., mapping and 

monitoring [26,27], empirical modeling [5,28,29] or physical-based modeling, especially with 

radiative transfer models [6,30,31]. In many applications, the additional spectral information in 

imaging spectroscopy data was shown to improve results compared to those from data of lower  

spectral dimensionality [32–34].  

With the launch of the Environmental Mapping and Analysis Program (EnMAP), a German 

spaceborne imaging spectroscopy mission envisioned for 2018, a new wealth of full range spaceborne 

imaging spectroscopy data from all types of environments is expected to be made available [35]. As 

part of the mission preparation, several research projects are funded that aim at the development of 

new algorithms to explore the full potential of EnMAP data in different application fields. In addition, 

a series of EnMAP summer schools is organized for doctoral researchers from these projects and from 

other research groups, where the young scientists are trained to implement their ideas for shared use. 

The EnMAP-Box, a toolbox for processing imaging spectrometer data, has been developed since 2010 

to make the algorithmic developments of the mission’s preparation phase generally available. This 

toolbox will be freely distributed with EnMAP data and it is developed along three objectives: 

(i) complying with standards of common software for imaging spectroscopy data analysis, while 

extending functionality (e.g., for regression analysis); (ii) including very powerful approaches from the 

field of machine learning for state-of-the-art image processing; and (iii) offering interfaces to 

increasingly used scripting languages and, this way, most rapidly evolving resources. The background 

and motivation for these objectives are briefly outlined in the following paragraphs. 

Earth observation (EO) with imaging spectrometers started in 1982 with the first flights of the 

Airborne Imaging Spectrometer (AIS) followed by the Advanced Visible/Infrared Imaging 

Spectrometer (AVIRIS) in 1987 [36,37]. The high information content of the contiguous narrow 

spectral bands, which cover the visible (VIS), near infrared (NIR), and short-ware infrared (SWIR), 

provided valuable insights on surface characteristics and opened up new pathways of image analysis. 

The unprecedented spectral resolution of imaging spectrometers enabled analyzing a spectrum’s shape, 

e.g., its slope or the depth and width of absorption features. In this context, the field of chemometrics 

offered a suite of techniques [38] that had already been applied to laboratory spectra from minerals and 

rocks (e.g., [39,40]). A first collection of applications for image data was available in the Spectral 

Image Processing System (SIPS), which was predominantly programmed in the Interactive Data 
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Language (IDL) and could be used on various operating systems [41]. SIPS included routines for data 

input, visualization and analyses (e.g., spectral angle mapper, linear spectral unmixing [42,43]) and 

was the precursor for ENVI (Environment for Visualizing Images) [44]. ENVI addressed a broad range 

of users, allowing inexperienced users to easily adapt to an imaging spectroscopy workflow. At the 

same time, experienced users could include their own algorithms through the use of open and generic 

image file formats and the interface to IDL and its array-based data handling. The rapid 

methodological developments throughout the 1990s made ENVI the preferred choice for image 

processing (IP) from airborne instruments such as AVIRIS. 

Looking at spaceborne EO the first three decades of application development were focused on 

multispectral data with four to six spectral bands. Many of the methods used to analyze such EO data, 

e.g., broad-band vegetation indices or Gaussian maximum likelihood classification, are not necessarily 

suited for analyzing imaging spectroscopy data. They either do not exploit the wealth of spectral 

information [34] or require additional IP steps such as feature extraction or selection [45]. The 

introduction of machine learning algorithms in EO data analysis, e.g., kernel-based methods [26] or  

self-learning decision trees [46], improved such drawbacks and the rapid increase in hardware 

processing power made them applicable [47]. Machine learning approaches are mostly used for 

statistical learning, e.g., in the context of data classification or regression, or data mining, but also for 

the inversion of radiative transfer models [48]. Due to high processing efforts, the most powerful 

implementations of machine learning algorithms are usually written in C/C++ and Java (see 

http://jmlr.org/mloss/). A well-known example is the LIBSVM library for support vector machines 

(SVM) [49], which is used in many applications and regularly improved, e.g., by new optimization 

approaches. Nevertheless, such libraries are usually domain-specific and are not provided with 

disciplinary interfaces, e.g., to read and write standard EO data formats or to automatize parameter 

tuning. At the same time, they are often not included in commercial software packages or only with 

limited parameter options. The use of, e.g., LIBSVM in typical environments for EO data processing 

thus requires programming skills beyond that of most EO data users. Other examples in this context 

are Breiman’s Random Forests [46], Markov Random Fields [50], or Gaussian Processes [51]. 

