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Abstract: Desert locusts (Schistocerca gregaria) represent a major threat for agro-pastoral
resources and food security over almost 30 million km2 from northern Africa to the Arabian
peninsula and India. Given the differential food preferences of this insect pest and the extent
and remoteness of the their distribution area, near-real-time remotely-sensed information
on potential habitats support control operations by narrowing down field surveys to areas
favorable for their development and prone to gregarization and outbreaks. The development
of dynamic greenness maps, which detect the onset of photosynthetic vegetation, allowed
national control centers to identify potential habitats to survey, as locusts prefer green
and fresh vegetation. Their successful integration into the daily control operations led to
a new need: the near-real-time identification of the onset of dryness, a synonym for the
loss of habitat attractiveness, likely to be abandoned by locusts. The timely availability of
this information would enable control centers to focus their surveys on areas more prone
to gregarization, leading to more efficiency in the allocation of resources and in decision
making. In this context, this work developed an original method to detect in near-real-time
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the onset of vegetation senescence. The design of the detection relies on the temporal
behavior of two indices: the Normalized Difference Vegetation Index, depending on the
green vegetation, and the Normalized Difference Tillage Index, sensitive to both green
and dry vegetation. The method is demonstrated in Mauritania, an ever-affected country,
with 10-day MODIS mean composites for the years 2010 and 2011. The discrimination
performance of three classes (“growth”, “density reduction” and “drying”) were analyzed for
three classification methods: maximum likelihood (61.4% of overall accuracy), decision tree
(71.5%) and support vector machine (72.3%). The classification accuracy is heterogeneous
in both time and space and is affected by several factors, such as vegetation density, the
north-south climatic gradient and the relief. Smoothing the vegetation time series resulted
in an increase of the overall accuracy of about 5% at the expense of a loss in timeliness of
ten days. To simulate near-real-time monitoring conditions, the decision tree was applied to
the decade of 2010. Overall, the seasonal vegetation cycle appeared clear and consistent.
The results obtained pave the way for an operational implementation of the senescence
dynamic mapping and, consequently, to further strengthen the capacity of the locust
control management.
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1. Introduction

Desert locust (Schistocerca gregaria (Forksål, 1775)) is a well-known pest that represents a major
threat for agro-pastoral resources, because of its voracity and ability to travel long distances [1,2].
Locust infestations and invasions jeopardize repetitively the food security in more than 60 countries
from northern Africa to the Arabian peninsula and covering over 30 million km2. During invasion
periods, locusts swarms count millions of individuals capable of destroying hectares of crops in only a
few hours [3]. The 2003–2005 invasion in West Africa hit more than eight million people and destroyed
80%–100% of the expected harvest, leading to a dramatic increase of food insecurity in the affected
countries. Control operations, including the treatment of more than 13 millions hectares, reached a total
cost of 400–500 million U.S. dollars [4]. During the 1987–1989 invasion, the school enrollment rate in
Malian affected villages dropped by 25%, falling under 18% [5].

Desert locusts exhibit a phase polyphenism in which behavioral, physiological and morphological
traits change due to variations in the local population density [6]. Three mutually-interdependent
and concurrent phenomena lead to that transformation [7,8]: multiplication, population concentration
and gregarization. Under these conditions, solitarious phase individuals shift to gregarious phase
individuals, which are more voracious and mobile. The gregarization density threshold varies according
to development stages and is estimated at 250–500 adults locusts per hectare [1].

Desert locusts have clear food preferences: some plants are consumed before others, and some species
remain untouched [9–12]. Food plant preferences vary from one developmental stage to another [10,13]
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and depend on plant association [9]. This differential feeding directly influences the behavior of locusts,
e.g., for habitat selection and marching speed [14,15]. For instance, locust bands move faster through
shrubby habitats consisting of moderately palatable perennials than they do in sand dune communities,
where locusts feed extensively on the highly palatable annuals [9].

To protect human populations from the disastrous consequences of locust invasions, the Food and
Agriculture Organisation (FAO) promotes a preventative control strategy and coordinates national locust
control centers that regionally operate surveys and control actions [16–18]. That preventative control
strategy aims at avoiding the development of generalized invasions and is ensured by three essential
activities [1,19,20]: (i) monitoring the meteorological and environmental conditions of outbreak areas
by means of meteorological data and satellite imagery; (ii) surveying in areas potentially favorable for
locusts; and (iii) carrying out control measures and treatment in areas that present a locust density above
the critical density threshold.

