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Abstract: A large-area map of the spatial distribution of rice is important for grain yield 

estimations, water management and an understanding of the biogeochemical cycling of 

carbon and nitrogen. In this paper, we developed the Normalized Weighted Difference 

Water Index (NWDWI) for identifying the unique characteristics of rice during the 

flooding and transplanting period. With the aid of the ASTER Global Digital Elevation 

Model and the phenological data observed at agrometeorological stations, the spatial 

distributions of single cropping rice and double cropping early and late rice in the Yangtze 

River Delta region were generated using the NWDWI and time-series Enhanced 

Vegetation Index data derived from MODIS/Terra data during the 2000–2010 period. The 

accuracy of the MODIS-derived rice planting area was validated against agricultural 

census data at the county level. The spatial accuracy was also tested based on a land use 

map and Landsat ETM+ data. The decision coefficients for county-level early and late rice 

were 0.560 and 0.619, respectively. The MODIS-derived area of late rice exhibited higher 

consistency with the census data during the 2000–2010 period. The algorithm could detect 

and monitor rice fields with different cropping patterns at the same site and is useful for 

generating spatial datasets of rice on a regional scale. 

Keywords: rice; MODIS; Yangtze River Delta region; Normalized Weighted Difference 

Water Index; Enhanced Vegetation Index 
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1. Introduction 

Paddy rice fields provide essential food for more than half of the population of the entire world [1]. 

Rice is widely cultivated in Asian countries, especially China. Recent FAO (Food and Agricultural 

Organization) estimates indicate that to satisfy the projected demand of the year 2050, global 

agricultural production must increase 60 percent above the level of 2005–2007 [2]. Large-area 

assessments of potential food production regions and their impact on biogeochemical cycling require 

the acquisition of the best possible information on the distribution of paddy rice fields [3].  

The official statistical data on rice sowing areas have been generated based on ground sample 

surveys and extrapolated to the provincial and national scales. Large-scale census data cannot provide 

accurate spatial distributions of paddy rice, and a time lag is present in the datasets. Huke developed 

Asian rice datasets using agricultural statistical datasets collected at the sub-country level [4].  

Leff et al. generated a global rice map at a spatial resolution of five arcminutes as part of a global 

cropland product using satellite-derived land cover data and agricultural census data [5]. Frolking et al. 

generated 0.5°-resolution maps of the distribution of rice agriculture in mainland China using a 

combination of county-scale agricultural census data and land cover maps derived from Landsat 

images collected during the 1995–1996 period [3]. A thematic land use map of China at a scale of 

1:100,000 was generated via the visual interpretation of Landsat TM (Thematic Mapper) data [6].  

A classification system of 25 land use categories, including paddy rice, was used in this work. The 

land use map was converted to 1-km gridded data. However, more updated datasets of annual rice 

distribution with finer resolution are needed at the regional scale. 

Approximately half of the cropland in China is multi-cropped each year, and this land has a 

significant influence on the biogeochemical cycling of carbon and nitrogen. To date, many studies 

have been conducted to map paddy rice using fine-resolution satellite images, such as Landsat MSS, 

TM, ETM+ and NOAA/AVHRR images, by applying image classification procedures, but few of 

these studies have provided detailed information regarding the locations of multi-cropping [7–10]. 

Furthermore, because of the fine resolution of these images, it is difficult to obtain more comprehensive 

images covering an entire region simultaneously over a large area. Rice distribution maps have also been 

produced via multi-temporal analysis of NOAA/AVHRR and SPOT4/VEGETATION data with a 

resolution of ~1 km, which is rather coarse for rice mapping [11–13]. 

The Moderate-Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua 

satellites, with its advantages of a high revisit period, moderate spatial resolution, wide field of view 

(FOV) and free access, has been applied for paddy rice mapping. Decision tree algorithms and spectral 

matching techniques were used to map rice-growing areas using temporal MODIS data [14,15].  

A MODIS time-series analysis of spectral indices was found to be more useful for monitoring the 

phenological variations of paddy rice over a long period [16,17]. A paddy rice field is typically 

prepared by flooding a few days before the rice seedlings are transplanted. The wet growing season is 

regarded as a unique and significant characteristic of rice compared with other crops [18]. Thus, the 

flooding period is recognized as the best phase for rice identification. Spectral indices and bands that 

are sensitive to water and green vegetation are needed for monitoring the flooding and transplanting 

period of rice crops. These spectral indices are always calculated using two or more spectral bands to 

enhance the contrast between target and background and to reduce the effects of the atmosphere and 
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solar illumination geometry. The Normalized Difference Vegetation Index (NDVI), developed using 

the red and near-infrared bands, is correlated with the Leaf Area Index and chlorophyll content and has 

been widely used for crop yield estimations and the detection of changes in land use/cover [19,20]. 

