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Abstract: Land-surface reflectance, estimated from satellite observations through atmospheric 

corrections, is an essential parameter for further retrieval of various high level land-surface 

parameters, such as leaf area index (LAI), fraction of absorbed photosynthetically active 

radiation (FAPAR), and surface albedo. Although great efforts have been made, land-surface 

reflectance products still contain considerable noise caused by, e.g., cloud or mixed-cloud 

pixels, which results in temporal and spatial inconsistencies in subsequent downstream 

products. In this study, a new method is developed to remove the residual clouds in the 

Moderate Resolution Imaging Spectroradiometer (MODIS) land-surface reflectance product 

and reconstruct time series of surface reflectance for the red, near infrared (NIR), and 

shortwave infrared (SWIR) bands. A smoothing method is introduced to calculate upper 

envelopes of vegetation indices (VIs) from the surface reflectance data and the cloud 

contaminated reflectance data are identified using the time series VIs and the upper envelopes 

of the time series VIs. Surface reflectance was then reconstructed according to cloud-free 

surface reflectance by incorporating the upper envelopes of the time series VIs as constraint 

conditions. The method was applied to reconstruct time series of surface reflectance from 

MODIS/TERRA surface reflectance product (MOD09A1). Temporal consistency analysis 

indicates that the new method can reconstruct temporally-continuous time series of  

land-surface reflectance. Comparisons with cloud-free MODIS/AQUA surface reflectance 
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product (MYD09A1) over the BELMANIP (Benchmark Land Multisite Analysis and 

Intercomparison of Products) sites in 2003 demonstrate that the new method provides better 

performance for the red band (R2 = 0.8606 and RMSE = 0.0366) and NIR band (R2 = 0.6934 

and RMSE = 0.0519), than the time series cloud detection (TSCD) algorithm (R2 = 0.5811 and 

RMSE = 0.0649; and R2 = 0.5005 and RMSE = 0.0675, respectively). 

Keywords: surface reflectance; MODIS; vegetation index; reconstruction; cloud detection 

 

1. Introduction 

Land-surface reflectance is an essential parameter to describe properties on the Earth’s surface. Many 

higher level products, such as leaf area index (LAI), fraction of absorbed photosynthetically-active 

radiation (FAPAR), and surface albedo, are often derived from surface reflectance data [1].  

Multiple global land-surface reflectance products have been generated from data acquired by the 

Moderate-Resolution Imaging Spectroradiometer (MODIS) [2], Multiangle Imaging SpectroRadiometer 

(MISR) and VEGETATION. These products were retrieved from top-of-atmosphere (TOA) reflectance 

data after correcting for various atmospheric effects on the TOA signal. Since clouds preclude the 

detection of land surface and atmospheric aerosols scatter and absorb the incoming radiation, no reliable 

retrieval can be achieved in the presence of clouds, cloud shadows, high atmospheric aerosol content, or 

at high solar zenith angles [3]. Therefore, the quality and character of surface reflectance depends on the 

accuracy of the cloud mask and aerosol algorithms.  

Many methods have been developed to detect cloud-contaminated pixels in TOA reflectance data 

based on spatial, spectral, and temporal information [4–6]. The subsequent quality of the corrected 

surface reflectance data was greatly improved. However, residual clouds or undetected cloud shadows 

are observed in surface reflectance products, which always results in temporal and spatial 

inconsistencies in subsequent downstream products. The cloud or cloud shadow detection remains 

quite challenging. 

Earlier studies often estimated land-surface parameters using vegetation indices (VIs), so various 

methods were developed to reconstruct VI time series data [7,8]. Now, as more algorithms use individual 

band reflectance, the accurate retrieval of surface reflectance becomes increasingly important [9]. For 

example, almost all of the canopy radiative transfer models that are used for inverting land surface 

biophysical parameters are based on surface reflectance. Therefore, it is urgent to refine cloud detection 

procedures of surface reflectance data and reconstruct time series of surface reflectance. Liu & Liu [10] 

proposed an inflexion based cloud detection algorithm to generate cloud masks based on time series of 

surface reflectance in the blue band, and the ratios between surface reflectance in visible and shortwave 

infrared (SWIR) bands from MODIS/TERRA surface reflectance product (MOD09A1). Comparisons 

show that, generally, this cloud detection algorithm performs better than the cloud masks accompanying 

the MOD09A1 product. However, the method just identifies cloud-contaminated reflectance values. It 

does not remove cloud contamination nor fill in missing reflectance values. 