Remote sensing plays a major part in this strategy, as it allows monitoring the locust habitats in
near-real time and over its entire distribution area, especially in remote or unsecured regions. Given
locusts’ differential food preferences and the extent and remoteness of the desert locust distribution
area, this near-real-time satellite-derived information on the locust potential habitat supports control
operations by narrowing down field surveys to areas prone to gregarization and outbreaks. Research
has long been directed toward mapping locusts’ habitats with satellite remote sensing imagery, as the
current spatial resolution of satellites remains insufficient for direct detection of locusts. Numerous
studies tackled the issues of monitoring the desert locust breeding areas visually and by means of digital
image processing [21–23]. In particular, the Normalized Difference Vegetation Index (NDVI) has been
intensively used to link vegetation with locust occurrence. For instance, [24] adopted a visual approach
to investigate the relationship of high NDVI areas with locust activity. Later, [22,25] demonstrated
that an index based on the NDVI was correlated with rainfall and locust infestations. [26] concluded
that the occurrences of high NDVI values correspond to the emergence of vegetation, which can be
further exploited to monitor the reproduction areas of locusts. [27] related abundance and the spatial
distribution of resources at the landscape scale to historical records of outbreaks thanks to satellite
data. They also showed that the responses were different for vegetation growing near the Red Sea
compared to Mauritania. [28] suggested an NDVI threshold of 0.14 to discriminate vegetation from bare
soil. This threshold was applied on a mosaic of SPOT-VGT images covering the entire desert locust
distribution area. This technique yielded an acceptable result with the detection of most homogeneous
events. However, in certain cases with sparse vegetation, favorable areas are omitted. In order to reduce
those omissions, 250-m MODIS images have been coupled to 1-km SPOT-VEGETATION images [29].
This combination allows reducing the omission errors thanks to MODIS’ higher spatial resolution.
Furthermore, commission errors were reduced thanks to the MODIS SWIR bands. Since 2010, dynamic
greenness maps (i.e., the green area, developed by [30]) are provided every ten days to the Food and
Agriculture Organization and the affected countries to help them analyze the current situation and plan
the control operations [30–32]. These maps highlight vegetated areas close to the onset of greenness,
which correspond to green and fresh vegetation that is highly palatable to desert locust. These areas
highlight priority areas for survey (i.e., locust potential habitats), increasing consequently the efficiency
and the rapidity of field operations, while simultaneously reducing their costs.
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Conversely, detecting the areas where conditions are becoming less favorable for locusts would
also substantially increase the survey efficiency. Hence, mapping the senescence of vegetation would
highlight the areas likely to be abandoned by locusts, as they prefer fresh and green vegetation. Such
dryness maps would enable control centers to assess if they can concentrate their efforts in priority
areas. Since recently, few studies that have addressed the detection of dry vegetation by remote sensing
have tested monitoring methods efficient at a large scale [33,34], since field or airborne spectroscopy or
high-resolution data from Landsat [35–37] or Hyperion [38–41] were used in most cases. [33,34] have
shown the value of MODIS SWIR bands to monitor dry vegetation in a representative panel of Sahelian
region. These recent studies laid the foundations for a better locust monitoring using remote sensing

In order to support a cost-effective and efficient strategy, the objective of this study is to develop
a methodology, based on the latest advances in the field, for mapping the senescence of vegetation in
arid and semi-arid areas compliant with the near-real-time requirements of the application. The tested
hypothesis is that a reliable discrimination of the onset of vegetation senescence can be achieved thanks
to the joint temporal trajectory of two spectral indices: the Normalized Difference Vegetation Index
(NDVI), sensitive to green vegetation, and the Normalized Difference Tillage Index (NDTI), sensitive
to both green and dry vegetation. Special emphasis was put on the study of the temporal and spatial
variability of the accuracy of the resulting dryness maps. Finally, a case study demonstrates how the
proposed method can support desert locust habitat monitoring by simulating a near-real-time monitoring,
i.e., as soon as images are available, of an area in Mauritania during the 2010 growing season.

2. Material

2.1. Study Site

This study focuses on the Islamic Republic of Mauritania, a front-line country spreading over more
than a million square kilometers between latitudes 14;50;N and 27;20;N and longitudes 5;40;W and
16;5;W (Figure 1). As a front-line country, its vast and diverse territory is a near-permanent habitat
for desert locusts with complementary biotopes along the seasons. Sixty five to ninety percent of the
Mauritanian active population is employed by the primary sector; therefore, the locust threat is high [2].

Sahelian and Saharan vegetation is dominated by annual plants, associated with sparse stands of
woody plants. Annual plants germinate after the first rainfall (July) of the rainy season and complete their
reproductive cycle rapidly, with fruiting generally occurring at the end of the rainy season (September).
Then, annual vegetation withers to give litter or straw, which are grazing reserves for the dry season
(a period of 8–9 months) [2,42]. During the dry season, herbaceous vegetation mass decreases by
50%–80%, even without being subjected to grazing, as a result of microbiological degradation [43].

Rainfall plays a key role for desert locusts: (1) it determines the edaphic humidity, which is essential
to egg survival and development; and (2) it conditions the growth of vegetation that provides both shelter
and food. Therefore, the locust cyclical dynamic is tightly tied to that of vegetation, which itself depends
on rainfall. In Mauritania, rainfall decreases from south to north and from west to east, because of the
Sahara-Sahel eco-climatic gradient and the increasing continental influences, respectively. The rainy
season starts in July in the southern part of the country and spreads north. Locust populations over one
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year are first located mostly in the summer breeding area of the south. When vegetation dries out, they
migrate to the north, where vegetation is still green, to complete their development [2].
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Figure 1. Selected Recognition and Monitoring System of the Environment of Schistocerca
(RAMSES) points for the period May 2010–June 2011, classified as either “growth” (green),
“density reduction” (orange) or “drying (red)” (n = 1129).

2.2. Data Sources

In total, three kinds of data were utilized: field data, remote sensing time series and satellite-derived
greenness maps.