The Enhanced Vegetation Index (EVI) was proposed because of the saturation of the NDVI in  

high-biomass regions to adjust for residual atmospheric contamination and background  

reflectance [21,22]. The infrared range is useful for estimating the water content of vegetation and in 

discriminating water from land. The Normalized Difference Water Index (NDWI) was developed 

using the reflectance in the near-infrared and green bands to enhance the detection of water features 

while eliminating soil and terrestrial vegetation features [23]. The modified NDWI (MNDWI) 

substitutes the near-infrared band with a middle-infrared band, such as Band 5 of Landsat TM, to 

efficiently enhance open-water signals and suppress or remove the signals from built-up land, as well 

as vegetation and soil [24]. However, because the reflectance of rice pixels during the flooding and 

transplanting stage is a mixture of water and vegetation, the sensitivity of the spectral index to flooding 

features should be further improved for rice mapping. The Land Surface Water Index (LSWI), which 

was formulated by combining the red and shortwave infrared channels of MODIS, has been used for 

the identification of rice pixels [25]. However, the threshold between the LSWI and the EVI was 

determined by considering local practices and rice cropping systems. Qiu et al. proposed a method for 

mapping rice planting areas by considering the vegetation phenology and surface water variations. The 

ratios of the changes in amplitude of the LSWI to the two-band Enhanced Vegetation Index 2 (EVI2) 

during the period from the tillering to the heading stage were used as one indicator to discriminate rice 

from non-rice fields [26]. Mosleh and Hassan developed a method for mapping “Boro” rice in 

Bangladesh using the MODIS-derived 16-day composite NDVI at a spatial resolution of 250 m [27]. 

The ISODATA clustering and the formulation of the mathematical model were the key procedures of 

this algorithm.  

The objectives of the present study are to: (1) develop a Normalized Weighted Difference Water 

Index for identifying the flooding period of paddy rice fields; (2) map the early, single cropping and 

double cropping late rice distributions of the Yangtze River Delta region in the 2000–2010 period; and 

(3) validate the results using land use maps, Landsat ETM+ data and agricultural statistical data. 

2. Study Area and Data 

2.1. Study Area 

The study area is the Yangtze River Delta region, which is one of the major rice-producing areas in 

China and spans three provinces (Figure 1). This region extends from 118°50ʹ5″E to 134°46ʹ26″E in 

longitude and from 38°43ʹ15″N to 53°33ʹ39″N in latitude, with a territory of 2.1 × 105 km2. The 

climate of the Yangtze River Delta is humid subtropical and is largely controlled by the East Asian  

monsoon [28]. Rice is the major food crop in the study area, with a high level of production and a wide 

distribution. The cropping system in Jiangsu Province and Shanghai City consists essentially of one 

crop of rice and another crop of winter wheat or oil rape, whereas single and double rice cropping 

systems are the two major planting patterns in Zhejiang Province.  
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Figure 1. Location and ASTER Global Digital Elevation Model (GDEM) of the study area. 

2.2. Data Acquisition 

2.2.1. Field Data 

Field experiments can yield accurate data under controlled conditions. A field experiment was 

conducted at the Experimental Farm of Zhejiang University, Hangzhou, Zhejiang Province, from June 

to October in 2004. Two rice cultivars (i.e., Xieyou 9308 and Xiushui 110) were planted in 18 plots 

with three different nitrogen fertilization treatments: 0, 140 and 240 kg/ha. Each treatment was 

repeated three times. Rice seedlings were transplanted into the field on 8 July 2004, and the canopy 

reached full closure in August. The rice canopy reflectance of each plot was acquired using an 

Analytical Spectral Devices (ASD) Field Spec Pro Full Range (350–2500 nm) spectroradiometer on  

20 July, 8 August, 28 August, 22 September, 5 October and 27 October. At each plot, 10 reflectance 

measurements were acquired with a nadir view of 25° from a height of 1.0 m above the rice. The 

spectrum of each plot was recorded as the average of the 10 measurements.  

