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Abstract: Soil salinization is one of the most widespread soil degradation processes on 

Earth, especially in arid and semi-arid areas. The salinized soil in arid to semi-arid Xinjiang 

Uyghur Autonomous Region in China accounts for 31% of the area of cultivated land, and 

thus it is pivotal for the sustainable agricultural development of the area to identify reliable 

and cost-effective methodologies to monitor the spatial and temporal variations in soil 

salinity. This objective was accomplished over the study area (Keriya River Basin, 

northwestern China) by adopting technologies that heavily rely on, and integrate information 

contained in, a readily available suite of remote sensing datasets. The following procedures 

were conducted: (1) a selective principle component analysis (S-PCA) fusion image was 

generated using Phased Array Type L-band SAR (PALSAR) backscattering coefficient (σ°) 
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and Landsat Enhanced Thematic Mapper Plus (ETM+) multispectral image of Keriya River 

Basin; and (2) a support vector machines (SVM) classification method was employed to 

classify land cover types with a focus on mapping salinized soils; (3) a cross-validation 

method was adopted to identify the optimum classification parameters, and obtain an optimal 

SVM classification model; (4) Radarsat-2 (C band) and PALSAR polarimetric images were 

used to analyze polarimetric backscattering behaviors in relation to the variation in soil 

salinization; (5) a decision tree (DT) scheme for multi-source optical and polarimetric SAR 

data integration was proposed to improve the estimation and monitoring accuracies of soil 

salinization; and (6) detailed field observations and ground truthing were used for validation 

of the adopted methodology, and quantity and allocation disagreement measures were 

applied to assess classification outcome. Results showed that the fusion of passive reflective 

and active microwave remote sensing data provided an effective tool in detecting soil 

salinization. Overall accuracy of the adopted SVM classifier with optimal parameters for 

fused image of ETM+ and PALSAR data was 91.25% with a Kappa coefficient of 0.89, 

which was further improved by the DT data integration and classification method yielding 

an accuracy of 93.01% with a Kappa coefficient of 0.92 and lower disagreement of quantity 

and allocation. 

Keywords: soil salinization; Keriya River basin; image fusion; SVM classification;  

decision tree 

 

1. Introduction 

Soil salinization negatively affects crop growth and productivity, especially in arid and semi-arid areas 

where evaporation exceeds rainfall [1]. The global extent of primary salt-affected soils is 955 M ha, while 

secondary salinization affects some 77 M ha, with 58% of these are situated in irrigated areas [2]. Twenty 

percent of all irrigated land is salt-affected [2], and this proportion increases as a consequence of human 

activities and increasing population pressure particularly in countries like China where overpopulation 

poses a significant threat to the eco-environment[1,3]. Thus, it is imperative to detect, monitor, and map 

soil salinity over space and time to prevent further land degradation, and to ensure the sustainable 

development of agriculture [4,5]. 

Salt-affected soils can be discriminated using the visible and infrared portions of remote sensing 

spectra [2,6–9]. A growing body of studies, aided by statistical analyses of field spectroscopy data and 

satellite remote sensing observations demonstrates that both multispectral [10–15] and hyperspectral 

passive reflectance data can be used to map soil salinization at landscape scales [16]. However, passive 

optical remote sensing based approaches may be hampered over coastal areas, black-clay soils, and 

desert areas, due to the smoothness and the white color of the formed crust [2]. In the microwave 

wavelengths, the signal is sensitive to the dielectric properties of the target [17]. Studies indicate  

that the change of soil moisture and salinity affects soil conductivity which influences soil dielectric 

constant [18,19]. Radar data have the potential for evaluating soil salinity through monitoring and 

mapping salt-affected areas [20]. 
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Image fusion of multi-sensor remote sensing data does not only allow filling the gaps in datasets, but 

also provides a unique combination of spectral and textural signatures for target detection [21,22].  

For example, backscattering coefficient (σ°) from synthetic aperture radar (SAR) data provides detailed 

information of surface roughness and moisture content, while passive visible and infrared spectra 

provide measurements of vegetation types, plant responses to soil conditions and/or direct measurements 

of soil salinity. Therefore, the fusion of passive reflective and active microwave remote sensing images 

utilizes the advantages of both datasets. 

The main objective of this contribution is to monitor soil salinization in Keriya River Basin, 

Northwestern China by using the fusion of datasets from active synthetic aperture radar (SAR) and 

passive reflective imagery in the optical domain. 

2. Study Site 

Northwestern China, particularly Xinjiang Uyghur Autonomous Region (XJUAR), is one of the most 

critical areas for agricultural and cotton production. The total area of salt-affected cultivated land in 

Xinjiang is about 1.47 M ha, which accounts for 31.1% of the total cultivated land which suffered from 

wide spread salinized soil [23,24]. The Keriya River Basin is a typical arid land located at the northern 

foot of Kunlun Mountains along the southern edge of the Taklimakan Desert in XJUAR (Figure1).  

The region has a warm continental arid climate with an average temperature of 11.6 °С, with a 

minimum average temperature of −5.8 °С in January, and maximum average temperature of 25 °С in 

July. The total annual radiation is 6.117 × 105 J/cm2 and the annual sunshine duration is 2.7346 × 103 h. 

Multi-year average evaporation is 2498 mm; the average annual precipitation is 44.7 mm; the 

evaporation rainfall ratio is approximately 54:1, and the frost-free period is approximately 200 days. 