The RAMSES database (Recognition and Monitoring System of the Environment of Schistocerca)
developed by FAO compiles field observations collected by locust survey teams since 1988. Each
geo-/chrono-referenced observation concerns: (i) the locust information; (ii) the meteorology; and (iii)
the floristic information (Table 1). The vegetation development stage and the percentage of coverage and
greenness are evaluated for annual and perennial plants, first separately and then jointly. The vegetation
development stage is established following five qualitative classes: sprout, growth, green, drying and
dry. Annual and perennial species are listed in order of decreasing dominance [2]. The accuracy of the
RAMSES database was evaluated at 88% [2], even if some inconsistencies have been documented [44].

Operational monitoring in the Sahelian and Saharan regions requires Earth observation data with large
spatial coverage, a high revisit frequency and free access. With a spatial resolution of 250-m for the red
in near-infra-red channels and 500-m for the short wave infra-red channels and a daily revisit frequency,
the MODIS instrument aboard the Terra and Aqua satellites appears as an appropriate solution to cope
with those requirements. Daily MOD09GA and MYD09GA products were downloaded for the period
from January 2009 to April 2011.
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Table 1. RAMSES database fields and corresponding values.

Attribute Possible Values
Date 11 January 2009–20 June 2011
Phenological stage Sprout/Green/Greening/Drying/Dry
Total cover Low/Moderate/Dense
Annual crop cover 0%–100%
Perennial crop cover 0%–100%
Prospected surface 0–100,000 hectares
Infested surface 0–100,000 hectares
Control action Yes/No
Habitat Wadi/Interdune/Plains/Basin

For the corresponding period, the green area product [30] was downloaded. This product provides
dynamic greenness maps for near-real-time operational monitoring of the desert locust habitat. The
methodology behind the green area is based on a colorimetric transformation (R, NIR, SWIR) from the
RGB color space to HSV (hue, saturation, value). In this color space, H appears to be a qualitative
spectral index [30], which decouples information on land cover. Its temporal variation can be interpreted
as a land cover change. Changes in S and V may be interpreted as changes in observation conditions
(atmospheric effects, geometry of acquisition) and changes in vegetation (phenological stage, floristic
composition). A set of thresholds were defined by statistical sampling to distinguish vegetation from
non-vegetation on 10-day MODIS mean composite images [45]. The final product integrates a temporal
component thanks to a time meter that accounts for the number of 10-day intervals a pixel has been
tagged as vegetation. A color table allows an intuitive and straightforward identification of ephemeral
(red), seasonal (light green) and perennial vegetation (dark green). This provides operationally and in
near-real time a user-friendly vegetation dynamic map updated every 10 days over the whole desert
locust area.

3. Methodology

3.1. Rationale

Several studies investigated dry vegetation detection from satellite imagery. Different objectives
were pursued such as assessment of soil tillage intensity and soil conservation [38,46,47], evaluation
of soil erosion risk and runoff [48–51], evaluation of the risk of wildfire in relation to dead fuel
proportion [41,52,53], and improvement in land cover mapping [39,54]. Recently the study
of Jacques et al. [33], demonstrated the value of SWIR (Short Wave Infra Red) MODIS bands to monitor
dry vegetation in a Sahelian region. In particular, it has been shown that combinations (simple ratio and
normalized difference ratio) of MODIS band 6 (1.628–1.652 µm) and 7 (2.105–2.155 µm) are sensitive
to both dry and green vegetation cover and masses that cover brighter and rougher soil background.
One of those indices is a MODIS adaptation (Equation (1)) of the Normalized Difference Tillage Index
(NDTI) from Van Deventer et al. [55], initially developed for Landsat.

NDTI = ρMOD6 − ρMOD7

ρMOD6 + ρMOD7

(1)
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where ρMOD6, ρMOD7 correspond to MODIS band 6 (1.628–1.652 µm), MODIS band 7
(2.105–2.155 µm) respectively.The effect of water absorption is strong in the SWIR range and is more
important for the band 7 (2200 m−1) than for band 6 (498 m−1), which could potentially affect the NDTI.
However in semi-arid area, the water content of the vegetation rapidly decreases during the growing
season to a value (<40% at the peak of biomass) that has a low impact on the index. Special attention
has to be paid over wet soils and during the early growing season (water content close to 80%).
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Figure 2. Smoothed temporal profiles of NDVI and Normalized Difference Tillage Index
(NDTI) (2009–2011). (a) Drying vegetation without density reduction (shown by the black
vertical line). (b) Drying vegetation with density reduction (shown by the black vertical line).
NDVI is only sensitive to photosynthetically-active vegetation, whereas NDTI is sensitive to
both photosynthetically-active and -inactive vegetation, allowing one to distinguish drying
vegetation with (b) and without (a) density reduction. The smoothing applied corresponds to
that described in Section 3.2.