2.2.2. Satellite Data 

The MODIS sensor records data in 36 spectral bands and products at spatial resolutions of 250 m, 

500 m and 1000 m. In this study, MODIS/Terra eight-day composite surface reflectance products 

(MOD09A1) were chosen for the mapping of rice planting regions.  

The eight-day composite surface reflectance products were routinely processed for atmospheric and 

radiometric correction for the effects of aerosols and cirrus clouds, as well as to select the best 

observation and the lowest value in the blue band for each pixel over the eight-day period [29]. Three 
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tiles (h27v05, h27v06 and h28v06) for the 2000–2010 period were acquired from the project website 

(https://lpdaac.usgs.gov/). The downloaded MODIS data were then mosaicked and reprojected to 

Albers equal-area conic projection using the MODIS Reprojection Tool (MRT).  

A Landsat ETM+ image acquired on 13 May 2000 (path/row: 118/41) was downloaded from the 

International Scientific Data Service Platform (http://datamirror.csdb.cn/). The region spanned by the 

image covers the main rice-producing zones in Wenzhou City. According to the phenological data 

recorded at the local agricultural meteorological station, rice seedlings were generally transplanted into 

the fields in early May. Radiometric calibration was applied to the Landsat ETM+ image. The fast  

line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) model was selected for 

atmospheric correction. The Landsat ETM+ image was resized to a 90 km × 90 km subset and 

reprojected to the Albers equal-area conic projection.  

In addition, ASTER Global Digital Elevation Model (GDEM) data covering the study area  

were freely obtained from the Earth Remote Sensing Data Analysis Center of Japan 

(http://gdem.ersdac.jspacesystems.or.jp/).  

2.2.3. Ancillary Data 

A digital administrative map of China was obtained from the National Fundamental Geographic 

Information System. A land use map of Wenzhou City in 2005 was obtained from the Land and 

Resources Bureau of Wenzhou City. The annual sowing areas of paddy rice for each county in the 

study area during the 2000–2010 period were provided by the bureau of statistics.  

3. Methodology 

3.1. Spectral Characteristics of Rice during the Flooding and Transplanting Period 

Canopy reflectance data collected in the field at a spectral resolution of 1 nm were used to simulate 

the reflectance in the first seven bands of the MODIS sensor (ρMOD) based on its spectral response 

function (Figure 2). The reflectance in the near-infrared and shortwave infrared wavelength bands was 

very low, whereas the reflectance in the visible bands (Bands 1, 3 and 4) was greater than in other 

growth periods. During the transplanting period, the water in the rice field was found to absorb most of 

the incident radiant flux, especially in the shortwave infrared region. It was also observed that the 

reflectance in Band 6 was lower than that in Band 4 (green band). With an increase in the tiller number 

and leaf area index, the reflectance in the visible bands decreased on 8 August 2004; however, the 

reflectance in the near-infrared and shortwave infrared bands increased significantly. The reflectance 

in Band 6 became higher than that in Band 4. In the previous literature, many water indices have been 

developed using the visible and infrared bands [23–25]. The green spectral range is highly sensitive to 

the Chl-a concentration over a wide range of variation and, thus, is helpful for the remote sensing of 

vegetation [30]. The near-infrared and shortwave infrared regions are the best wavelength regions for 

discriminating land from water. Because 1 of the 20 detectors in Terra MODIS Band 5 is noisy, there 

are stripes in the image. Band 6 was selected as the band sensitive to water, and Band 4 was used as 

the band sensitive to the presence of green seedlings.  



Remote Sens. 2015, 7 8888 

 

 

Xu proposed the MNDWI (Equation (1)) to enhance the features of open water in remotely-sensed 

imagery [24]. Water pixels will have positive values of this index; however, pixels corresponding to 

flooded rice fields, built-up land and vegetation will have negative values. To enhance the features of 

rice pixels in the transplanting stage, we introduced a weight in the green band. Thus, we developed a 

