
Supplementary Information

1. Fresnel Coefficients

The reflection and refraction of a plane electromagnetic wave at a plane surface which separates
two homogeneous media are described by Fresnel’s equations. Their polarimetric properties are best
described by decomposing the incident wave into two parts: the first one (horizontal h, or TE) has its
E-field perpendicular to the normal vector of the plane, the second one (vertical v, or TM) has its H-field
perpendicular to the normal vector [1].

The [Tmn] term in the model contains the two-way transmission coefficients Tv,m and Th,m, which
pertain to the horizontal and the vertical part, respectively. In these expressions m refers to the
acquisition. These coefficients describe the change in amplitude that the E-field of the incident wave
experiences when it (i) penetrates into the soil; and (ii) is transmitted back from the soil into the upper
halfspace (with ε = 1). Assuming nonmagnetic media, these can be expressed as [1]
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In each of this terms, the first part represents the transmission into the soil, and the second one the
one back into the air.

2. Phase Terms

The interferometric phase φmn of a point scatterer embedded in the half-space consists of two terms
(after linearization of (7) with respect to the antenna position). The first one φ̃mn is due to the change in
the background dielectric constant; if there is no such change, this term will vanish.
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The second term φ̄mn accounts for the spatial baseline B, i.e., the variability of the antenna
position between the acquisitions [2]. The spatial baseline can be decomposed into its horizontal
∆ya = B cos(α) and vertical ∆H = B sin(α) components, where α is the angle between the baseline
and the horizontal [3].
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Both these terms depend on the position of the point scatterer (φ̄mn implicitly via the incidence
angle). As volume scattering consists of contributions from different positions, it is expedient to study
their dependence on the position. For small penetration depths (see the main document for details)
only the first derivatives are important. We will evaluate these just below the surface, i.e., z = 0,
by parameterizing the location of the point scatterer in terms of ys and z. The coordinates of the
antenna and the surface are fixed parameters. All additional quantities, in particular the incidence and
transmission angles as well as yi, are thus determined too.
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2.1. Total Differentials

The total differentials of φmn with respect to ys and z follow from Snell’s law and the geometric
definitions given in the main document. Starting with φ̃mn, we find that the partial derivative with
respect to ys vanishes. As the partial derivative with respect to the respective yi cancels in each of the
terms (Snell’s law), we have(
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where the second line follows from Snell’s law as well.
The derivative with respect to z is computed using the same identities:(
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We now turn to the part that depends on the baseline, i.e., φ̄mn. Keeping ys fixed (implicit in the
following equations), we have via the chain rule(
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In turn this terms evaluate to:
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∂ sin θi

∂yi
= H cos−3(θi)

as H is held constant. The last term follows from Figure S1a
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where B⊥ = cos(θi − α).
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Figure S1. Derivation of geometric quantities: (a) change in yi with z for constant ys;
(b) change in ys with z for constant R1.

The partial derivative with respect to ys,
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, can be evaluated by similar means. As we evaluate
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i.e., the horizontal coordinate of the piercing point coincides with that of the scatterer. Omitting the z
subscript for clarity, we get
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2.2. Interferometric Wavenumbers

These are the partial derivatives with respect to range Rm and z, keeping the other one constant.
They follow from the chain rule using the geometric relation shown in Figure S1b . According to the
highlighted triangle, a small change δz entails a change δys if Rm is to remain constant:(
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where this is again evaluated just below surface.
The vertical interferometric wavenumber follows from the terms due to φ̄mn and φ̃mn and simplifying:(
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and similarly for the range interferometric wavenumber(
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