The Keriya River is a seasonal river which originates from the Kunlun piedmont. It flows through the 

Keriya Oasis which entirely depends on the water resources from the Keriya River, and vanishes in the 

sand dunes of the Taklimakan desert [25]. Since the 1950s, the Keriya River basin has been intensely 

exploited. The area is suffering from severe water shortages due to excessive pressure from population 

increase, agricultural expansion, and most importantly, from the steady encroachment of salinization and 

desertification [26]. The vegetation varies depending on water availability, and includes spare brush 

vegetation and halophilic plants [27]. The main soil types in the area are the meadow soil and the brown 

desert soil which are characterized by fine grains, low permeability, high water table and high 

mineralization. The highly salt-affected soil of Keriya River basin hampers the local agricultural 

productivity. Salt concentration in the soil has a strong impact on crop yields and agricultural production 

due to poor land and water management and the expansion of the agricultural frontier into marginal 

ecotones in the Keriya River Basin. The improvement of salt-affected soils is the key to achieve 

sustainable food production in the region, which requires the monitoring and mapping of soil salinization 

at an early stage for an effective soil reclamation program. 



Remote Sens. 2015, 7 8806 

 

 

 

Figure 1. Location map of the study area showing overview map of China and the Xinjiang 

Uyghur Autonomous Region (XJUAR) (A and B), topographic map of the map sampling 

points of study area (C) and the Keriya River Basin (D). The red solid circles represent field 

sampling locations. The red rectangular line is the location of ground truthing. The basin is 

located in the southern part of XJUAR, situated to the north of Kunlun Mountain and the 

southern edge of the Taklimakan Desert. 
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3. Data 

3.1. Field Data 

Six field campaigns were conducted between 2011 and 2013 mainly during dry seasons (from May 

to October). Thirty five field investigation sites were selected for soil sampling (Figure 1C), which 

covers a range of land covers and soil characteristics. At every site of a regular grid of 20 m × 20 m 

plots, five samples were taken from the topsoil (0~20 cm). In total, 175 samples were collected to 

measure soil salinity and soil moisture for laboratory analysis. The first two campaigns (August 2011 

and June 2012 respectively) focused on collecting ground reference data (GRD) for training samples and 

different land cover and land use (LCLU) classes where the field samples were collected. During these 

field trips, the weather was dry with low to no precipitation. Therefore, the soil moisture and salinity 

profile in the soil was consistent so that the different types of soil salinity are representative of the area 

typical conditions. The GRD were recorded for the patches of salinized soils, along with their 

environmental contexts, e.g., co-existing vegetation, LCLU, vegetation type, fraction of vegetation, and 

average vegetation height in each spot (Table 1). A total of 195 sample plots were collected as training 

sample plots for image classification. Figure 2 shows salinized soil, land-cover and vegetation types. 

Three field campaigns were conducted from 2012 to 2013 mainly during the dry season from August 

to October for further investigation and validation. A total of 180 patches (30 plots for each type of 

salinized soil and 90 plots for other land cover types) were set up for validation and accuracy assessment 

of the classification results, which were distributed evenly across the study area. 

The soil samples were air-dried and sieved through two mm sieves, and soil salt concentration  

(i.e., total soluble salt) was measured in a laboratory by following steps. The soil samples were mixed 

with distilled water and marinated and quivered so that the soil samples were fully dissolved to measure 

total soluble salt. Electrical conductivity (EC) was determined in soil liquid solution using conductivity 

meter (inoLab® Cond 7310, WTW) with the soil and water dilution ratio of 1:5. In this step we measured 

EC of 1:5 soil-water extract in mS/cm. Finally the total soluble salt content (in g/Kg) was calculated by 

means of regression equation established between EC and total soluble salt. 

Table 1. LCLU classes with varying severity of soil salinization in the Keriya River Basin. 

Abbreviation Class Characteristics 

HS 
Strongly 

Salinized soil 
almost barren land with vegetation coverage less than 5%, with salt crust 
of 2~7 cm, top soil soluble salt ≥20 g·kg−1, water table depth is 0.5~1.5 m 

MS 
Moderately 

Salinized soil 

main vegetation types are Tamarix chinensis Lour, Halocnemum 
strobilaceum, Halostachys caspica, Phragmites communis, Alhagi 
pseudalhagi with vegetation coverage of around 5%~15%, with salt crust of 
1~4 cm, top soil soluble salt is about 10~20 g·kg−1, water table depth is 1~2 m 

SS 
Slightly 

Salinized soil 

main vegetation types are Tamarix chinensis Lour, Phragmites communis, 
Haloxylon ammodendron, Karelinia caspica, Alhagi pseudalhagi with 
vegetation coverage of around 30%, with thin salt crust (around 0~2 cm), 
top soil soluble salt is about 5~10 g·kg−1, water table depth is 1.4~3 m 

WB Water Body river, lake, reservoir, pond and swamp 
VG Vegetation grassland, cropland, Euphrates Poplar forests, dense shrubland 
BL Barren land gobi, desert 
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Figure 2. Land-cover classes, different salinized soil types and major salt tolerant vegetation 

types in the Keriya River basin. 

The last field trip conducted in August, 2013 was prioritized for defining the degree of salinization 

and corresponding land cover types. The ground truthing (Figure 1C) covers 2 × 8 km2 area, 40 sampling 

plots in 500 m grid cell distributed mainly in the salinized area were collected and categorized as 

strongly, moderately and slightly salinized soil according to top soil salt concentration along with other 

traits such as vegetation coverage and type, water table and soil moisture. Figure 2 shows the different 

degrees of salinization as observed in the field as well the various land use types in the study area. 