Along the growing season, when vegetation is still green, NDVI and NDTI are linearly related,
because they share similar sensitivity to green vegetation [33]. The relationship changes when the
vegetation starts drying. The NDTI curve slowly decreases during senescence (as green vegetation dries,
it remains detected by the NDTI). Comparatively, the NDVI decreases rapidly. Indeed, while green
vegetation dries out, it is no longer detected by the NDVI and only sensitive to photosynthetically-active
vegetation (Figure 2a). The moment at which a separation between the NDVI and NDTI curves appears,
i.e., the stall point, characterizes the onset of senescence. In addition, the vegetation cover density
diminishes due to the combined effects of grazing, wind erosion and microbiological degradation. When
significant, NDVI and NDTI decrease similarly (Figure 2b). In this case, the indices do not allow a direct
identification of the onset of the senescence. However, this description of the joint temporal behavior of
NDVI and NDTI is not always observed. Vegetation indices are influenced by several other factors than
the photosynthetic state, such as soil type and humidity, relief and the geometry of observation (view
and Sun angles), which add noise into the relationship. Furthermore, these effects do not affect equally
the NIR and the SWIR wavelengths, which makes a proper intercomparison of the two indices much
more difficult. To overcome some of these constraints, better than considering the difference between
the two indices, the slope of their time series could be a pertinent alternative. During the growing season,
both indices increase. The slope of the time series is positive. During the dry season, the NDVI signal
drops more rapidly than that of NDTI if the vegetation density decreases slowly. Therefore, drying
could be identified by a higher negative slope observed for the NDVI than for NDTI. A negative slope
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similar for the two indices would be more difficult to interpret and would mean a density loss without
certainty of drying.

For locusts, vegetation density reduction is an important factor that can foster gregarization by
concentrating the population on small surfaces [1,27,56]. Therefore, information on density reduction
remains valuable, even if the actual state of the vegetation (green or dry) is unknown. Areas identified
as “drying” are associated with a low locust threat, from which the survey teams can be withdrawn.
However, areas described as “growth” or “density reduction” indicate a higher locust threat because
of either the presence of green vegetation (i.e., locust potential habitats) or risk of gregarization by
population concentration.

3.2. Data Preprocessing

3.2.1. Field Observation Preprocessing

Prior further analysis, the RAMSES observations needed to be converted from its specific nomenclature
into the three classes of interest, namely “growth”, “density reduction” and “drying”. First, the five
initial vegetation development classes were merged into (i) growth (sprout, growth and green) and (ii)
drying (drying and dry). Second, the samples (11,441 from May 2010–June 2011) were related to
their corresponding dynamic greenness map value, i.e., the number of 10-day intervals during which
the corresponding pixel is detected as vegetation. To ensure consistency with the green area product,
the analysis focused on pixels of vegetation potentially entering senescence: only pixels occurring as
fresh and green vegetation, during the current 10-day interval and the three previous were kept. Third,
the vegetation index time series of the remaining samples (1349 observations) and the corresponding
phenological stage of the development were analyzed by an expert. Each sample was classified by visual
interpretation in one of the three following classes according to the joint temporal behavior of their NDVI
and NDTI curves:

1. Growth: the observation was located on the increasing part of the NDVI curve and was designated
as “green” in the database RAMSES;

2. Drying: the observation was reported as “drying” in RAMSES and was located on the decreasing
part of the NDVI curve while the NDTI curve remained stable (i.e., presence of a stall point).
There was no apparent decrease of the vegetation cover and the vegetation shifted from a “green”
state to a “drying” state. The NDTI remained constant before entering a decrease phase due to the
vegetation degradation;

3. Density reduction: the observation was described as “green” or “drying” in RAMSES and was
on the decreasing part of the NDVI and NDTI curves. As NDTI is sensitive to both green and
dry vegetation, a decrease in its temporal trajectory indicates a reduction of vegetation. This
class does not exclude the two others, but in this case, the actual state of the vegetation remained
undetermined (likely drying). Caution should be taken in the interpretation of the errors of the
classification of this class.

Only 94 points were found unclassifiable (absence of seasonal cycle or too noisy) and set aside.
Besides, 126 observations were removed from the database, as they showed contradictory information:
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NDVI and NDTI indicated a “drying” status, whereas RAMSES listed them as “green”. These points can
result from survey, encoding or geolocation errors. The final database contained 1129 samples (532 in
“growth”, 308 in “density reduction” and 289 in “drying”) well distributed over the study area (Figure 1)
and available for further calibration and validation purposes.

3.2.2. Remote Sensing Data Preprocessing

In order to avoid punctual artifacts and improve temporal consistency, 10-days mean composites
have been produced from daily Terra and Aqua images according to the procedure detailed
in Vancutsem et al. [45]. All of the quality-controlled reflectance values (without clouds and hazes)
were averaged for each pixel and each used band (1,2,6,7) over a 10-day period. NDVI and NDTI were
computed from these averaged reflectance values.

The noise inherent to the remotely-sensed signal may negatively affect the computation of indices
and temporal metrics (slope computation in particular), decreasing de facto the classification accuracy.
Smoothing may avoid such spurious effects and enhanced class separability. Smoothing methods have
been intensively devised in the literature (e.g., Fourier analysis, asymmetric Gaussian model, double
logistic model). In particular, Atkinson et al. [57] highlighted the performance of the Whittaker filter for
smoothing of satellite image time series. The non-parametric Whittaker method fits a smoothed curve
to discrete values by finding a trade-off between fidelity to the original data and the regularity of the
smoothed time series by penalizing the roughness of the smoothed curve [58].