In parallel to the development of machine learning algorithms, there is a growing community that 

uses scripting languages for a wide range of applications. Over the past 10–15 years, languages such as 

R [52] or Python [53] opened up new and very effective pathways for effective code generation. The 

advantage of scripting languages that make it “possible to specify programming tasks in a few lines of 

code that would otherwise take hundreds of lines in a lower-level language such as C or C++” was 

already pointed out by Aho in a Science Viewpoint in 2004 [54]. Especially Python’s increasing 

popularity caused by “simple syntax, abundant online resources and a rich ecosystem of scientifically 

focused toolkits with a heavy emphasis on community” has recently also been described by Perkel [55] 

in a Nature Editorial. The success and power of scripting languages is to a great extent based on the 

constant improvement of shared resources within an active community. Flexible interfaces are needed 

in order to make the strength of such shared development available in software products. 

Against this background, the concept for the EnMAP-Box is developed with a focus on exploring 

the full potential of future EnMAP data from various environments. Overarching aims are 

(1) extending the EnMAP user community beyond the existing user community of airborne imaging 

spectroscopy and (2) providing free-of-charge and user-friendly access to recent approaches for 
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imaging spectroscopy data processing for experienced users. The EnMAP-Box works stand-alone but 

may be integrated into the ENVI classic menu to extend the range of available applications. It can be 

used with any multispectral imagery. It combines functionality for spectrally high dimensional data 

with latest machine learning and interfaces to R or Python. A standard procedure for effectively 

integrating machine learning approaches was created. This way, a suite of methods and interfaces is 

created that includes advantages from other commercial, e.g., ENVI, or non-commercial products, e.g., 

the Orfeo Toolbox [56], and combines them into a set of applications with functionality for imaging 

spectroscopy data analysis that does not exist elsewhere. The toolbox is delivered together with an 

application programming interface (API) for a standardized integration of new developments 

independent from the respective programming language.  

This paper provides an overview of the EnMAP-Box (Section 2.1) and an application example 

(Section 2.2) followed by a description of the API (Section 3). The paper concludes with a general 

evaluation of the concept with regard to the aims and objectives and an outlook on future  

developments (Section 4). 

2. EnMAP-Box Tools and Applications 

2.1. Overview 

The EnMAP-Box (currently version 2.1) is mainly developed in IDL for Windows, Mac, and Linux 

operating systems and distributed with an open source license via the mission’s website 

www.enmap.org. It requires the free-of-charge IDL virtual machine or an IDL/ENVI license. It 

provides a graphical user interface (GUI) that is designed in a single window approach (Figure 1) and 

contains a menu to start all tools and applications, a file list for managing all open image or spectral 

library data as well as an arbitrary number of frames displaying spectral images or libraries, which can 

easily be arranged within the window. Single frames, which include image data or library spectra, may 

be detached and moved to a second screen. Drag-and-drop functionality exists between the file list and 

frames to open images/bands or libraries/spectra, easily. Navigation and visualization within single 

frames are handled through common mouse gestures (e.g., direct pixel selection, panning and zooming 

with left mouse button and mouse-wheel, respectively) or the mouse context menu (e.g., displayed 

bands selection, data stretching, etc.). Users may also open a console at the bottom of the window, 

which gives an overview of processing tasks or tools for interactive manipulation, such as pixel/spectra 

labelling. A detailed description of the GUI functionality is given in manuals at www.enmap.org. 

The EnMAP-Box uses generic file formats for storing image data and spectral libraries, e.g., binary 

spectral data in band sequential order with an associated header file that includes all metadata 

information. The design of the header files is compatible to the frequently used ENVI file format and   

in- and outputs therefore compatible with other software products. The EnMAP-Box header partly 

extends the current standards, e.g., to integrate labels for continuous values when performing 

quantitative mapping. In addition, spectral libraries are treated as pseudo-images (i.e., single column 

images) to allow their direct usage in IP methods, e.g., for the training of a regression model. This 

image-like handling of spectral libraries also enables attributing spectra with values from label images, 

which offers possibilities for regression analysis that are not available, e.g., in ENVI.  
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Available basic utilities are designed for spectrally high dimensional data. These include tools for 

the generation of image statistics, scatter plots, random samples, spatial/spectral subsets or reclassified 

images, and for data scaling, data transformation (with linear and kernel-based principle component 

analysis) or image stacking, and for applying masks, e.g., to select pixels to generate a spectral library. 