Based on the relative stability of ground reflectance and the sudden variations in TOA reflectance 

that result from cloud cover, Tang et al. [11] developed a time series cloud detection (TSCD) 
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algorithm which first searches the clear-sky reference data, and then discriminates between clouded 

and unclouded pixels by detecting a rapid change of surface reflectance in the blue wavelength and 

spectral correlation coefficient at the pixel level. The TSCD algorithm was applied to the MOD09A1 

product to remove cloud contamination and fill missing pixels. Compared with cloud cover 

assessments obtained from MODIS cloud mask, the TSCD algorithm performs very well, particularly 

when the land surface is stable or changing only slowly [12]. 

However, these existing surface reflectance data reprocessing methods are dependent on surface 

reflectance in the blue band and other auxiliary information. Therefore, it is difficult to apply these 

methods directly to reprocess the MODIS 250 m resolution surface reflectance data (containing only 

red and near infrared (NIR) bands). Similarly, these methods can not be directly used to reprocess 

surface reflectance data from the Visible Infrared Imaging Radiometer Suite (VIIRS), which is 

considered as a convergence of its operational predecessor of the Advanced Very High Resolution 

Radiometer (AVHRR) and MODIS to provide long time series of accurate data required for global 

climate monitoring [13,14], because the VIIRS surface reflectance data contain only red, NIR and 

SWIR bands. 

In this study a new method is developed to remove residual clouds in the MODIS land-surface 

reflectance product and reconstruct time series of surface reflectance in the red, NIR and SWIR bands 

based on temporally continuous VIs. Vegetation index, usually obtained by mathematical combinations 

of satellite observations from different spectral bands, is the most commonly used and effective 

parameter for characterizing vegetation cover and growth status [15]. Compared with the surface 

reflectance data, vegetation index exhibits obvious seasonal changes which make it relatively easy to 

reconstruct temporally continuous VIs. Considering the negative bias of VIs when surface reflectance 

values were contaminated by clouds, upper envelopes of VIs (defined as the smoothest curve that passes 

through all the maxima of the time series VIs) were calculated. The cloud-contaminated reflectance 

values were identified using the time series VIs and the upper envelopes of the time series VIs. Then, the 

time series of surface reflectance was reconstructed according to cloud-free surface reflectance values by 

incorporating the upper envelopes of the time series VIs as constraint conditions. The method was 

applied to reprocess the MOD09A1 product, and the results were compared with reconstruction from the 

TSCD algorithm and the cloud-free MODIS/AQUA surface reflectance (MYD09A1). 

The organization of this paper is as follows. In Section 2, we introduce our approach for 

reconstructing time series of surface reflectance. This includes gap filling and smoothing of VIs, cloud 

detection and surface reflectance reconstruction. The MOD09A1 and MYD09A1 products used in this 

study are also briefly described in this section. Section 3 contains the results of reprocessed surface 

reflectance of MOD09A1 from our proposed method, and a comparison of our results with reprocessed 

surface reflectance of MOD09A1 from the TSCD algorithm and the cloud-free surface reflectance from 

MYD09A1. Discussions are presented in Section 4, and the final section provides brief conclusions. 

2. Methodology and Data 

The proposed method incorporates upper envelopes of time series VIs as constraint conditions to 

reconstruct time series of surface reflectance (referred to hereafter as VIRR algorithm for clarification). 

The flowchart of the VIRR algorithm is shown in Figure 1. Satellite-retrieved surface reflectance data 



Remote Sens. 2015, 7 9847 

 

are used to calculate VIs, and a robust smoothing method is used to calculate continuous and smooth 

upper envelopes of VIs. Cloud-contaminated surface reflectance values were detected using the time 

series VIs and the upper envelopes of the time series VIs. Surface reflectance data with good quality in 

a given time window, along with the continuous and smooth upper envelopes of VIs, were used to 

estimate the optimal values of control variables of fitting models to the surface reflectance data. The 

method tunes the control variables of the fitting models until the temporal behavior of modeled surface 

reflectance and VIs reach the best agreement with the multi-temporal surface reflectance data from 

satellites and the upper envelopes of the VIs. Then, time series of surface reflectance can be 

reconstructed using the fitting models according to the optimal values of the control variables. Detailed 

descriptions of the important parts of the VIRR algorithm are as follows. 
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Figure 1. Flow diagram of reconstructing time series of satellite retrieved surface 

reflectance data. 