3.3. Senescence Detection and Dynamic Mapping

The overall methodology consists of two steps: metric selection and classifier benchmarking: first,
in defining vegetation indices’ temporal metrics, from which the most fitted to the classification purpose
were selected. Feature selection is limited in order to keep the method simple, reproducible and
computationally economical. Furthermore, using few features allows one to link their spectral behaviors
with the reality on the ground and, thus, benefit from expert knowledge to interpret the results. Three
classification methods were then trained on the selected features and benchmarked to discriminate the
three phenological classes “growth”, “density reduction” and “drying”. After the assessment of their
respective accuracy, the best performing method was applied on a subset of Mauritania to produce 10-day
interval vegetation status maps. A temporal combination of those provides dynamic dryness maps.

3.3.1. Metric Definition and Selection

Eleven combinations of NDVI and NDTI, hereafter referred to as metrics, have been tested (Table 2):
(i) the difference between the two indices NDV I − NDTI; (ii) the slope over one past 10-day
interval ∆Indext−1t ; (iii) two past 10-day intervals ∆Indext−2t ; (iv) the past 10-day interval to the next
10-day interval ∆Indext−1t+1; (v) the cumulative sum of the slopes over each two past 10-day intervals
∆Indext−1t +∆Indext−2t ; and (vi) the sum and the difference of slope over two past 10-day intervals of
the two indices ∆NDV I t−2t ± ∆NDTI t−2t . The cumulative sum over several 10-day intervals has also
been assessed, as it should help strengthen the signal and thus contribute to better detection.
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Table 2. Definition of the metrics tested.

Metrics Definition
NDV I −NDTI difference between NDV I −NDTI
∆NDV It−1t NDV I slope over one past 10-day interval
∆NDTIt−1t NDTI slope over one past 10-day interval
∆NDV It−2t NDV I slope over two past 10-day intervals
∆NDTIt−2t NDTI slope over two past 10-day intervals
∆NDV It−1t+1 NDV I slope over the past 10-day interval to the next 10-day interval
∆NDTIt−1t+1 NDTI slope over the past 10-day interval to the next 10-day interval

∆NDV It−1t +∆NDV It−2t the cumulative sum of the NDV I slopes over each two past 10-day intervals
∆NDTIt−1t +∆NDTIt−2t the cumulative sum of the NDTI slopes over each two past 10-day intervals
∆NDV It−2t −∆NDTIt−2t difference of NDV I and NDTI slope over two past 10-day intervals
∆NDV It−2t +∆NDTIt−2t sum of NDV I and NDTI slope over two past 10-day intervals
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Figure 3. ROC curves of the 11 vegetation indices’ metrics. (a) ROC curves (PA
= producer’s accuracy) of the 11 vegetation indices’ metrics for the discrimination of
classes “growth” and “decrease” with, in red, the ROC curve of the metric ∆NDV I t−1t+1

(i.e., accumulated slopes of NDVI over two 10-day intervals). (b) ROC curves of the
11 metrics for the discrimination of classes “density reduction” and “drying” with, in blue,
the ROC curve of the metric ∆NDTI t−1t+1 (i.e., NDTI slope calculated with a delay of one
10-day interval).

The performance of the eleven metrics was analyzed in a hierarchical fashion by two sets of receiver
operating characteristic (ROC) curves. This method has long been recognized as a convenient and
valuable tool for algorithms evaluation and comparison, but also for its specific properties, which handle
distribution asymmetry [59]. The first set is for the discrimination of classes “growth” and “decrease” and
the second for the distinction of classes “density reduction” and “drying” (Figure 3). The first set was
derived from the preprocessed RAMSESdata combining the classes “density reduction” and “drying”
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into a single category, hereafter referred to as “decrease”. The second set of ROC curves included only
the samples from the “decrease” category to further assess the metrics’ ability to discriminate “density
reduction” from “drying”. This hierarchical approach is necessary due to the binary character of the
ROC curve method.

In the present case, ROC curves allowed one to select metrics based on their classification
performances. Two accuracy figures were compared: the sensitivity (or success rate) and the specificity.
The sensitivity corresponds to the probability for a pixel of class ω1 to be well classified by the algorithm
(i.e., producer’s accuracy of class ω1). The specificity provides the probability of a pixel of class ω2 to
be included in class ω2 (i.e., producer’s accuracy of class ω2). Specificity is equal to 1 − fp, where fp
is the false alarm rate of class ω1 (i.e., the probability of a ω2 pixel to be incorrectly assigned to class
ω1) [59]. The ROC curve represents the trade-off between these two accuracy measures for different
metrics thresholds. The area under the curve (AUC) is among the most commonly-chosen [60] ROC
curve accuracy measure for method comparison. The AUC ranges from 0%–100%, 100% representing
an error-free classification. As a random classification yields an AUC of 50%, no realistic classification
should have an inferior AUC [59]. Overall accuracies corresponding to the highest AUC were also
derived for each metric (Table 3).