For interactive plotting of spectra an R-interface is created, which gives users a variety of graphical 

options and allows saving the resulting figures directly to the clipboard or as a file. This exemplifies 

the potential of the EnMAP-Box IDL interface to other scripting languages (see Section 3 for details). 

 

Figure 1. Graphical user interface of the EnMAP-Box version 2.1.1 with main menu, file 

list and selected interactively linked data frames. Images show simulated EnMAP data 

from Berlin, Germany, together with modelled vegetation cover fraction (see Section 2.2). 

The core part of the EnMAP-Box is a growing set of applications. This includes both universal 

applications that are generally very strong for the analysis of EnMAP-like data (e.g., support vector 

approaches) and application- or data-specific approaches (e.g., EnWaterMap for the automatic 

generation of water and shadow masks [57]). With the aim of providing most recent developments to 

the users, several steps were taken to create a standardized implementation of new applications as easy 

as possible (see Section 3.1). As a result, several well-known data processing approaches are already 

available in the EnMAP-Box (Table 1 [57–63]), which were developed and documented by a variety 

of laboratories involved in the EnMAP mission preparation. The standardized development scheme 

includes the option of separate license agreements for each included application. Authors of such 

applications retain all property rights for their work. Existing applications like imageSVM for SVM 

classification and regression and imageRF for Random Forest classification and regression [58] are 

already widely used for the analysis of EO data. In addition, a spatial-spectral calculator for pixel/band 
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arithmetic is included (imageMath), which allows, e.g., the use of spectral filters to smooth or generate 

derivatives for full images in the spectral domain. 

Table 1. List of available applications in EnMAP-Box version 2.1. 

Type of Application Application Name(s) and Reference Contributor 

General IP applications 

Support vector classification and regression imageSVM [59] HUB 

Import vector machines for classification imageIVM [60] UB, FUB 

Random forests for classification and regression imageRF [58] UB, HUB 

Partial least squares regression autoPLSR [61] UB 

Spectral feature clustering Feature Clustering [62] HUB 

Spectral index data mining tool SpInMine UT 

Iterative spectral mixture analysis iterativeSMA [63] UT 

SVR-based unmxing using synthetic libraries syntMix-SVR [13] HUB 

Maximum entropy analysis MaxEntWrapper UB 

Application related tools 

Agricultural applications (including tools for 
estimating (i) the red-edge inflection point, (ii) a 
suite of 65 agricultural vegetation indices, (iii) 
spectral integrals and advanced statistical evaluation 

iREIP , AVI, ASI, ASE LMU 

Ocean related parameter retrieval  
Phytobenthos Index, 
Ocean Color Chlorophyll 

HZG 

Data specific tools 

Surface water body detection EnWaterMap [57] GFZ 

Notes: HUB: Humboldt-Universität zu Berlin; UB: University of Bonn; FUB: Freie Universität Berlin; UT: 

Trier University; LMU: Ludwig-Maximilians-Universität München; HZG: Helmholtz-Zentrum Geesthacht; 

GFZ: Helmholtz Centre Potsdam; GFZ: German Research Centre for Geosciences. 

The list of available applications shows a relatively high number of different regression approaches. 

Such quantitative approaches are especially effective on imaging spectroscopy data since absorption 

depths or other features of the contiguous spectral bands can be linked to environmental indicators 

with linear and non-linear empirical models. Still, most existing IP software only offers concepts for 

qualitative analysis, e.g., layers for discrete labels. The EnMAP-Box provides both qualitative and 

quantitative accuracy assessments for different mapping approaches. For qualitative evaluation, the 

EnMAP-Box integrates approaches for area-based normalization according to [64]. The quantitative 

accuracy assessment calculates metrics like root mean squared error of Pearson correlation and 

visualized the error distribution. To the authors’ knowledge, such comprehensive accuracy assessments 

for qualitative and quantitative results are not available in commercial IP software. In order to be fully 

independent from operating systems and to facilitate an easy use of textual, tabular and graphical 

outputs, all reports are printed to HTML documents. Section 2.2 shows an application example with an 

imageSVM regression with quantitative accuracy assessment.  
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With regard to the large share of ENVI users, the EnMAP-Box is programmed in a way that it can be 

integrated into the regular ENVI Classic menu (Figure 2). ENVI’s available bands list then functions as the 

file list and users may access the EnMAP-Box applications without leaving their regular IP environment. 