2.1. Gap filling and Smoothing of Vegetation Indices 

Many vegetation indices have been developed [16–19]. The most widely used index is the 

normalized difference vegetation index (NDVI), which is based on the difference between the 

maximum absorption of radiation in the red band and the maximum reflection of radiation in the NIR 

band. The formula to calculate the NDVI, denoted as VINIR,Red, is as follows 
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, (1) 

where Red  and NIR  are surface reflectance in the red and NIR bands, respectively. NDVI ranges from 

−1.0 to 1.0, and is highly correlated with vegetation parameters such as green biomass, and absorbed 

radiation by photosynthetically-active vegetation [20,21]. NDVI establishes the relationship between 

surface reflectance in the red and NIR bands. To establish the relationship between the surface reflectance 

in the NIR and SWIR bands, we define a new vegetation index, denoted as VISWIR,NIR. As with the NDVI, 

VISWIR,NIR is calculated as the normalized difference between SWIR and NIR spectral bands,  

SWIR NIR
SWIR,NIR

SWIR NIR
VI

 

 

, (2) 

where SWIR  is the surface reflectance in the SWIR band.  

As the result of atmospheric effects on surface reflectance, some VI values were missing, and there 

are abrupt drops in the time series of the two VIs. Time series of VIs with abrupt drops are not 

consistent with vegetation succession. Except in the case of disturbances (such as fires, floods, and 

hurricanes), VIs vary smoothly over time. Therefore, a smooth temporal course of VIs derived from 

remote sensing data can be expected. 

A number of gap filling and smoothing methods have been developed to reduce cloud and 

atmospheric contamination in the time series of vegetation indices and reconstruct the vegetation's 

dynamic trajectory [7,22–24]. We used the smoothing method developed by Garcia [25] to reduce 

cloud and atmospheric contamination in the time series of VINIR,Red and VISWIR,NIR. The method is a 

penalized least square regression based on three-dimensional discrete cosine transform (DCT-PLS). 

Let X be a vector that contains a series of equally spaced VI values nixi ,,2,1,  . Let W be the 

diagonal matrix that contains the weights, wi, corresponding to the VI value xi. The DCT-PLS consists 

in minimizing the following functional to find the best smoothing estimate, X̂ , of X [25]. 

    22
21 ˆˆˆ XDXXWX sF  , (3) 

where D is the Laplace operator, and s is a real positive scalar that controls the degree of smoothing. 

Minimizing on X̂  can be achieved using an iterative procedure. With type-2 discrete cosine transform 

(DCT) and inverse discrete cosine transform (IDCT), the X̂  can be expressed as  

        kkk Γ XXXWDCTIDCTX ˆˆ ˆ
1  , (4) 

where  kX̂  refers to X̂  calculated at the kth iteration step, and Γ  is a diagonal matrix the components  

     12

, /1cos221


 nisΓ ii  , (5) 

The method provides fast smoothing of data by means of a discrete cosine transform, and is a fully 

automated procedure for use on uniformly sampled datasets [25]. To address missing and outlying 

values, an iteratively reweighted process was used to assign a low weight to high leverage points and 

outliers, and conversely, allocate a relatively high weight to high quality data. The process constructed 

weights using a specified weighting function based on the current residuals, updating them from iteration 

to iteration until the residuals remain unchanged [25,26]. Note that atmospheric effects on surface 
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reflectance generally cause an increase in reflectance in the red band rather than in the NIR band, 

resulting in decreases in the VIs. To account for negatively biased noise, we used the weight function  
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where ui is the studentized residual, calculated by 
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where iii xxr ˆ  is the residual of the ith observation, and MAD denotes the median absolute 

deviation [27]. This iteratively reweighted procedure leads to a smoothed curve adapted to the upper 

envelope of the VIs in the time series. 