3.2. Remote Sensing Data 

A Landsat Enhanced Thematic Mapper Plus (ETM+) image collected on 5 August 2011, covering the 

Keriya River basin was obtained from USGS EROS Data Center. Gap filling was performed for the 

ETM+ image to correct the missing strips due to the failure of the Scan Line Corrector (SLC). A single 

image local linear histogram matching, which employs a triangulation technique in a moving window of 

each missing pixel, was used to fill the gaps in the SLC-Off data following Scaramuzza et al. [28]. 

Subsequently, the ETM+ image covering the study area was combined into one single gap-filled image. 

Our choice for this method was based on the fact that it is simple, easy to implement, and very effective 
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for cloud-free, high quality images. Phased Array type L-band Synthetic Aperture Radar (PALSAR) 

data were collected over the study area on 17 July 2010. The PALSAR data used in this work was 

acquired in fine-beam dual-polarization (FBD) mode (HH and HV), in an ascending orbit and with the 

default off-nadir angle of 34.3° and an incident angle of 38.77°. Pixel spacing in slant range and azimuth 

directions was 9.37 m and 3.16 m, respectively, which gave a nominal ground resolution of 18.5 m when 

processed with one number of looks for both range and azimuth. 

We also used Dual-polarization (HH+HV) Radarsat-2 image acquired on 13 September 2008 by 

MacDonald, Dettwiler and Associates Ltd. (MDA). The data were processed at level 1 and provided in 

SAR Georeferenced Fine format (SGF) which was generated by standard ground coordinate pixel 

dimensions. The data were acquired in a wide swath beam double polarization mode at an ascending 

orbit with a 30.89° incidence angle. Nominal spatial resolutions were 19.2~40.0 m and 24.7 m in range 

and azimuth directions, respectively. 

SAR datasets in a single look complex were processed using SARscape modules of ENVI® image 

processing and analysis software, from EXELIS Visual Information Solutions. Processing steps include: 

(1) focusing; (2) orbital correction; (3) multi looking (looks in range and azimuth, respectively);  

(4) speckle filtering using an adaptive Lee filter [29]; (5) radiometric calibration [30,31], using a Shuttle 

Radar Topography Mission (SRTM) digital elevation model (DEM) and radiometric normalization  

(i.e., modified cosine model) [32]; (6) geocoding; and (7) image resizing for optimal resolution of  

20 m × 20 m for data fusion. Preprocessing generated an orthorectified, geocoded and radiometrically 

calibrated backscattering coefficient image in dB (Figure 3B,C). 

 

Figure 3. Cont. 
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Figure 3. The pre-processed ETM+ (A); PALSAR (B) and Radarsat-2 (C) images. 

The digital datasets including satellite imagery and field GPS collections, were geo-referenced to the 

Universal Transverse Mercator (UTM) coordinate system, Zone 44 North with World Geodetic System 

Datum of 1984 (WGS84). 

4. Methods 

Figure 4 shows the workflow of the study, which is detailed in the following sections. 

 

Figure 4. Overall workflow of the study. 



Remote Sens. 2015, 7 8811 

 

 

4.1. Spectral Indices 

Landsat ETM+ data were radiometrically corrected following Chander et al. [33]; then the  

top-of-atmosphere reflectance was converted to surface reflectance value using 6S code [34] (Figure 3A). 

Three spectral indices were extracted using ETM+ datasets: 

1. Normalized difference vegetation index (NDVI). In the Keriya River basin, NDVI value of most 

vegetation types (grassland, cropland, forests and shrubland) is greater than 0.28, while the other 

non-vegetated land cover types were less than 0.3. Therefore, the vegetated and non-vegetated 

land cover types could be distinguished using NDVI threshold. 

2. Modified normalized difference water index (MNDWI) [35]. The MNDWI was modified after 

the NDWI as follows: 

MNDWI = (Green − MIR)/(Green + MIR) (1)

where “Green” stands for a green band and “MIR” stands for a middle infrared band in the Landsat 

ETM+ images, representing ETM+ band 2 and band 5, respectively. The analysis on the study area 

showed that the MNDWI index could accurately separate water bodies from other land-cover types. 

3. Salinity Index (SI). Reflectance data of Landsat ETM+ band 1 (B1) and band 3 (B3) could be 

applied to calculate the Salinity Index [36–39] as follows: 

Salinity index ܵܫ = 1ܤ√ × (2) 3ܤ

The SI was utilized in this study because: (1) the identification of the spectral response model of 

saline soils is effective in the separation of saline soil types [7]; and (2) the red waveband (620~680 nm) 

of ETM+ image is sensitive to soil salinity [9]. Studies [7,40] found that the blue and red wavebands of 

Landsat data performed high spectral reflectance for salt-affected soils at low moisture content. 

4.2. Coregistration of Passive Reflective and Active Microwave Data 

For a proper integration of the optical and radar data for accurate soil information extraction, the 

precise coregistration of Landsat, PALSAR and Radarsat-2 datasets is necessary. The coregistration 

accuracy between these datasets was calculated using a gradient cross-correlation technique [41] which 

offers a sub-pixel coregistration assessment by detecting and matching features in both images over a 

window containing various pixels. To evaluate the coregistration accuracy between the PALSAR, 

Radarsat-2 and ETM+ data, a total of uniformly distributed 85 image features were selected inside and 

outside of the Keriya River Oasis. The average offset between these features was 0.77 pixels with 92% 

of the shifts smaller than 1.5 pixels (at 20 m pixel size). 