 

Figure 2. ENVI classic menu with integrated EnMAP-Box sub-menu. 

2.2. imageSVM: An Application Example for Quantitative Mapping in the EnMAP-Box 

One of the first advanced applications in the EnMAP-Box was imageSVM for classification and 

regression. This machine learning application has been used for a variety of studies including both 

classification [14,65] and regression approaches [13,66]. Its implementation structure is outlined in 

Section 3.3. In the following, imageSVM is used to map vegetation fractions from simulated EnMAP 

data. Along this application example, the EnMAP-Box concept for integrating machine learning 

approaches as well as the functionality for quantitative mapping and accuracy assessment are 

explained and, this way, some key advantages of the EnMAP-Box compared to other available 

software products are illustrated. 

The first step for mapping vegetation fractions with support vector regression (SVR) is the 

parameterization of the model. This includes the selection of model parameters and fitting the 

hyperplane during an optimization. This process is semi-automized in imageSVM by offering a grid 

search with default ranges that proved useful during many tests on remote sensing data. For each 

parameter combination, i.e., the kernel parameter γ, the penalization parameter C, and Vapnik’s 

insensitive loss function parameter ε, model accuracy is tested using cross validation. After starting the 

imageSVM regression model parameterization from the main menu, the user is asked to specify a 

spectral image and reference information. The EnMAP-Box interprets spectral libraries as images and 

users may therefore train from library data, and reference information for classification or regression 

may be entered analogous to image data. The reference information expects a single-band image with 

floating point pixel values and the definition of a no data value. This file type was created for the 

EnMAP-Box and constitutes a regression equivalent to training data for classification. Using the 

advanced options, users may select all relevant options individually (Figure 3). 

During all machine learning applications in the EnMAP-Box, the model parameterization or 

training is separated from its application to an image or spectral library. Therefore, the SVR 

parameterization ends with saving the best model and listing it in the file list. An HTML report on the 
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model performance during cross validation is created for the user to evaluate the model (Figure 4). In 

addition, the separation allows users to apply the model to a variety of images, independent from the 

source of training data. For the model application, an SVR model and an image need to be specified 

together with an optional mask and a path and name for the output file (Figure 5). 

 

Figure 3. Dialogue for and advanced SVM regression settings in imageSVM. The dialogue 

for the regular settings is limited to the Input and Output fields. 

  

Figure 4. imageSVM regression: after completed parameter search the results from the 

grid search with internal cross-validation are displayed in an HTML-report.  
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Figure 5. SVM models are separately stored and, this way, may be flexibly applied to 

series of images or spectral libraries.  

After successful model application, the resulting estimate is output and listed in the file list for 

further processing. In order to evaluate the accuracy of the result, the EnMAP-Box offers a 

comprehensive set of measures and visualizations specifically designed for the regression modelling of 

spectral image data. When choosing the accuracy assessment for regression, the user is asked to 

specify the regression estimate image and a reference image plus an optional mask. Afterwards, an 

HTML report appears showing information on the data sets, a variety of statistical measures and 

visualizations (Figure 6). 

  

Figure 6. For comprehensive quantitative accuracy assessment the EnMAP-Box generates 

various statistical performance measures and visualizes histograms in an HTML report 

(figure shows excerpt only). 
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3. Concept and API for Integrating Applications in the EnMAP-Box 

3.1. Overview 

Several measures are foreseen to make the EnMAP-Box an evolving toolbox where new 

applications can easily be integrated, regardless of the respective programming language. This way, 

the provision of latest developments to the user community shall be ensured. From a user perspective, 

such developments must ensure certain standards, e.g., data formats, but similarly the “look-and-feel” 

to enable the intuitive combination of several IP steps. Looking at the developer community needs, this 

may be achieved by offering wizards and pre-programmed code to quickly embed core parts of an 

application, which themselves do not have to be translated to IDL. Developers can therefore download 

an EnMAP-Box version with the full source code, the EnMAP-Box API, wizards to create base 

structures and code documentation, together with manuals for developers. 