2.2. Cloud Detection of Surface Reflectance 

In this study, residual cloud contamination was detected from the seasonal trajectories of VIs 

described in Section 2.1 for each pixel. Atmospheric effects on surface reflectance generally cause 

negatively biased noise within the vegetation index values. The smoothing method described in 

Section 2.1 was first used to calculate the upper envelopes of VINIR,Red and VISWIR,NIR, denoted by 

VI_EnvNIR,Red and VI_EnvSWIR,NIR, respectively. If VI values at each time satisfy the following 

conditions, the surface reflectance data were deemed to be contaminated by clouds or other factors. 

Otherwise, they were considered to be cloud free and of high quality. 

RedNIR,RedNIR,RedNIR,

iii VI_EnvVI_EnvVI   , (8) 

and 

NIRSWIR,NIRSWIR,NIRSWIR, __ iii EnvVIEnvVIVI   , (9) 

where   is a threshold and was set to 0.4 in this study.  

The method was applied to check the time series surface reflectance, and any data points assessed as 

contaminated were filtered out. Indeed, this is not a conclusive clear-sky pixel identification scheme 

because pixels marked as clear-sky land may still contain cloud. Any undetected contaminated pixels 

can still be excluded, and the missing data were filled, during subsequent processing steps. 

2.3. Surface Reflectance Reconstruction 

Missing surface reflectance data will result in the absence of downstream products. In this study, the 

time series surface reflectance was reconstructed according to the surface reflectance with high quality 

by incorporating the upper envelopes of the time series VIs. 
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Let   mit ii  ,  ,2 ,1 , , I  be a series of data points, where ti is time, and Ii is surface reflectance in 

different bands. In this study, only surface reflectance in the red, NIR and SWIR bands were 

reconstructed. Therefore,  red NIR SWIRI , ,
T

i i i i    , where red

i , NIR

i , and SWIR

i  are the surface 

reflectance for the i-th position in the red, NIR and SWIR bands, respectively. For each data point, Ii, a 

quadratic polynomial function,   cbtattf  2 , was fitted to all 2n+1 surface reflectance values in 

each band in a moving window using the least squares method. An optimization method searched the 

trajectories of the quadratic polynomial functions that best fit the surface reflectance in the given time 

window, i.e., minimizing 
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where  itfred ,  itfNIR , and  itfSWIR  are the quadratic polynomial functions for the red, NIR, and 

SWIR bands, respectively;  Ti cbacbacbaX SWIRSWIRSWIRNIRNIRNIRredredred ,,,,,,,,  is a control variable 

from the coefficients of the quadratic polynomial functions; redNIR,

iVI_Sim  and NIRSWIR,

iVI_Sim  are 

simulated vegetation indices, which were calculated using the values of the quadratic polynomial 

functions; and n is the size of the moving window. In this study, n was set to 2. Then, the reconstructed 

surface reflectance data were set as the values of those quadratic polynomial functions at the ith position. 

To minimize the objective function,  iXJ , the SCE-UA algorithm was used to obtain the optimal 

control vector, which does not require the derivative of the function and thus avoids being trapped by 

small pits and bumps on the function surface. The SCE-UA search routine is a global optimization 

strategy that combines the strength of the simplex method with the concept of a controlled random 

search, competitive evolution, and the strategy of complex shuffling. The synthesis of the four 

concepts makes the SCE-UA method more effective, robust, flexible, and efficient, and less sensitive 

to the initial values of the parameters than the simplex method [28]. 

2.4. Data 

We chose the MOD09A1 product to test the proposed VIRR method, and the cloud-free MYD09A1 

product was used as reference data for evaluation of the reconstructed time series of surface 

reflectance. The MOD09A1/MYD09A1 products, which include seven bands (Table 1) with a 500 m 

spatial resolution and an eight day temporal sampling period was derived from the latest version 

(Collection 5) and was downloaded from http://reverb.echo.nasa.gov/reverb/. In this study, only 

MODIS/TEERA surface reflectance in the red (B1), NIR (B2), and SWIR (B6) bands are 

reconstructed for further retrieval of various land parameters. 

Two tiles with different biome types (h27v05, h12v09) were selected to investigate spatial patterns 

specific to the reconstructed surface reflectance as well to check the distribution in space of the surface 

reflectance contaminated by clouds. Tile h27v05 is located in Shandong, China. The main biome type 

is cropland according to the MODIS land cover product (MCD12Q1). Tile h12v09 is in the Amazon, 

and the biome type is tropical forest according to MCD12Q1 product. 
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Table 1. MODIS surface reflectance bands. 