4.3. Data Fusion 

Multi-sensor data fusion is useful because it takes advantage of different spectral and/or spatial 

information for effective image interpretation [42]. HH and HV polarized L band PALSAR images and 

ETM+ six band images were used for image fusion. We implemented selective principle component 

analysis (S-PCA) transformation, rather than the conventional standard PCA method, which fully 

exploits the spectral characteristics of optical data and the textural and spatial traits of both HH and HV 
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polarization of PALSAR data. The specific procedures include: (1) principal component (PC) forward 

transformation was performed on the multi-spectral ETM+ data and six uncorrelated output PC bands 

were produced; (2) PALSAR HH and HV backscattering data were scaled from 16 bit to 8 bit in order 

to match the values of PCs of optical data and to minimize distortion of the spectral information; 

consequently, 5th and 6th PCs which usually contain sparse variance, were substituted with the scaled 

HH and HV bands of PALSAR data; and (3) an inverse transformation was conducted. 

4.4. Support Vector Machine (SVM) Classification 

The SVM method is a non-parametric approach based on the statistical learning theory [43]. For a 

given training sample belonging to two different classes, SVM derives a hyperplane that is at a maximum 

distance from the closest points belonging to both classes. In the case of a two-class pattern recognition 

problem in which the classes are linearly separable, the SVM selects the one that minimizes the 

generalization error from among the infinite number of linear decision boundaries. Thus, the selected 

decision boundary will be the one that leaves the greatest margin between the two classes, where a margin 

is defined as the sum of the distances to the hyperplane from the closest points of the two classes [43]. 

Typically, a multi-class SVM is implemented by combining several two-class SVMs. Here, we used 

the “one-against-one” (OAO) approach and the Gaussian radial basis function (RBF) kernel for  

multi-class. Utilizing RBF kernel for SVM and obtaining optimal SVM classification model is of utmost 

importance to achieve the best set of penalty parameter C and kernel parameters γ for specific training 

datasets. In this case, we adopted the cross-validation search strategy [44], which employs a multiclass 

SVM OAO method [45]. The predicted set of optimal penalty parameter C and kernel parameters γ 

achieved with highest CV accuracy was used to classify different land cover types and salinized soils. 

Final results were sieved and clumped to eliminate spurious pixels from the classification results. 

4.5. Decision Tree 

Decision tree (DT) classifier is a simple and widely used classification technique. DT classifier is an 

effective method to incorporate data of a variety of types and from multiple sources to find pixels that 

fulfill the criteria [21]. Decision trees are made up of a series of binary criteria that are used to determine 

the correct category for each pixel. The decisions are based on any available characteristic of the dataset 

or decision rules derived from any other statistical software packages. DT provides a robust and flexible 

approach when examining the effects of each input feature to determine each split in the final tree and 

select the most important input variables that achieve the best classification results. Studies indicate that 

decision tree classification is superior over traditional image classifiers [21,46–49]. 

The decision tree scheme is built on the basis of inputs from optical (ETM+), SVM classification 

result from S-PCA fusion image with best parameters, and SAR (PALSAR and Radarsat-2) images:  

(1) The root node consists of MNDWI and ETM+ band 4 (near infrared band) threshold values which 

extract water bodies including rivers, lakes, reservoirs, ponds, and swamps, from the set of input images; 

(2) Vegetation information was extracted using NDVI thresholds from the remaining land cover classes 

from root node, the environmental context of the vegetation in this step including croplands, grasslands 

and low density mixed Euphrates Poplar forests and shrublands; (3) In the second tree nodes, barren 

land is extracted directly from optimal SVM classification result of fused image, including desert and 
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gobi; (4) In the third node, strongly salinized soil was extracted by using comprehensive threshold values 

from polarimetric PALSAR and Radarsat-2 images; (5) Finally, integrated threshold values were 

established through both optical reflective index of SI and microwave backscattering energy from 

polarimetric PALSAR and Radarsat-2 images, and slightly salinized soil was separated from moderately 

salinized soils. 

4.6. Accuracy Assessment 

The classification accuracy was assessed with confusion matrix, producer’s and user’s accuracies, 

overall accuracy, kappa coefficient, as well as quantity disagreement and allocation disagreement [50] 

based on ground truthing. The producer’s and user’s accuracies are measures of omission and 

commission errors [51]. The kappa coefficient is a measure of agreement that accounts for the rate of 

correct classification occurring by chance [52]. Quantity disagreement refers to the error in proportions 

between the ground references versus the classification, while allocation disagreement is the proportion 

of misplaced categories from the classified map with respect to spatial allocations in the reference data. 

It is more important to understand the disagreement than the agreement for practical purposes in terms 

of understanding a classifier performance [50,53]. Although the use of kappa coefficient is criticized 

[50] for its capability of accuracy assessment, the measure was provided as potential comparisons to 

previous studies. A set of 108 field sample plots (30 locations for each type of salt affected soil, and 90 

plots for other land-cover types) were used as ground reference pixels. 

5. Results 

5.1. Data Fusion 

Figure 5 shows the results of image S-PCA fusion, which demonstrates that both the spatial and 

spectral details are well represented and delineated. In addition, the S-PCA fusion image is similar to the 

ETM+ multispectral image with the PALSAR spatial resolution. It is worth noting that S-PCA 

outperformed a number of conventional data fusion techniques (figures are omitted). 

 

Figure 5. Cont. 
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Figure 5. Comparison of ETM+ color composite (A) and S-PCA data fusion (B). 