Normalized Weighted Difference Water Index (NWDWI) based on the MNDWI. The ρband4 and ρband6 

values described in Equation (2) denote the reflectances in MODIS Bands 4 and 6, respectively. A 

threshold of zero was applied to the NWDWI to separate flooded rice pixels from vegetation pixels. As 

shown in Equation (3), the values of the Ratio Vegetation Index (RVI) during different rice growth 

periods were calculated using the ρMOD values of Bands 6 and 4. Figure 3 shows that the RVI was the 

lowest during the transplanting stage and reached its peak at the heading stage, after which the RVI 

slowly deceased.  
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Figure 2. Simulated MODIS reflectances throughout the entire growth cycle of rice. 
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Figure 3. Statistical analysis of the Ratio Vegetation Index (RVI) throughout the entire 

growth cycle of a rice paddy in the field. 
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The acquisition date of the ETM+ image was consistent with the flooding and transplanting date for 

rice in Wenzhou, Zhejiang Province. Figure 4 is a false-color composite image of the ETM+ data. The 

paddy rice binary map was obtained from the ETM+ image using the maximum likelihood method and 

then degraded to the same resolution as the MODIS data using the pixel aggregate method. Because 

the overpass time of Landsat 7 is close to that of Terra, the aggregated rice map could be used as 

ground-truth data for validation. The MOD09A1 data (day of year: 2000129) were used to validate the 

performance of the NWDWI. When a = 1, flooded rice field and vegetation pixels both had positive 

NWDWI values. When a = 1.5, 54.8% of the rice pixels had negative values, and 21.2% of the 

negative pixels in the MODIS-derived NWDWI image were labeled as rice pixels in the reference 

map. When a = 2, approximately 91.4% of the rice pixels had negative NWDWI values, and 24.7% of 

the negative pixels in the MODIS-derived NWDWI image were labeled as rice pixels in the reference 

map. The results of a simple density slice classification for the NWDWI (a = 2) demonstrated its 

ability to discriminate water pixels (Figure 5). In the ocean areas, the pixels had the lowest NWDWI 

values, whereas in the non-water areas, the pixels had positive values. In a comparison with the rice 

map derived from the ETM+ image, the omitted rice pixels were mainly distributed at the edges of the 

rice fields because of the mixed-pixel phenomenon and the uncertainty of edge pixels near large tracts 

of rice fields. When a = 2.5, approximately 98.5% of the rice pixels had negative NWDWI values. 

However, there were only 18.1% of pixels with negative values in the NWDWI image labeled as rice 

pixels in the reference map. Many of the forest, shrub and bare land pixels had negative value, as well 

as flooded rice pixels. Figure 3 also shows that the RVI was greater than 2 from the tillering stage to 

the harvest stage. Therefore, when a = 2, NWDWI ≤0 can be used to identify possible flooded rice 

pixels. Figure 5 also indicates that built-up pixels and pixels corresponding to natural water bodies also 

had low NWDWI values, which should allow them to be distinguished from rice pixels. 

 

Figure 4. Color composite image of ETM+ data at the test site (R: Band 5; G: Band 4;  

B: Band 3). 
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Figure 5. Spatial Normalized Weighted Difference Water Index (NWDWI) distribution of 

the MODIS image. 

3.2. Reconstruction of the Spectral Index Profile 

Although the 8-day composite surface reflectance data were routinely processed, some pixels were 

still affected by clouds. The pixels with Band 3 reflectances of greater than 10% were labeled as cloud 

pixels and removed as abnormal data [16]. Cloud masks for each MOD09A1 image were generated 

individually. Cloud-free data are important requirements for the operational monitoring of rice 

distributions using optical sensors [31]. To fill in the gaps in the EVI and NWDWI time series caused 

by clouds, the conditional temporal interpolation method was used in this study [32]. Compared with 

wavelet analysis and the Savitzky–Golay filter, the advantage of this method is its ability to retain the 

values of good pixels and repair the bad ones using valid pixels in the previous and subsequent images. 

If a pixel was contaminated in all three adjacent images, it was removed for further analysis.  

3.3. Algorithm for Mapping Rice Planting Areas Using Time Series MODIS Data 

The Yangtze River Delta region can be separated into two zones: one is the single rice planting 

area, including Jiangsu and Shanghai, and the other is Zhejiang Province [33]. In hilly regions, the 

elevation and slope are considered to be two important geographical factors for improving the 

accuracy and stability of classification in rice mapping [34]. In the study area, rice is grown in regions 

with elevations of less than 800 m and slopes of less than 10°; thus, the elevation and slope were used 

to exclude non-paddy rice regions.  

According to the rice growth calendar for the period of 2000–2010 collected from 

agrometeorological stations, the transplanting stages for early rice, single cropping rice and  

double cropping late rice occurred in late April–early May, mid-June–early July and mid-to-late July, 

respectively. The MODIS data corresponding to the transplanting periods were used to identify 
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flooded rice pixels using the NWDWI to reduce the interference of other wetland plants or crops with 

short-term precipitation.  