No. Bands Band Name Band Width (nm) 

B1 Red 620–670 

B2 NIR 841–876 

B3 Blue 459–479 

B4 Green 545–565 

B5 NIR 1230–1250 

B6 SWIR 1628–1652 

B7 SWIR 2105–2155 

The BELMANIP (Benchmark Land Multisite Analysis and Intercomparison of Products) network, 

which includes 402 sites, provides a good sampling of biome types and conditions throughout the 

world [29]. For each BELMANIP site, a 7 × 7 subset of the reconstructed surface reflectance from the 

VIRR and TSCD algorithms and the surface reflectance from MYD09A1 in 2003 was extracted to 

evaluate the performance of the reconstructed surface reflectance. 

In addition, five sites with different biome types were selected to compare the time series of surface 

reflectance from MOD09A1 and the reconstructed surface reflectance from the VIRR and TSCD 

algorithms. The five sites we chose were: Alpilles, Yucheng, Konza, Counami, Tapajos, and their 

attributes are shown in Table 2.  

Table 2. Selected site information. 

Site Name Country Latitude (°) Longitude (°) Land Cover Types 

Alpilles France  43.81 4.74 Cropland 

Yucheng China 36.95 116.60 Cropland 

Konza USA 39.08 −96.62 Grassland 

Counami French Guyana  5.34 −53.24 Evergreen broadleaf forest  

Tapajos Brazil −2.87 −54.95 Evergreen broadleaf forest 

3. Result Analysis 

The VIRR method was applied to remove residual clouds in the MOD09A1 product and reconstruct 

time series of surface reflectance in the red, NIR and SWIR bands. The results were compared with the 

reconstructed surface reflectance from the TSCD algorithm. 

3.1. Comparison in Space 

An example of cloud detection and surface reflectance reconstruction is shown in Figure 2 for tile 

h27v05 on day 273, 2003. Figure 2a is an RGB image of surface reflectance from MOD09A1. RGB 

images of the reconstructed surface reflectance data using the VIRR and TSCD methods are shown in 

Figure 2c,d respectively. The images were produced with an RGB color scheme that employs bands 

B6 (as red color), B2 (as green color), and B1 (as blue color), and the same color enhancement was 

used. In Figure 2a, the surface reflectance from MOD09A1 is contaminated with residual clouds, and 

large clouds can be visually seen over the middle area of the image. Figure 2b displays the cloud (grey) 

mask derived from the VIRR method. Generally, clouds in most areas can be identified by the VIRR 
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algorithm. From the RGB image in Figure 2c,d, the VIRR and TSCD methods removed the residual 

clouds in the surface reflectance from MOD09A1. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 2. Tile h27v05 for day 273, 2003. (a) RGB image for surface reflectance from 

MOD09A1; (b) cloud (grey) mask from the VIRR algorithm; (c) RGB image for 

reconstructed surface reflectance from the VIRR algorithm; (d) RGB image for 

reconstructed surface reflectance from the TSCD algorithm. The RGB images were 

produced with an RGB color scheme that employs bands B6 (as red color), B2 (as green 

color), and B1 (as blue color), and the same color enhancement was used. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3. Tile h12v09 for day 97, 2003. (a) RGB image for surface reflectance from 

MOD09A1; (b) cloud (grey) mask from the VIRR algorithm; (c) RGB image for 

reconstructed surface reflectance from the VIRR algorithm; (d) RGB image for 

reconstructed surface reflectance from the TSCD algorithm. The RGB images were 

produced with an RGB color scheme that employs bands B6 (as red color), B2 (as green 

color), and B1 (as blue color), and the same color enhancement was used. 

Figure 3 shows the cloud mask and reconstructed surface reflectance for tile h12v09 on day 97, 

2003. Figure 3a,c,d is the RGB images of surface reflectance from MOD09A1 and the reconstructed 

surface reflectance from the VIRR and TSCD methods, respectively. The images were produced with 
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the same RGB color scheme and color enhancement as in Figure 2. In Figure 3a, most of the region 

was covered by thin clouds, except for several patches in the northwestern area of the image. Figure 3b 

shows the cloud mask from the VIRR algorithm. The VIRR algorithm effectively identified the thin 

clouds over this tropical region based on the temporally continuous VIs. The RGB images of the 

reconstructed surface reflectance data from the VIRR and TSCD methods (Figure 3c,d) show almost 

all contamination due to clouds was removed. 