5.2. SVM Classification and Accuracy 

5.2.1. Optimal SVM Parameters 

A cross-validation (CV) search was conducted for the training data of both ETM+ and S-PCA fusion 

images to determine the best penalty parameter C and kernel parameters γ. The CV search results are 

represented in two dimensions (2D) and three dimensions (3D) in Figure 6. The optimal SVM 

classification model was obtained with parameters C = 512 and γ = 1024, and with a CV accuracy of 

99.24% for the ETM+ image, and with parameters C = 11.31 and γ = 90.51 and CV accuracy of 98.66% 

for the fused image. 

 

Figure 6. Cont. 
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Figure 6. Cross-validation search results for optimal parameters for ETM+ image (A and B) 

and for ETM+ and PALSAR fusion image (C and D). 

As shown in Figure 6, the optimal SVM classification model for both ETM+ and fused images 

demonstrated a higher CV accuracy. The fused optimal SVM model had slightly lower CV accuracy 

partly due to the speckle nose increment from PALSAR data and its correspondent addition of 

complexity for the decision boundaries of SVM that produce the optimal separation of classes. 

5.2.2. SVM Classification 

By utilizing the optimal SVM classification model parameters, we implemented SVM classification 

for both ETM+ and ETM+ and PALSAR fused images to produce different land cover and severity of 

soil salinization (i.e., strongly, moderately, and slightly salinized soils). The classification results are 

shown in Figure 7. 

Compared between the ETM+ image and ETM+ and PALSAR fused image, the SVM  

classification with and without optimal classification parameters for fusion image produced the best 

results due to the increase of spatial and spectral information after S-PCA fusion. The fused  

image not only preserved the spectral information from ETM+ effectively, but also enhanced the  

textural and spatial information of both polarimetric HH and HV bands of PALSAR image.  

The classification work was intended to map the environmental context associated with different 

salinized soil. The focus of the paper was on developing an approach to monitor the salinized soil. 

Therefore, a detailed description of the classification method was not discussed here since a reader can 

find them in other publications. 

5.2.3. Classification Accuracy 

The overall accuracy of the SVM classification without and with optimal parameters for ETM+ image 

was 86.39% and 87.98%, and Kappa coefficient was 0.83 and 0.85. The SVM classification of  

ETM+ and PALSAR fusion images, without and with best parameters, had the highest classification 

accuracy of 89.82% and 91.25%, and a Kappa coefficient of 0.88 and 0.89. The confusion matrices for 

SVM classification were presented in Table 2 and Table 3. 
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Figure 7. A comparison of different classification results, including the SVM classification 

of ETM+ image (A); SVM classification of ETM+ image with optimal parameters (B);  

SVM classification of fused image (C); SVM classification of fused image with optimal 

parameters (D). 

In the confusion matrix of SVM classification with optimal parameters for single ETM+ image  

(Table 2), yielded the following: (1) The land cover types of water body, barren land, and vegetation 

agreed well with the field data, especially vegetation was well discriminated from other land cover types; 

(2) Water body was confused with salinized soil, and barren land was confused with salinized soil and 

vegetation was confused with water bodies due to the partial similarity in the ETM+ reflectance; (3) 

Despite the relative higher overall accuracy of the SVM classifier, the different salinized soils were not 

well separated. Particularly, the slightly salinized soil was confused with moderately salinized soil. Less 

confusion was observed between different land cover types, particularly between vegetation and water 

bodies, between strongly and moderately salinized soils, and between moderately and slightly salinized 

soils with SVM classification with optimal parameters using the fused image of ETM+ and PALSAR 

(Table 3). Significantly, spectral confusions among different degrees of salinized soils were greatly 

reduced in the confusion matrix of the fusion image. This was due to the contribution from polarimetric 

PALSAR image, which improved the classification accuracy; it contributed to the improvement of the 

spatial resolution and the delineation ability of salinized soil. Moreover, barren land was well 
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discriminated despite the similar high reflectance pattern in ETM+ image in strongly salinized soils. 

Consequently, the classification result of barren land that was achieved from this SVM classification 

model was adopted for a the decision tree classification as useful input data. 

Table 2. The confusion matrix (%) of SVM classification with optimal parameters using 

ETM+ image. WB, BL, VG, HS, MS, SS stand for water body, barren land, vegetation, 

strongly salinized soil, moderately salinized soil and slightly salinized soil. Prod Acc is for 

a producer’s accuracy and User Acc is for a user’s accuracy. 

Class WB BL VG HS MS SS Prod Acc User Acc 

WB 96.84 0 0 0 0.94 2.9 96.84 94.03 
BL 0 96.65 0 1.4 0.29 0 96.65 97.52 
VG 0.26 0 97.33 0 0 0 97.33 99.85 
HS 0 1.7 0 96.31 19.91 0.06 96.31 83.58 
MS 1.27 1.65 0.03 2.16 65.74 17.71 65.74 78.67 
SS 1.64 0 2.63 0.13 13.12 79.33 79.33 78.57 

Overall Accuracy = 87.981% 
Kappa Coefficient = 0.8541 

Table 3. The confusion matrix (%) for SVM classification with optimal parameters using 

fusion image of ETM+ and PALSAR. WB, BL, VG, HS, MS, SS stand for water body, 

barren land, vegetation, strongly salinized soil, moderately salinized soil and slightly 

salinized soil. Prod Acc is for a producer’s accuracy and User Acc is for a user’s accuracy. 