The time series of spectral indices are essential for analyzing the annual variability of vegetation 

activity. Figure 6 shows the seasonal EVI and NWDWI profiles of various types of land cover in 2005. 

Figure 6a–c shows the seasonal spectral index profiles of three major cropping systems in the Yangtze 

River Delta region. It is obvious that the NWDWI decreased significantly when a pixel was labeled as 

a cloud pixel. The time series of the EVI and NWDWI revealed the growth stages of the crops. When 

the rice seedlings were transplanted into the field, the NWDWI was less than zero, because the 

reflectance of the rice pixels was dominated by water. However, the seasonal NWDWIs of rain-fed 

crops maintained consistently positive values. Forests in the study area exhibited high EVI and 

NWDWI values throughout the entire growth period (Figure 6e). Natural water and built-up pixels 

could be distinguished by their long periods of consistently low NWDWI and EVI values. In the study 

area, 40 single cropping rice samples and 35 double cropping rice samples were selected to perform a 

decision tree classification algorithm for mapping the planting areas of early, single cropping and 

double cropping late rice. For early rice, a pixel with a negative NWDWI and EVI <0.26 was labeled 

as a potential rice pixel during the transplanting stage. According to the characteristics of the growth 

period of early rice, the maximum EVI throughout the entire growth period was greater than 0.35, and 

the EVI decreased below 0.35 in the eleventh 8-day period after that identified as the transplanting 

stage. Because of the longer growth period of single cropping rice, the EVI decreased to less than 0.35 

in the fifteenth 8-day period after the rice seedlings were transplanted. Late rice was transplanted to the 

same field after the early rice was harvested. If a pixel had NWDWI <0.05 and EVI <0.35, it was 

recognized as a transplanted rice pixel. The maximum EVI throughout the entire growth period was 

higher than 0.35, and in the twelfth 8-day period after the transplanting stage, the EVI decreased below 

0.35. Natural water bodies and built-up pixels could be excluded by removing pixels with an EVI that 

was less than 0.3 for fourteen consecutive 8-day periods between April and September. Figure 7 shows 

the decision tree for the mapping of single cropping, early and double cropping late rice planting areas. 

Finally, the spatial distribution maps of early, single cropping and double cropping late rice  

were generated. 

Figure 6. Cont. 
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Figure 6. Spectral index time series corresponding to various types of land cover at the test 

sites in 2005: (a) winter wheat and single cropping rice, (b) winter wheat and rain-fed 

crops, (c) early and late rice, (d) lakes, (e) forests and (f) built-up regions. 

 

Figure 7. Flow chart for the extraction of rice planting regions.  
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3.4. Accuracy Assessment 

The classification results for the Landsat ETM+ imagery at the studied site were used as the 

reference rice map for validation. An error confusion matrix was applied to evaluate the agreement of 

the MODIS-derived rice map with the reference rice map. The commission error, omission error, 

user’s accuracy and producer’s accuracy were calculated as follows:  

commit

MODIS

Commission error (%) = 100%
N

N
×  (4)

User’s accuracy (%) = 100 − commission error (5)

omit

ETM

Omission error (%) = 100%
N

N
×  (6)

Producer’s accuracy (%) = 100 − omission error (7)

Here, Ncommit and Nomit represent the numbers of committed and omitted rice pixels, respectively, in 

the MODIS-derived result, and NMODIS and NETM represent the numbers of rice pixels in the  

MODIS-derived map and the aggregated reference rice map, respectively. 

The error matrix was analyzed at the pixel level. Furthermore, because of the edge effects 

originating from the spatial aggregation of the ETM+ data and the geometric mismatch between the 

ETM+ and MODIS data, the error matrix was calculated using a 3 × 3 moving window [35].  

4. Results and Discussion 

4.1. Spatial and Temporal Distribution of Rice Planting Areas in the Yangtze River Delta Region 

The spatial distributions of early, single cropping and double cropping late rice planting areas in the 

Yangtze River Delta region from 2000 to 2010 were generated using the presented algorithm, and the 

results are shown in Figures 8–10. As shown in Figure 8, single cropping rice was mainly distributed 

in Jiangsu, Shanghai, Hangzhou-Jiaxing-Huzhou plain, Jinhua-Quzhou basin, Ningbo-Shaoxing plain 

and the coastal plain of southeastern Zhejiang Province. Double cropping rice was mainly distributed 

in the Jinhua-Quzhou basin, Ningbo-Shaoxing plain and coastal plain of southeastern Zhejiang 

Province (Figures 9 and 10). The complexity of the terrain posed a considerable challenge in the 

extraction of scattered rice fields using MODIS 500-m data because of the mixed-pixel phenomenon. 