Density scatterplots of the reconstructed surface reflectance from the VIRR and TSCD algorithms 

versus the cloud-free surface reflectance from MYD09A1 over the BELMANIP sites in 2003 are 

shown in Figure 4. Only the collocated surface reflectance values from MYD09A1 and the VIRR and 

TSCD algorithms are included in Figure 4. The density scatterplots between the reconstructed surface 

reflectance from the TSCD algorithm and the cloud-free surface reflectance from MYD09A1 for the 

red and NIR bands (Figure 4d,e) show outliers due to underestimation of the reconstructed surface 

reflectance from the TSCD algorithm. It is apparent that the reconstructed surface reflectance from the 

VIRR algorithm provides better agreement with the cloud-free surface reflectance from MYD09A1 for 

the red band (R2 = 0.8606 and RMSE = 0.0366) and NIR band (R2 = 0.6934 and RMSE = 0.0519) 

compared with the reconstructed surface reflectance from the TSCD algorithm (R2 = 0.5811 and 

RMSE = 0.0649; and R2 = 0.5005 and RMSE = 0.0675, respectively). 
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Figure 4. Density scatterplots between the cloud-free surface reflectance from MYD09A1 

and the reconstructed surface reflectance from the VIRR ((a)–(c)) and TSCD ((d)–(f)) 

algorithms over the BELMANIP sites in 2003. 
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To further assess the consistency of the reconstructed surface reflectance in different bands, NDVI values 

calculated from the reconstructed surface reflectance were compared with NDVI values calculated from the 

cloud-free surface reflectance from MYD09A1. Figure 5 shows the density scatterplots of the NDVI values 

calculated from the reconstructed surface reflectance from the VIRR and TSCD algorithms versus the NDVI 

values calculated from the cloud-free surface reflectance from MYD09A1 over the BELMANIP sites in 

2003. As with Figure 4, the NDVI values from the VIRR and TSCD algorithms are only compared to the 

collocated NDVI values from MYD09A1. Compared with the NDVI values calculated from the 

reconstructed surface reflectance from the TSCD algorithm, the NDVI values calculated from the 

reconstructed surface reflectance from the VIRR algorithm are distributed more closely around the 1:1 line 

with the NDVI values calculated from the cloud-free surface reflectance from MYD09A1 (with a higher 

correlation and slope). The NDVI values calculated from the reconstructed surface reflectance from the VIRR 

algorithm are in better agreement with the NDVI values calculated from the cloud-free surface reflectance 

from MYD09A1 (RMSE = 0.0854 and Bias = 0.0265) than those calculated from the reconstructed surface 

reflectance from the TSCD algorithm (RMSE = 0.1045 and Bias = 0.0351). 
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Figure 5. Density scatterplots of the NDVI values calculated from the reconstructed surface 

reflectance from the VIRR (a) and TSCD (b) algorithms versus the NDVI values calculated 

from the cloud-free surface reflectance from MYD09A1 over the BELMANIP sites in 2003. 

3.2. Temporal Analysis 

In this section, the time series of surface reflectance from MOD09A1 and the reconstructed surface 

reflectance from the VIRR and TSCD algorithms over a sample of sites with different biome types 

were presented to further illustrate the performance of the VIRR algorithm. For a better comparison, 

the time series of NDVI calculated from these surface reflectances are also illustrated over these sites. 

Figure 6 shows the time series of surface reflectance and NDVI for the center pixel of the Alpilles site 

for the year 2003. The biome type for this site is cropland according to MCD12Q1 product. Figure 6a,c 

presents the time series of surface reflectance in the red and SWIR bands, respectively. It is observed that 
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the time series of reconstructed surface reflectance from the VIRR method are in good agreement with 

those from the TSCD algorithm and residual clouds were removed in these reconstructed surface-

reflectance data. The time series of surface reflectance in the NIR band are shown in Figure 6b. Some 

discrepancies between the reconstructed surface reflectance in the NIR band from the VIRR and TSCD 

algorithm are observed for days 89–153, during which the reconstructed surface reflectance values from the 

VIRR algorithm were larger than those from the TSCD algorithm. Correspondingly, the NDVI values from 

the VIRR algorithm were also larger than those from the TSCD algorithm, but the time series of NDVI 

from the VIRR algorithm was more consistent with the upper envelope of NDVI calculated from 