3.3.2. Classification Methods and Accuracy Assessment

Based on the two best features, selected thanks to the ROC curve accuracy assessment, three
classification algorithms associated with various degrees of complexity have been benchmarked for the
discrimination of the three classes of interest (“growth”,“density reduction” and “drying”): a decision
tree (DT), a support vector machine (SVM) and a maximum likelihood (ML) classifier. The ML method
is a parametric supervised classification derived from Bayes’ theorem. It uses the frequency histogram of
each class directly as the discriminant function. A given pixel x is assigned to the class whose probability
a posteriori (P (ωi∣x)) is the highest [61]. The decision threshold between ωi and ωj classes is defined by
gi(x) = gj(x) with x ∈ ωi if gi(x) > gj(x) for all j ≠ i [62]. The underlying assumption of this method is
that the distribution of the vectors x values for each class is Gaussian and can be determined only by the
average µi and the standard deviation σi of the considered class. Unlike other classification methods that
use a set of measures to establish the decision rule in a single step, DT relies on a hierarchical approach
with several steps. Decision tree operates on a so-called top-down approach: it begins with a primary
node, containing all data, that is then divided to form all intermediate nodes downstream, which lead to
terminal nodes. Each node corresponds to a binary decision rule that separates either a single class or
several classes from all remaining classes [63]. Furthermore, the decision tree has other advantages, such
as no assumption about the data distribution in each class and rapid training and implementation [64,65].
SVM belongs to the category of machine learning algorithms and allows discrimination of different
classes in a multidimensional space. The basic principle is to locate the optimal boundaries between
classes by maximizing the margin between the separating hyperplanes. Initially, the SVM was designed
for binary classification, but has been expanded to multi-class classification [66]. In addition, the SVM
has a low sensitivity to the training sample size and shows a capacity to handle high dimensional
spaces [67].



Remote Sens. 2015, 7 7556

Table 3. Maximum accuracy parameters for the classification using the selected metrics for raw and smoothed data (in percent). The
notation “growth-decrease” refers to the discrimination of the categories “growth” and “decrease” (Figure 3a) and “density-drying” to
the discrimination of the classes “density reduction” and “drying” (Figure 3b).

Raw Data Smoothed Data
Growth-Decrease Density-Drying Growth-Decrease Density-Drying

Metrics AUC OA AUC OA AUC OA AUC OA
∆NDV I t−1t 88.38 82.70 59.35 59.09 93.81 87.78 52.94 57.96
∆NDV I t−2t 92.50 87.04 55.73 60.78 93.21 88.04 48.83 55.61
∆NDV I t−1t +∆NDV I t−2t 93.11 87.72 55.63 60.92 93.87 88.40 50.26 55.95
∆NDV I t−1t+1 87.59 83.13 64.17 65.15 96.07 91.39 56.81 59.52
∆NDTI t−1t 70.14 69.84 69.68 66.16 73.18 70.77 71.55 67.67
∆NDTI t−2t 74.82 73.82 64.98 64.86 78.63 75.20 62.22 64.49
∆NDTI t−1t +∆NDTI t−2t 73.48 72.87 70.71 66.38 78.43 73.87 68.12 66.83
∆NDTI t−1t+1 76.25 72.45 72.80 70.37 81.45 78.12 75.12 71.36
NDV I −NDTI 70.32 64.66 66.99 51.59 86.18 80.69 51.20 51.59
∆NDV I t−2t −∆NDTI t−2t 85.04 78.44 52.63 54.33 91.43 85.12 54.73 59.13
∆NDV I t−2t +∆NDTI t−2t 89.22 85.27 61.56 64.35 66.29 62.09 66.35 51.59
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Using two thirds of the preprocessed field data, each classifier was trained twice: the first time
with metrics directly computed on the signal and second time on metrics derived from smoothed time
series. The performance of the six classification (three algorithms and two sets of metrics) was assessed
by means of the error matrix and derived statistics, such as: the overall accuracy (OA), the Kappa
coefficient (κ), the omission and commission errors (OE and CE) and the F1-score. In the framework
of desert locust habitat monitoring, [32] showed that accuracy varies from one region to another and also
along seasons within the same region. Therefore, the spatial, temporal and thematic variability of the
classification accuracy has also been analyzed: (1) the RAMSES points were gathered by macro-region
(i.e., homogeneous ecological units defined by [2]), and the global classification error (1 − OA) by
macro-region has been represented spatially; (2) the RAMSES points were grouped by month, and the
global error for each month was computed; and (3) the classification errors were calculated for each
three vegetation density categories of the RAMSES database (“low” (25 points), “middle” (625 points),
“dense” (368 points)).

3.4. Near-Real-Time Simulation Study Case

To assess the near-real-time capabilities of the proposed method, the most accurate classification
method was then applied to a region of Mauritania from July 2010–June 2011 on a 10-day basis. To
mimic the operational context, metrics are computed along the season with all images that would be
available at the date of interest. To ensure consistency with the green area product, the method was only
applied to pixels flagged as vegetation by the green area, as only vegetation can dry. One of the strengths
of the dynamic greenness maps of the green area was its color code, allowing users to rapidly interpret
the vegetation status and relate it to locust development [32]. Similarly, a color code was established for
the dry season thanks to a simple time meter accumulating the detections for 1, 2, 3 and 4 or more 10-day
intervals of each class. To the three classes discriminated by the algorithm (growth, density reduction
and drying), the “dry” class was added for pixels not detected as vegetation anymore. In practice, this
color code allows the interpreter to identify quickly, on the one hand, the areas from where the locusts
are flying away (“dry” and “drying”) and, on the other hand, the areas still to be prospected, as density
reduction might favor gregarization (“density reduction”).