The concept for integrating external applications into the EnMAP-Box starts with a standardized 

strategy for all supervised approaches, which separates the model parameterization (Figure 3) and 

application of respective models to image data. In doing so, supervised approaches and most other 

procedures can be structured in five distinguished steps: (1) the collection of all parameters and files; 

(2) reading spectral data from files; (3) analysis of spectral data using specified parameters; (4) writing 

results to files; (5) reporting and visualizing results (Figure 7). Interaction by the user with the GUI 

and application specific dialogues is limited to steps 1 and 5 and can be considered an outer shell for 

the full program integration. The API offers auto-managed widgets that allow selection of various 

types of parameters and communicate with the file list for quick file selection. Steps 2 and 4 include 

data in- and output (data IO), for which API routines are provided, including tile-based reading and 

writing which is required for the large data volume of imaging spectroscopy data. The actual data 

processing is performed in step 3. By introducing this standardized structure, an optimized use of the 

different API components (i.e., auto-managed widgets, (tile-based) data IO, reporting) is enabled. At the 

same time, the core part of external applications is decoupled from all user interaction and concentrated 

in step 3, which then requires no standardization and may often be favorable to remain in an external 

programming language. In the case of imageSVM, for example, the LIBSVM library is integrated via the 

IDL-JAVA Bridge interface to perform the parameter optimization, only (see Section 3.2).  

 

Figure 7. General framework for standardized integration for embedding applications. 



Remote Sens. 2015, 7 11259 

 

In the case of scripting languages, the bridging between IDL and languages like R or Python is 

more complicated as large binary spectral data cannot easily be passed-on. In this case, the data IO is 

better performed in the scripting language (Figure 8 (top)). In addition, user defined parameters and 

filenames are easily transferred via JSON strings (Figure 8 (bottom)). 

Another component for the standardized implementation and consistent coding is the application 

development wizard. This IDL tool may be used to create a set of IDL routines which already follow 

the general framework for application development in Figure 7. This includes the creation of routine 

skeletons for input dialogues, image/data processing and HTML report creation, but also invokes 

source code documentation via IDLdoc to generate Javadoc-style HTML documents from comments 

in IDL [67]. Both measures are seen as incentives for all programmers to follow certain standards and 

this way enable joined work on improving and extending existing methods. 

 

 

Figure 8. Adapted framework for application integration using scripting languages (top) 

and example for scripting options (here the case of the plot interface) (bottom). 
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3.2. imageSVM—Implementing JAVA Code with the EnMAP-Box API 

Aiming at high processing performances, scripting languages (e.g., R, Python) or interpreter 

languages (e.g., IDL, MATLAB) are often outperformed by C, C++ or Java. The integration of 

algorithms in these languages appears especially useful when optimization procedures and repetitive 

processes are needed. In the case of SVM, the use of LIBSVM [49] appears also useful with regard to 

constant improvements of the base code. In the imageSVM application, LIBSVM is used as a Java 

archive (i.e., JAR-file) via the IDL-Java Bridge for the optimization and evaluation of individual 

models with given training/test data and pre-defined parameters as part of an IDL-based grid search 

(Figure 9). 

imageSVM for regression makes full use of the concept for embedding external Java. Following the 

parameter selection with auto-managed widgets from the API (Figure 6), the spectral data and labels 

that are needed for the model parameterization are read. The application specific core part consists of 

an IDL-based data preparation for the cross validation. IDL code is used to pass the spectral data and 

labels for training and testing via the IDL-Java Bridge to LIBSVM separately for each set of 

parameters resulting from the previously defined ranges. LIBSVM returns the models’ cross validation 

accuracy, and within IDL a best parameter pair is selected for the final training in LIBSVM. This 

model is saved and all results from the grid search are reported. The data output step is not required, 

here, because the application of the model to an image is performed separately. 

 

Figure 9. Framework for embedding applications for the imageSVM regression example 

using Java-based LIBSVM and the IDL-Java Bridge. 