MOD09A1 during these days (Figure 6d), which demonstrates that the oscillations in surface reflectance 

from the VIRR algorithm are physical and related to seasonal variations. 
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Figure 6. Time series of surface reflectance and NDVI from MOD09A1, the VIRR and 

TSCD algorithms for the center pixel of the Alpilles site in 2003. (a) surface reflectance in 

the red band; (b) surface reflectance in the NIR band; (c) surface reflectance in the SWIR 

band; (d) NDVI. 
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(d) 

Figure 7. Time series of surface reflectance and NDVI from MOD09A1, the VIRR and 

TSCD algorithms for the center pixel of the Yucheng site in 2003. (a) surface reflectance 

in the red band; (b) surface reflectance in the NIR band; (c) surface reflectance in the 

SWIR band; (d) NDVI. 

Figure 7 shows the time series of surface reflectance and NDVI for the center pixel of the Yucheng 

site for the year 2003. The biome type for this site is also cropland, but with double annual vegetation 

seasons, and hence the time series of the surface reflectance and NDVI show seasonal fluctuation. The 

surface reflectance from MOD09A1, especially in the red band, has several abnormal values at this site 

(Figure 7a). The VIRR and TSCD algorithms identified those observations with high reflectance 

values as clouds, and the residual clouds were removed in the reconstructed surface reflectance. 

However, some discrepancies are also observed. For example, the reconstructed surface reflectance 

values from the VIRR method are larger than those from the TSCD algorithm for days 33–73  
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(Figure 7a–c). This is largely due to some clear-sky observations being labeled as clouds by the TSCD 

algorithm. The corresponding NDVI values calculated from the reconstructed surface reflectance from 

the TSCD algorithm (Figure 7d) are also larger than those calculated from MOD09A1 and the 

reconstructed surface reflectance from the VIRR algorithm during those days. 
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(d) 

Figure 8. Time series of surface reflectance and NDVI from MOD09A1, the VIRR and 

TSCD algorithms for the center pixel of the Konza site in 2003. (a) surface reflectance in 

the red band; (b) surface reflectance in the NIR band; (c) surface reflectance in the SWIR 

band; (d) NDVI. 

The time series of surface reflectance and NDVI for the center pixel of the Konza site for the year 

2003 are shown in Figure 8. The biome type for this site is grassland according to MCD12Q1 product. 

On day 33, 2003, the surface reflectance from MOD09A1 in the red band is larger than 0.5, which is 

most likely cloud. Both the VIRR and TSCD algorithms remove residual clouds in the reconstructed 
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surface reflectance data. However, the TSCD algorithm confirmed that the surface reflectances from 

MOD09A1 around this day were also contaminated by clouds, as a result of which the reconstructed 

surface reflectance data from the TSCD algorithm in the red, NIR, and SWIR bands were smaller than 

those from the VIRR algorithm and MOD09A1 for days 17–105 (Figure. 8a–c). Nevertheless, 

excellent agreement was achieved between the time series of NDVI from both the VIRR and TSCD 

algorithms for the entire year at this site (Figure 8d). 
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(d) 

Figure 9. Time series of surface reflectance and NDVI from MOD09A1, the VIRR and 

TSCD algorithms for the center pixel of the Counami site in 2003. (a) surface reflectance 

in the red band; (b) surface reflectance in the NIR band; (c) surface reflectance in the 

SWIR band; (d) NDVI. 

Figure 9 shows the time series of surface reflectance and NDVI for the center pixel of the Counami 

site. The biome type for this site is evergreen broadleaf forests according to the MCD12Q1 product. 
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Many residual clouds were observed in the surface reflectance from MOD09A1, and the time series of 

NDVI from MOD09A1 shows dramatic fluctuations over this site. The reconstructed surface 

reflectances from the TSCD algorithm are in good agreement with those from the VIRR algorithm 

after day 145. Large discrepancies are observed before Julian day 145 because of serious 

contamination due to residual clouds. The TSCD algorithm provides linear surface reflectance values, 

which cannot address seasonal changes of surface reflectance. However, the VIRR algorithm 

performed very well to eliminate the effects of clouds, and successfully reconstructed the continuous 

time series of surface reflectance. 
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(d) 