4. Results and Discussion

4.1. Metric Evaluation

Regarding the discrimination of the “growth” and “decrease” classes (Figure 3a), the accumulated
slopes ∆NDV I t−1t +∆NDV I t−2t present the maximum accuracy with an area under the curve of 93.11%
and an overall accuracy of 87.72%. Discrimination is strengthened when the slope is computed over a
longer period and then accumulated as it smooths the local variability (Figure 4a). Other metrics have
an AUC ranging from 70% to 93% and an OA of 64%–87%. NDVI features (AUC from 88% to 93%),
systematically outperforming their NDTI counterparts (70%–76%). Features combining the two features
have an AUC in between these ranges.
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Regarding the distinction of the “density reduction” and “drying” classes (Figure 3b), the slope
of NDTI calculated with a delay of one 10-day interval (∆NDTI t−1t+1 ) shows the highest accuracy
measures. With an AUC of 72.80% and an OA of 70.37%, these values are lower than those found
for the first step of discrimination. Despite ∆NDTI t−1t + ∆NDTI t−2t and ∆NDTI t−1t+1 , all metrics
discriminate the first level more accurately than the second, highlighting the difficulty in discriminating
the classes “density reduction” and “drying”. Even with their coarser spatial resolution, NDTI features
consistently discriminate better than the NDVI features (OA of 64%–70% and 55%–59%, respectively).
The difference between NDVI and NDTI yields poor result. This confirms that noise is added due
to different factors, such as soil type and humidity, relief and the geometry of observation (view and
Sun angles). As the “density reduction” class is not exclusive, misclassification errors between the
“density reduction” and the “drying” classes might be “false alarm”, as the vegetation may still dry (or
less likely, remain green) and see its density reduced simultaneously. Again, these NDTI and NDVI
metrics sandwich the accuracy of the metrics that combine them. This tends to confirm the rationale of
the study that postulates that the joint use of NDVI and NDTI enhance the recognition capabilities of
vegetation dynamics.

(a) (b)

Figure 4. Temporal profiles (2009–2011) of NDV I , ∆NDV I t−1t + ∆NDV I t−2t , NDTI
and ∆NDTI t−1t+1 of a RAMSES point. (a) Temporal profiles NDTI and ∆NDTI t−1t+1 ;
(b) Temporal profiles NDTI and ∆NDTI t−1t+1 .

With smoothing, the results of the ROC curves displayed an improvement in the discrimination of
classes, especially for the first level of classification. The slope of NDVI with a delay of one 10-day
interval (∆NDV I t−1t+1 ) shows the best result for the distinction of categories “growth” and “decrease”
(AUC of 96.07% and OA of 91.39%), while the slope of NDTI with a delay of one 10-day interval
(∆NDTI t−1t+1 ) separates best the classes “density reduction” and “drying” (AUC = 75.12% and OA =
71.36%). In particular, smoothing the data increases the accuracy of slope indices computed using
data following the date of interest (∆NDV I t−1t+1 ) by 10%. This can be partly explained by the reduced
influence of the signal drop following the growth peak due to the smoothing.

4.2. Classification Benchmarking

The performance of the three classification methods was evaluated by global and class-specific
accuracy measures (Table 4). The classifiers were trained with the RAMSES data and with the two best
performing metrics of the unsmoothed (∆NDV I t−1t +∆NDV I t−2t and ∆NDTI t−1t+1 ) and smoothed case
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(∆NDV I t−1t+1 and ∆NDTI t−1t+1 ). The ML had consistently the poorest performance, while SVM yielded
the best overall results with an overall accuracy of 72.33% and a Kappa of 57.74%. The difference of
SVM with the DT was marginal: only 1% lower for the OA and the Kappa coefficient. The standard
deviation of the overall accuracy was estimated at 2% for all three methods. Overall, the kappavalues
range between 42% and 57%, which qualifies the accuracy as moderate according to Landis’ and
Koch’s scale.

Table 4. Accuracy parameters of the three classifiers with original and smoothed data. DT,
decision tree.

Classifiers
Omission Errors Commission Errors F1-score

OA κGrowth Dens. Sen. Growth Dens. Sen. Growth Dens. Sen.

DT 16 46 29 13 33 42 85 59 63 71 56
SVM 14 49 25 15 30 41 85 58 65 72 57
ML 38 62 15 10 40 53 72 46 60 61 42

DTSmoothing 11 36 31 7 32 40 90 65 63 76 63
SVMSmoothing 9 43 27 10 29 38 89 62 66 76 63
MLSmoothing 31 51 13 5 27 54 79 57 59 67 51

The omission and commission errors, as well as the F1-score reveal all the complexity to discriminate
the density reduction from the dry vegetation. The highest omission errors are obtained for the “density
reduction” (46% for the DT and 49% for the SVM), while “drying” shows the highest commission error
(42% for the DT and 41% for the SVM). Samples belonging to “density reduction” are often omitted and
erroneously attributed to the class “drying”, which contributes to its commission error. In comparison,
omission and commission errors of the “growth” class remain limited, with 16% and 13% for the DT
and 14% and 15% for the SVM, respectively. The F1-score reflects these trends and is therefore higher
for “growth” (85% for the DT and 85% for the SVM) and then lower for “drying” (63% and 65%) and,
finally, for “density reduction” (59% and 58%).