Class WB BL VG HS MS SS Prod Acc User Acc 

WB 99.08 0 0 0 1.82 4 99.08 91.24 
BL 0 97.64 0 5.75 1.43 0 97.64 90.39 
VG 0.2 0 98.37 0 0 0.52 98.37 99.43 
HS 0 1.51 0.02 91.33 11.75 0 91.33 88.82 
MS 0.03 0.85 0.08 2.92 83.28 13.9 83.28 85.1 
SS 0.69 0 1.53 0 1.72 81.57 81.57 94.75 

Overall Accuracy = 91.25% 
Kappa Coefficient = 0.8938 

5.3. Backscattering Feature of Polarimetric PALSAR and Radarsat-2 Data 

Through analyzing the corresponding backscattering values of PALSAR and Radarsat-2 data over 

the sampled plots, we generated the mean backscattering values of different land cover types as shown 

in Figure 8. It was observed that the backscattering coefficient of the different land cover types in 

PALSAR HH polarization image decreased following the order from vegetation, slightly salinized soil, 

moderately salinized soil, water body, barren land to strongly salinized soil. As for PALSAR HV 

polarization image, the decreasing order was from vegetation, slightly salinized soil, moderately 

salinized soil, water body, strongly salinized soil to barren land. The descending order for both  

Radarsat-2 HH and HV polarized image was from vegetation, slightly salinized soil, water body, 

moderately salinized soil, barren land to strongly salinized soil. 
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Figure 8. Mean backscattering coefficient of different land cover type in PALSAR L band 

and Radarsat-2 C band co-polarization HH and cross-polarization HV images. 

The overall backscattering coefficients of both PALSAR and Radarsat-2 co-polarization HH images 

were greater than that of cross-polarization images. However, for all of the PALSAR and Radarsat-2 HH 

and HV polarization images, the backscattering strength for different salinized soil conforms to the same 

overall descending trend of slightly salinized soil, moderately salinized soil and strongly salinized soil. 

The reason for this is that, the slightly salinized soil has the most vegetation coverage, surface roughness 

and vegetation water content compared with other two soil types. The strongly salinized soil is almost 

without vegetation coverage and has a very dry top soil surface and saline crust which leads either to 

specular reflectance or penetration into the soil surface resulting in less backscattered intensity. 

Moderately salinized soil, which has relatively less vegetation coverage and higher surface roughness, 

is characterized by medium backscattering intensity in contrast to the other two soil types. For these 

reasons, there were relatively wider gaps between the different salinized soil types, which were helpful 

for distinguishing the different salinized soils, especially separating slightly salinized soils from 

moderately salinized soils. 

For further identification of the classification power of PALSAR and Radarsat-2 images among the 

different types of salinized soils, we generated the backscattering coefficient histograms for the HH and 

HV polarized images of both PALSAR and Radarsat-2 datasets over the field sampling locations  

(Figure 9). Although there was overlapping of histograms of different salinized soils to some degree, 

radar data still showed the great potential in discriminating the degree of salinization as evidenced by 

the measurable distances between the histogram peaks. Particularly, strongly salinized soil was better 

separated from others in both HH polarized PALSAR and Radarsat-2 images; slightly salinized soil was 

better discriminated in both HV polarized PALSAR and Radarsat-2 images. Nevertheless, the single 

image bands could not distinguish the different salinized soils completely; there were certain overlapping 

areas in all the polarized Radarsat-2 C band and PALSAR L band images. Therefore in the decision tree 

scheme, an integrated threshold of backscattering values from both Radarsat-2 C band and PALSAR L 

band polarimetric images were necessary. 
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Figure 9. Histogram of different salinized soil types (HS, MS, SS stand for strongly salinized 

soil, moderately salinized soil and slightly salinized soil respectively) in PALSAR and 

Radarsat-2 co-polarization HH and cross-polarization HV images. 

5.4. Decision Tree Classification and Accuracy 

Through the analysis of the spectral signature of the main land cover types in the study area, the 

decision tree classifier for the extraction of different saline soils was established (Figure 10). The optimal 

threshold values of ETM+ band 4 (near infrared), NDVI, MNDWI, SI, PALSAR HH and HV bands, 

Radarsat-2 HH and HV bands were determined by the iterative machine learning process. First, the input 

image pixels were divided into two groups: those with MNDWI values above −0.2 or those with ETM+ 

band 4 values above 0.12 and less than 0.25. The water body was extracted successfully in this node. It 

is worth noting that the near infrared band (band 4) of ETM+ image offered added value to the workflow 

because a single MNDWI threshold value was not able to extract the swamp effectively due to its 

confusion with vegetation and slightly salinized soil. Second, the pixels filtered through above criteria 

were then divided into vegetation and non-vegetation by NDVI threshold of 0.28. Then, the remaining 

pixels were divided into barren land and different types of salinized soils according to the result from 

the SVM classification of ETM+ and PALSAR S-PCA fused image. The SVM classification results 

were used because the overall classification accuracy of barren land in the fusion image was over 97% 

(see Table 3); and, it was hard to discriminate barren land from strongly salinized soil due to their similar 

backscattering features in radar images. Therefore, in this tree node those pixels equal to barren land in 

the SVM classification image were determined as barren land. Third, the salinized soils were separated 

using SAR images. Since PALSAR and Radarsat-2 images have lower backscattering values for strongly 

salinized soils, we found a comprehensive threshold value for each HH and HV band of the PALSAR 

and Radarsat-2 images given in Figure 10. As a result, the strongly salinized soil type was effectively 
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extracted. In the final node, we established integrated threshold values for SI, PALSAR and Radarsat-2 

data, which allowed separation of slightly and moderately salinized soils. Figure 11 showed that different 

land cover types and salinized soil types were well discriminated. 

 

Figure 10. Decision Tree classification model. 