The rice fields were scattered throughout hilly regions, and most of them were distributed along rivers 

or in terraced planting regions. 

The total planting area of early rice decreased from one year to the next from 2000 to 2003 and then 

remained stable afterward. Single cropping rice began to be planted instead of double cropping rice in 

some areas of the Yangtze River Delta region. Figure 10 shows that the early rice area decreased 

significantly in Ningbo-Shaoxing plain and Jinhua-Quzhou basin. The results reveal the change in the 

cropping systems used in the Yangtze River Delta region over the studied decade. 
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Figure 8. Cont. 
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Figure 8. Spatio-temporal distribution of single cropping rice in the Yangtze River Delta 

region during the period of 2000–2010. 

 

 

Figure 9. Cont. 
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Figure 9. Spatio-temporal distribution of early rice in the Yangtze River Delta region 

during the period of 2000–2010. 

 

Figure 10. Cont. 
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Figure 10. Spatio-temporal distribution of double cropping late rice in the Yangtze River 

Delta region during the period of 2000–2010. 

4.2. Comparison of the Estimated Paddy Rice Planting Areas with Agricultural Census Data 

It is a time-consuming and labor-intensive task to implement a large-scale regional survey of rice 

planting region and to obtain an annual spatial map of the study region. Agricultural census data were 

used as reference data to test the accuracy and stability of our algorithm. Table 1 presents a 
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comparison of the annual total paddy planting areas derived from MODIS and agricultural census data 

in the Yangtze River Delta region. The absolute errors of the extracted annual total rice areas were less 

than 15%, except for 2007 and 2010. The MODIS-derived single cropping rice areas were 

underestimated in 2007 and 2010. The relative error was highest in 2007. The rice planting areas in 

this year were severely underestimated, especially those in the south of Jiangsu Province, Shanghai 

City and the north of Zhejiang Province. In 2010, underestimation mainly occurred in northern 

Nantong City, Taizhou, western Wuxi, northeastern Suzhou and central-southern Zhejiang. In these 

regions, the cloud occurrence frequency was greater than 60% during the transplanting stage of single 

cropping rice. Cloud cover during the rainy season may obscure optical observations. The existence of 

clouds and cloud shadows can result in abnormal changes in the spectral index. Continuous cloud 

contamination during the transplanting period was the major cause of the underestimation. Although 

eight-day composite surface reflectance products were generated by selecting the date within the  

eight-day window with the clearest atmospheric conditions for each pixel, the effects of cloud 

contamination cannot be neglected. In this study, the conditional temporal interpolation method was 

applied to reconstruct invalid pixels contaminated by clouds, but if three consecutive eight-day 

composite data points were all invalid during the flooding and transplanting period of the rice crop, 

that pixel was eliminated from further analysis. Radar images are a potential alternative means of rice 

mapping in these regions, especially during the rainy season, because they are independent on the time 

of day and unimpaired by weather conditions.  

Table 1. Comparison of rice planting areas derived using the MODIS algorithm and from 

the agricultural census data.  

Year Census Data (kha) * RiceMOD (kha) Relative Error (%)

2000 3928.50 3882.06 −11.8 
2001 3476.30 3753.93 7.99 
2002 3239.83 3472.60 7.18 
2003 2842.23 3161.56 11.24 
2004 3285.70 3576.88 8.86 
2005 3409.26 3609.66 5.88 
2006 3439.45 3638.51 5.79 
2007 3338.49 2140.38 −35.89 
2008 3359.37 2893.90 −13.86 
2009 3335.40 3546.10 6.32 
2010 3309.10 2636.50 −20.33 

* RiceMOD denotes the rice planting area derived from MODIS. 

Furthermore, county-level validation of the rice planting area extraction results was performed. 

Because of the different standards for agricultural census data collected at the county level,  

single cropping rice and double cropping late rice were combined and treated simply as late rice for the 

comparison. The comparison results for early and late rice are shown in Figure 11. The solid line in the 

plot is the 1:1 line. The points in the plot are clustered near the 1:1 line, indicating that the  

MODIS-derived area of early rice is well correlated with the agricultural census data at the county 

level. The decision coefficients (R2) for early rice and late rice are 0.560 and 0.619, respectively. The 
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MODIS-derived area of late rice demonstrates a higher consistency with the census data during the 

2000–2010 period, and the extracted early-rice area exhibits greater bias than that of late rice. 
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Figure 11. Correlation between areas of (a) early rice and (b) late rice derived using the 

MODIS algorithm and from the census data at the county level for the 2000–2010 period. 