3.3. Integration of Existing Libraries Using the Command Line Interface 

Projects like the Geospatial Data Abstraction Library (GDAL, www.gdal.org) and the Orfeo  

ToolBox [56] have a long development history and provide efficient implementations of remote 

sensing relevant algorithms. In addition to its core API, which often has a C/C++ interface and requires 

deeper understanding of implementation details, they offer stand-alone applications that can be run 

from the command line interface (CLI). The EnMAP-Box source code provides wrapper routines that 

allow calling these applications from inside IDL and to integrate them into their own workflows.  
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4. Conclusions and Outlook 

The EnMAP-Box integrates powerful machine learning algorithms and bridges to more and more 

popular scripting languages with well-established concepts of imaging spectroscopy software. Much of 

the available functionality of the EnMAP-Box is not available as an ENVI-industry standard in this 

field. Users may use support vector machines or random forests for regression and classification with 

spectral libraries or spectral images, and they may interface to Python toolkits or R script libraries. 

Various components of the EnMAP-Box were improved by sophisticated extensions, e.g., 

comprehensive HTML reports, the spatial/spectral calculator imageMath, etc. Developers, on the other 

hand, are provided with a concept and pre-programmed code to easily disseminate their 

implementation to a wider community. 

Aiming at the extension of the user community and providing the most powerful algorithms for the 

analysis of EnMAP data, the needs of regular users as well as potential developers of new methods 

were integrated in the conceptual development over the past years. The EnMAP-box development was 

thus driven by the idea of  

 user-friendliness—achieved, e.g., by an intuitive GUI focusing on the handling and 

visualization of data with high spectral dimensions, widget controlled machine learning 

algorithms, common file formats, selected basic tools and easy-to-use advanced methods, the 

possible integration into the ENVI menu; 

 comprehensiveness—the set of available tools and applications as well as interfaces to scripting 

languages make the constant change between different software obsolete; 

 standardization—the implementation and use of applications is standardized to assist external 

developers and provide the users a common look-and-feel, which also constitutes a key 

component for user-friendliness; 

 addressing external developers—by making well-documented source code available, offering 

an API and creation wizard. 

Ever since the prototype of the EnMAP-Box in 2009, its applications have been used in the field of 

imaging spectroscopy and beyond. Since about 2012, more and more external applications have been 

added, all following the idea of a standardized implementation. It was used for data processing within 

EnMAP summer schools since 2010 and always received positive responses. Several universities use 

the EnMAP-Box as a freely available tool in basic teaching. Feedback from users was constantly used 

to extend and improve its functionality.  

Prior to the start of EnMAP, the toolbox will be extended by a set of sensor product specific tools. 

This will include, e.g., a tool for atmospheric correction to transfer data from level 1B to 2A with user 

defined settings, or for working with rational polynomial coefficients to reconstruct detector pixels 

from level 1B data. In addition, import filters for currently defined EnMAP data products as well as 

complementary sensors, e.g., Sentinel-2/3, Landsat OLI, will be included. Moreover, a set of 

disciplinary applications are currently being developed at laboratories involved in the mission 

preparation [35]. This includes an advanced suite for geological mapping based on the tetracorder 

approach [68] as well as a soil mapping suite. 
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Several recent software developments in remote sensing were linked to new instruments. The 

BEAM application suite (Basic Envisat and ERS (A)ATSR and MERIS Toolbox) and the Orfeo 

ToolBox (for Pleiades) are successful examples. Both are open-source and programmed in Java and 

C++, respectively. They are not limited to data from the mentioned sensors. The EnMAP-Box 

constitutes a similar approach that fills a gap with regard to imaging spectroscopy data. The chance for 

the EnMAP-box to become an evolving toolbox with a constantly growing set of applications is high, 

given the toolbox’s availability with future EnMAP data, its sensor specific algorithms together with 

its flexibility of integrating new developments in a variety of programming languages. In his 2009 

overview paper on imaging spectroscopy, Goetz [1] explains the demise of the High Resolution Imaging 

Spectrometer (HIRIS) with the small number of scientists working with imaging spectroscopy data, and, in 

this context, he mentions a lack of readily available software and algorithms. Therefore, the early 

availability of simulated EnMAP data [69] in combination with the freely available EnMAP-Box can be 

seen as major pre-requisites for the success of the EnMAP-mission and a frequent use of its data in many 

environmental fields. 
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