Overall accuracy, Kappa coefficient, producer’s accuracy and user’s accuracy were calculated by 

using the confusion matrix determined with the validation datasets. The accuracy statistics of the 

decision tree algorithm is provided in Table 4, and it indicates overall very good agreement  

(overall accuracy = 93.01%, kappa = 0.92). The performance of the classification algorithms adopted in 

our research was assessed in terms of errors, not only accuracies. Thus, quantity disagreement and 

allocation disagreement values were also calculated, which meeting the acceptable accuracy, as shown 

in Figure 12. The best results were obtained from the DT algorithm, which showed 4.97% of allocation 

disagreement and 2.02% of quantity disagreement. The confusion between moderately salinized soil and 

slightly salinized soil was significantly reduced in comparison to the SVM classification of the ETM+ 

and PALSAR fusion image. This was due to our approach. We exploited the merits from both reflectance 

information of ETM+ with different indices for each specific land cover type and from the backscattering 

features of PALSAR and Radarsat-2 data effectively rather than a simple pixel based fusion between 

them. The backscattering information from the PALSAR and Radarsat-2 data was well complementary 
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for each other in terms of extracting slightly salinized soils from moderately salinized soils. It was 

evident that the decision tree approach was promising for monitoring salinized soils as well as the degree 

of salinization in arid and semi-arid areas. 

 

Figure 11. Results of decision tree classification method. 

Table 4. The confusion matrix (%) for Decision Tree classification using the integrated 

method for ETM+, PALSAR and Radarsat-2 images. WB, BL, VG, HS, MS, SS stand for 

water body, barren land, vegetation, strongly salinized soil, moderately salinized soil and 

slightly salinized soil respectively. Prod Acc is for producer’s accuracy and User Acc for 

user’s accuracy. 

Class WB BL VG HS MS SS Prod Acc User Acc. 

WB 99.57 0 0 0 1.72 0.64 99.57 95.85 
BL 0 97 0 1.37 0.29 0 97.00 97.56 
VG 0.23 0 97.98 0 0 5.45 97.98 95.36 
HS 0 2.27 0.15 94.96 9.41 0.23 94.96 90.31 
MS 0 0.74 0.05 3.64 86.85 9.69 86.85 87.81 
SS 0.2 0 1.83 0.03 1.72 83.99 83.99 94.83 

Overall Accuracy = 93.01% 
Kappa Coefficient = 0.9151 
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Figure 12. Quantity disagreement and allocation disagreement of different classification 

algorithms, i.e., the SVM classification of ETM+ image with optimal parameters (SVM with 

ETM+), SVM classification of fused image with optimal parameters (SVM with Fusion) and 

Decision Tree. 

6. Discussion 

6.1. Comparison between SVM and DT Classification Method 

In order to explore the effectiveness of different monitoring methods comparatively, the two methods, 

i.e., SVM and DT, were assessed using an independent in situ sampling data that include the various 

types of land cover and salinized soils (see the ground truthing location in Figure 1). The classification 

results over the validation site are shown in Figure 13. Although water bodies were extracted well overall 

on SVM results from the ETM+ image, vegetation was mixed with slightly salinized soil due to the 

closeness of their reflectance value. This was due to the fact that slightly salt affected soil was usually 

covered with 30% vegetation which consists of Tamarix chinensis Lour, Phragmites communis, 

Haloxylon ammodendron, Karelinia caspica (Figure 2). The slightly salinized soils were also confused 

with moderately salinized soil in many spots; they were distributed over the moderately salinized soil to 

the west of the validation site, which was not the case in reality according to the ground observations. 

This was because both of the slightly and moderately salinized soils may have similar vegetation cover, 

though the coverage percentages are slightly different as the vegetation coverage of the moderately 

salinized soil is around 5%~15% in average. 

The classification results of ETM+ and PALSAR S-PCA fusion images were better than the results 

of a single ETM+ SVM classification. A better suppression of salt-and-pepper like noise was achieved 

by the SVM classification of the fusion image. Water bodies were well delineated; however, vegetation 

is still confused with slightly salinized soil. Most importantly, the separation of slightly and moderately 

salinized soil was noticeably improved, and the moderately salinized soil to the west was well 

discriminated from the strongly salinized soil. This was partly due to the contribution of high spatial and 

distinct polarimetric backscattering characteristics from SAR data, the S-PCA fused image was 
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improved both in spectral and spatial quality, and it enhanced the distinguishing ability of different 

salinized soil. 

 

Figure 13. The ground truthing (A) and corresponding classification maps of SVM for 

ETM+ (B); SVM for fused image of ETM+ and PALSAR (C) and DT classification (D). 

The best results were achieved from the DT classification. Water bodies were extracted more 

precisely due to the integrated threshold values of MNDWI and ETM+ band 4. Swamp was also well 

delineated from slightly salinized soil and vegetation. Most importantly, strongly, moderately, slightly 

salinized soils were well discriminated in this image in comparison to the other approaches. The overall 

distribution of salinized soils was well reflected from the DT classification. From east to west, the land 

cover types shift from vegetation to slightly salinized soil, moderately salinized soil and strongly 

salinized soil. The results further confirm that PALSAR and Radarsat-2 polarimetric data were able to 

separate strongly salinized soil from the other two types of salinized soils effectively due to its low 

backscattering intensity. We conclude that the integrated method of passive optical and active 

microwave data is the most promising approach in monitoring various degrees of soil salinization. 