The topography in Zhejiang Province is very complicated, including plains, hills and mountains.  

Xu and Wang studied regionalization for rice yield estimation in Zhejiang Province by considering the 

local rice cropping systems, agroclimates, landforms, surface feature structures and rice yield levels. 

The county borders were treated as the region boundaries in the regionalization [36]. According to the 

regionalization map, the MODIS-derived early-rice area was close to that indicated by the census data 

in counties dominated by plains, but a large error was still observed in counties that grew less rice 

(Figure 12). The MODIS-derived late-rice area in counties dominated by plains was very close to that 

indicated by the census data. The Jinhua-Quzhou basin, located in central Zhejiang Province, is the 

major rice-producing region in the study area. The planting areas of early and late rice derived from 

the MODIS data were underestimated in the counties located in the Jinhua-Quzhou basin region 

(Figure 13). The results were unsatisfactory because of the influence of the terrain on the land surface 

reflectance. In counties located in mountainous and hilly regions, the MODIS-derived areas of early 

and late rice were underestimated to different extents (Figure 14). The rice planting areas derived using 

the MODIS algorithm were severely underestimated in counties located in mountainous and hilly 

regions, where the rice fields were typically fragmentary and smaller than a MODIS pixel. Because the 

spatial resolution of the MODIS data used in the study was 500 m, it was unfeasible to recognize a 

pixel with a low abundance of rice as a rice pixel. The rice fields were not successfully identified in 

regions with complicated topographies. However, the MODIS-derived results are still useful for 

developing large-scale, timely and relatively accurate spatial datasets of paddy rice fields, especially in 

plain regions, and for providing vital information for yield estimation, growth monitoring, water 

management and greenhouse gas emission estimation. 
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Figure 12. Comparison of MODIS-derived areas with census data in counties dominated 

by plains in the 2000–2010 period. 
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Figure 13. Comparison of MODIS-derived areas with census data in counties located in 

the Jinhua-Quzhou basin in the 2000–2010 period. 

y = 0.299x + 0.239
R² = 0.403

0

5

10

15

20

25

0 5 10 15 20 25

E
st

im
at

ed
 a

re
a(

K
ha

)

Statistical area(Kha)

Early rice

 

y = 0.527x - 2.053
R² = 0.563

0

10

20

30

40

0 10 20 30 40

E
st

im
at

ed
 a

re
a(

K
ha

)

Statistical area(Kha)

Late rice

  

Figure 14. Comparison of MODIS-derived areas with census data in counties located in 

mountainous and hilly regions in the 2000–2010 period. 
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4.3. Spatial Comparison of Extracted Paddy Rice Planting Areas 

In addition to the accuracy of the total estimated area, the spatial matching of the MODIS-derived 

results is also very important for practical applications. Table 2 summarizes the accuracy assessment of 

the MODIS-derived rice results. At the pixel level, the commission and omission errors were 26.30% 

and 22.67%, respectively. The user’s and producer’s accuracies were 73.70% and 77.33%, 

respectively. It is difficult to co-register Landsat ETM+ imagery with MODIS data because of the 

extremely large difference in spatial resolution between the two datasets. The pixels at the edges of 

discriminated rice pixels can give rise to considerable error when the accuracy validation is conducted 

for individual pixels. 

Table 2. Accuracy assessment of MODIS-derived results at the studied sites. 

Level 
Commission Error 

(%) 
User’s Accuracy 

(%) 
Omission Error 

(%) 
Producer’s Accuracy 

(%) 
 

Pixel level 26.30 73.70 22.67 77.33  
3 × 3 window 3.23 96.77 0.04 99.96  

Therefore, the commission and omission errors for moving windows of 3 × 3 pixels were also 

calculated. If a pixel were identified as a rice pixel in the MODIS-derived result, but the eight pixels 

surrounding it were all labeled as non-rice pixels in the aggregated reference rice map, we considered 

it to be a committed pixel. If a pixel were labeled as a rice pixel in the aggregated rice map, but no 

pixels in the moving 3 × 3 pixel window surrounding it were identified as rice in the MODIS-derived 

result, it was considered to be an omitted pixel. In this analysis, the user’s and producer’s accuracies 

were found to be 96.77% and 99.96%, respectively. 