Figure 10. Time series of surface reflectance and NDVI from MOD09A1, the VIRR and 

TSCD algorithms for the center pixel of the Tapajos site in 2003. (a) surface reflectance in 

the red band; (b) surface reflectance in the NIR band; (c) surface reflectance in the SWIR 

band; (d) NDVI. 
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Figure 10 shows the time series of surface reflectance and NDVI for the center pixel of the Tapajos 

site. The biome type for this site is also evergreen broadleaf forests. As with the Counami site, many 

residual clouds were observed in the MODIS surface reflectance and the time series of NDVI from 

MOD09A1 showed dramatic fluctuations for the entire year over this site (Figure 10d). It is observed 

that most of the reconstructed surface reflectance data from the TSCD algorithm change linearly. In 

contrast, the reconstructed surface reflectance from the VIRR algorithm captures complete and 

reasonable time series (Figure 10a–c). This, in turn, produces a time series of NDVI in good agreement 

with the upper envelope of the NDVI from MOD09A1 (Figure 10d). 

4. Discussions 

The VIRR method is mainly used to reconstruct time series of surface reflectance in vegetated areas 

for further retrieval of canopy parameters, such as LAI. This study demonstrates that the VIRR method 

can reconstruct temporally-continuous time series of land-surface reflectance. In fact, the TSCD 

method is also an effective method to reconstruct the time series of surface reflectance and performs 

very well, particularly when the land surface is stable or changing slowly [11,12]. However, the TSCD 

method depends on a rapid change of surface reflectance in the blue band to discriminate between 

clouded and unclouded pixels. Therefore, the TSCD method cannot be directly used to reconstruct 

time series of land-surface reflectance data without a blue band. In contrast, a unique feature of the 

VIRR method is that vegetation indices with obvious seasonal changes are used to identify cloud-

contaminated reflectance data and reconstruct time series of surface reflectance. Therefore, whether 

there are surface reflectance in the blue band and other auxiliary information, or not, the VIRR method 

is applicable and will be applied to reprocess the MODIS 250 m resolution surface reflectance data and 

the VIIRS surface reflectance data for LAI retrieval. Another advantage of the VIRR method is that it 

simultaneously reprocesses multiple-band surface reflectance data, which avoids inconsistent 

estimation of surface reflectance in the different bands. 

Nevertheless, the VIRR method reconstructs the time series of surface reflectance based on the 

temporally-continuous VIs. Quality of the cloud detection and reconstruction of surface reflectance 

depends strongly on accuracy of the reconstructed time series VIs especially in areas with data missing 

over long time periods (such as tropical rain forests).  

In addition, the VIRR method aims to correct surface reflectance contaminated by clouds. In fact, the 

surface reflectance is retrieved from TOA reflectance data through atmospheric corrections which 

remove the effects of aerosols, thin clouds, and cloud shadows and also introduce additional errors. The 

uncertainties in the MOD09A1 product have a large impact on the performance of the VIRR method. 

5. Conclusions 

Current land-surface reflectance products are contaminated with residual clouds, which results in 

temporal and spatial inconsistencies in subsequent downstream products. This paper developed a new 

methodology, VIRR, to reconstruct time series of surface reflectance by incorporating the upper 

envelopes of the time series VIs as constraint conditions. The VIRR method is simple and independent 

of reflectance data in the blue band and other auxiliary information. 
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The VIRR method was applied to reprocess the MODIS/TERRA surface reflectance product 

(MOD09A1). Temporal consistency analysis indicates that the VIRR method successfully removes 

surface reflectance values contaminated by clouds, and reconstructs temporally-continuous time series of 

land-surface reflectance. Comparisons with cloud-free surface reflectance from the MODIS/AQUA 

surface reflectance product (MYD09A1) over the BELMANIP (Benchmark Land Multisite Analysis and 

Intercomparison of Products) sites in 2003 demonstrate that the VIRR method provides better 

performance for the red and near-infrared bands than the time series cloud detection (TSCD) algorithm. 

In this study, the VIRR method was only applied to reprocess surface reflectance data in the red, 

near-infrared, and shortwave infrared bands. In the near future, we will extend the methodology to 

surface reflectance data in other bands. Further considerations of the reconstruction of the MODIS  

top-of-atmosphere reflectance will be explored in a forthcoming study. 
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