6.2. Area of Salinized Soil 

As shown in Figure 11, the strongly salinized soil is distributed mainly on the lower reaches of the 

Keriya River basin, and between the two long “legs of the oases” located in the north of the study area, 

which transcend to desert. Moderately salinized soil is distributed in the outskirt of the Keriya River 

Oases within the ecotone between Keriya Oases and the Taklimakan desert. Slightly salinized soil is 

distributed to the transient area between vegetation and moderately salinized soil. 

Strongly salinized soil alone occupies about 10.71% of the study area (20613.84 ha), moderately 

salinized soil accounts for around 19.86% (38247.56 ha) and slightly for 10.86% (20902.40 ha)  

(Table 5). In addition, there are about 79763.8 ha of total salinized soil within the study area (41.43%), 

indicating that soil salinity has already become one of the major threats to the local agriculture and 

human activities. These outcomes strongly highlight the critical need for proactive management and 

protection of the Keriya River basin from soil salinization since the consequences of not doing so are 

severe, not just limited to oases acreage lost also to its negative impact on the agricultural productivity 
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that is directly linked to the income of the local population. Future efforts and reasonable management 

strategies should focus on maintaining and improving the Keriya River basin’s soil resources to limit 

further disturbance from salinized soils and land use changes which in turn lead to secondary  

soil salinization. 

Table 5. Land-cover class statistics of the study area. 

 Water Body Vegetation 
Barren 

Land 

Strongly 

Salinized Soil 

Moderately 

Salinized Soil 

Slightly 

Salinized Soil 

Class area (%) 6.932 33.817 17.826 10.706 19.864 10.856 

Class area (hectare) 13,347.48 65,114.68 34,322.92 20,613.84 38,247.56 20,902.40 

6.3. Uncertainty Analysis 

When the fraction of vegetation is less than 15%, surface spectral reflectance may look more similar 

to bare land. Land surface reflectance may appear as the mix of vegetation and bare land for vegetation 

fraction varying between 15% and 70%. A pixel can be considered as a “pure” vegetation pixel when 

the vegetation fraction is over 70% [54]. Minimizing the interference of vegetation is critical for accurate 

extraction of soil salinity information from optical imagery. We found that salt tolerant vegetation such 

as Tamarix chinensis Lour, Phragmites communis, Halocnemum strobilaceum, Halostachys caspica, 

Alhagi pseudalhagi can grow in various salinized soils, especially in slightly and moderately salinized 

soils. These salt-tolerant plants can contaminate the spectral reflectance of salinized soil in optical 

images, which result in spectral mixture [6]. 

Radar images may suffer from speckle noise, which are light and dark pixels produced by a 

constructive or destructive interference from radar waves. Speckle is granular “noise” that inherently 

exists in and degrades the quality of SAR images. Speckle noise in our study was reduced through  

multi-looking and Refined Lee filtering. However, those filtering methods cannot completely remove 

the speckle noise in radar images. The fusion image based classification accuracy may have been 

hampered by the remaining speckle noise. 

Additionally, the backscattering power observed by radar imagery is affected by complex factors such 

as soil moisture, surface roughness, vegetation elevation, water content of vegetation, inclination of land 

surface and the dielectric properties of the soil. For this reason, the backscatter intensity from salt 

affected soils may include contributions from other influencing factors mentioned above. Therefore, it 

is a challenge to detect and map soil salinization by using radar image alone. And these complexities 

may affect the monitoring accuracy of salinized soil in our integrated approach from both optical and 

radar data. In our future study, we will incorporate soil moisture and soil roughness for better 

interpretation of soil salinity distribution. 

7. Conclusions 

In this paper, we presented a passive reflective and active microwave remote sensing data fusion 

algorithm to monitor soil salinity. Our major conclusions include the following: (1) The support vector 

machine (SVM) classification with the optimal parameters obtained from cross-validation methods was 

identified as the best model for a pixel based classification approach. The overall classification accuracy 
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of ETM+ data with the SVM without and with optimal parameters were 86.39% and 87.98%, and Kappa 

coefficients were 0.83 and 0.85, respectively. The classification result of ETM+ and PALSAR S-PCA 

fused images was better than the single ETM+ image classification. The overall SVM classification 

accuracies of the fusion image without and with optimal parameters were 89.82% and 91.25%, 

respectively. The Kappa coefficients of the fusion image without and with optimal parameters were 0.88 

and 0.89 respectively; (2) The polarimetric PALSAR and Radarsat-2 backscattering coefficients showed 

that there were significant differences between the different degrees of salt-affected soil types, which 

were helpful for discriminating slightly salinized soils from moderately salinized soils. None of the 

single HH or HV images alone was able to distinguish the different salinized soils. An integrated 

threshold of backscattering values from both PALSAR and Radarsat-2 polarimetric images was found 

to be important in separating moderately salinized and heavily salinized soils as well; (3) The decision 

tree (DT) approach developed by integration of ETM+, PALSAR and Radarsat-2 data yielded the most 

accurate results with overall accuracy of 93.01% and Kappa coefficient of 0.92, and with lowest 

disagreement of allocation and quantity. The DT classifier exploited both the potential of optical 

reflectance and microwave backscattering features. It was particularly efficient in separating slightly 

salinized soil from moderately salinized soil; (4) Strongly salinized soil alone occupied about 10.71% 

(20,613.84 ha), and moderately salinized soils accounted for 19.86% (38,247.56 ha) and slightly 

salinized soils for 10.86% (20,902.40 ha) of the study area. The total salinized soil within the study area 

was 41.43% (79,763.8 ha), indicating that soil salinity had already become one of the major threats to 

the agricultural productivity and sustainable development of local eco-environment. 
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