Figure 15. Irrigated paddies in the land use map (a) and the rice distribution map derived 

from MODIS (b) for Wenzhou City in 2005. 

(a) (b) 
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Although an irrigated paddy indicated in the land use map may be used not only for planting paddy 

rice, but also for planting aquatic plants, such as reeds and lotus roots, any MODIS-derived rice region 

should be located in an irrigated paddy. Therefore, a pixel was considered to be misclassified if it was 

a MODIS-derived rice pixel located in a non-irrigated paddy region. The irrigated paddy regions in the 

land use map of Wenzhou City for 2005 were extracted for the validation of the spatial matching of the 

results derived using the MODIS algorithm. In Figure 15a, it is seen that the majority of irrigated 

paddies were concentrated in the eastern coastal region, especially in Yueqing, Rui’an, Pingyang and 

Cangnan, and that the total area of irrigated paddies in Wenzhou City in 2005 was 109.7 kha. The two 

maps shown in Figure 15 were overlaid to examine the agreement between them. The number of pixels 

extracted using the MODIS algorithm was 4309, 88.95% of which were located in irrigated paddy 

regions. As indicated by the spatial matching analysis at the county level, the accuracy was lowest in 

counties with less than 5 kha (Table 3). 

Table 3. Consistency analysis of MODIS-derived rice pixels with irrigated paddies in 

Wenzhou City, 2005. 

City 

Number of Rice Pixels 

Located in Irrigated 

Paddies 

Number of 

RiceMOD * 

Overlap 

Proportion 

(%) 

Area of Irrigated 

Paddies (kha) 

Area of RiceMOD 

(km2) 

Yueqing 832 888 93.69 21.38 19.06 

Pingyang 586 625 93.76 16.50 13.42 

Wencheng 55 93 59.14 3.51 2.00 

Yongjia 178 238 74.79 7.99 5.11 

Taishun 5 53 9.43 0.66 1.14 

Dongtou 3 52 5.77 0.06 1.12 

Wenzhou 371 440 84.32 12.44 9.44 

Rui’an 810 878 92.26 25.08 18.85 

Cangnan 993 1042 95.30 22.10 22.37 

Total 3833 4309 88.95 109.70 92.50 

* RiceMOD denotes the rice pixels derived from MODIS. 

5. Conclusions 

In this study, the NWDWI was proposed to enhance the signal of flooding regions in  

remotely-sensed images. The algorithm for the identification of flooded pixels was evaluated based on 

spectral data measured in the field, as well as ETM+ and MODIS data. Built-up regions and natural 

watersheds could be readily separated using the NWDWI and EVI. The spatial distribution maps of 

rice with different cropping patterns (i.e., early rice, single cropping rice and double cropping late rice) 

in the period of 2000–2010 were generated using a decision tree classification algorithm. The accuracy 

of the extracted annual total rice area was greater than 85%, except for 2007 and 2010, for which it 

was poorer, because of the large areas of cloud masking during the transplanting period. The identified 

rice areas were also validated at the county level. The MODIS-derived area of late rice demonstrated a 

higher consistency with the census data during the period of 2000–2010. The user’s and producer’s 

accuracies for moving windows of 3 × 3 pixels were both greater than 95%. The algorithm also revealed 

the interannual variations in single and double cropping rice in the Yangtze River Delta region. 
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However, there were several factors that may have affected the accuracy of the results, such as 

cloud contamination, spatial resolution and topography. The accuracy was not satisfactory in counties 

with complex terrain. The value of a in the formula for the NWDWI used in this study was determined 

by field experimental data and the ETM+ image and was appropriate for discriminating rice pixels at a 

spatial resolution of 500 m during the transplanting stage. The higher value of a in NWDWI could lead 

to misclassifying numbers of non-rice pixels as rice pixels. Otherwise, rice pixels could be omitted by 

using a lower value of a in NWDWI. The developed algorithm was found to be unsuitable for use in 

regions with continuous rainy weather.  

Despite the uncertainties in this algorithm, MODIS data are a suitable choice for generating rice 

distribution maps at large scales, which are useful for long-term grain yield estimations and the 

detection of changes in land use/cover change. The application of Aqua/MODIS data in combination 

with Terra/MODIS data could improve the accuracy of our algorithm.  
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