Smoothing the time series prior to metric extraction was found to improve the accuracy (Table 4):
the overall accuracy increases by 6% for the ML (OA of 67%, σOA of = 1.8%), by 5% for the DT
(OA of 76%, σOA of 1.9%) and by 4% for the SVM (OA of 76% σOA of 1.8%). However, smoothing
might appear as a constraint in an operational context, as smoothed metrics of 10-day interval t will
require the image of 10-day interval t + 1. Thus, smoothing delays the timing of monitoring by 10 days,
and the optimal trade-off between timeliness and accuracy that meets the operational needs has yet to
be identified.

All errors do not affect desert locust habitat monitoring similarly. Omission errors for drying
vegetation (25%–29%) result in a loss of efficiency, as surveys in those unfavorable areas are not
required. On the contrary, commission errors for this class (41%–42%) impact operations more
negatively, as those areas could still be potential habitat for locusts. Errors for the “density reduction”
class strongly affect the operations, as these areas still require surveying, because vegetation might
still be green. When vegetation contracts into smaller patches, migrating insects gather to feed [7].
Mutual stimulation resulting from aggregation of solitary individuals in resources area leads to
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gregarization [12]. Thus, habitat fragmentation concentrates the locust population and increases the
chances of contact (and gregarization), which favors recrudescence [12].

4.3. Analysis of the Error

As vegetation density has a strong influence on the measured surface reflectance, its impact on the
detection performances was investigated by grouping the RAMSES samples into three density classes:
“low” (25 points), “moderate” (625 points) “high” (368 points). The classification error decreases as the
density increases for both detection DT and SVM (Figure 5). The decrease of ten percent between the
“low” and the “moderate” density categories demonstrates the limit of the classifiers: a low vegetation
density increases the risk of misclassification. The sensor’s spatial resolution (500 m) might also be a
limiting factor for low vegetation density patch recognition.
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Figure 5. Vegetation density influence on the overall error of the DT and the SVM.

The spatial distribution of the error was analyzed by stratifying the overall error by macroregion.
This underlines the importance of the north-south climatic gradient on the detection accuracy (Figure 6).
The error ranges from 18% to 34% for the DT and from 9% to 38% for the SVM classifier. However,
these figures should be carefully interpreted with respect to the number of samples contributing to their
computation (e.g., the error in the southwest region derived from only 11 points). The comparison of
macroregions totaling a statistically sufficient number of samples leads to the following conclusion: the
error rate increase in northern regions associated with more arid conditions. For instance, the southern
region of Rguiba-Hodhein (216 samples) presents an error of 24% for the DT and of 20% for the SVM,
as opposed to the northern region of Aftout (173 samples) where the error reaches 32% for both methods.
It should be noted that even if located further north, the northwest region (202 points) displays a lower
error rate than the Aftout region, especially for the SVM. This observation stresses the importance of the
intrinsic characteristics of the ecological homogeneous regions within the climatic gradient. Indeed, regs
of the northwest are covered by large vegetation patches when favorable rains occur, e.g., in 2010–2011,
whereas the interdune landscape of Aftout favors discontinuous and limited vegetation patches.

Finally, the error repartition along time was investigated. Indeed, climatic variations along the
seasons play an important part in plant development: the rainy season is associated with large and
rather continuous and dense vegetation patches as opposed to the dry season, when vegetation is sparse.
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Ground data were clustered by month from August 2010–May 2011, and the overall error was assessed
(Figure 7). In August, a typical month of the rainy season, the overall error is low for both classification
methods (8% for the DT and 4% for the SVM). The error increases continuously during the following
months with two peaks in October and January. High error values in April and May, the driest months of
the covered period, stress the difficulty of accurate detection in the dry season. The observed error peak
in October is explained looking at the spatial distribution of observation: ground observations shift to the
north in October. In fact, survey teams follow the bio-geographical dynamics of locust populations that
move up north to still vegetated areas. From an operational point of view, the interest of the dynamic
dryness map lies at the end of the rainy season, at the onset of senescence. This onset appears in southern
regions between September and October, but around January in northern regions. Hence, the onset of
dryness in northern regions should be interpreted more cautiously than in southern areas.
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Figure 6. Distribution of the overall error distribution (1−OA) in the different macroregions.
(a) Overall error of the DT and number of data points per macroregion. (b) Overall error of
the SVM and number of data points per macroregion.
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Vegetation density appears thus as the driving factor for the error explanation, resulting in differential
accuracies in both space and time according to the vegetation dynamics. Overall, the two classifiers
are affected similarly by the density and the temporal and spatial factors. It is worth noting the
interdependence of the factors: vegetation density depends on the climate and the season, as well as
on the type of habitat. It is also worth mentioning that monitoring dry vegetation with the NDTI derived
from MODIS uses spectral bands at 500-m spatial resolution. The monitoring is thus achieved at the
cost of a loss in spatial details compared to the green area product (250-m). This would be overcome
when considering higher spatial resolution satellites, such as Landsat-8 or the future Sentinel-2, which
have coarser, but similar MODIS SWIR bands, allowing one to compute NDTI-like indices at 30 and
20 meters of spatial resolution, respectively. The potential of future monitoring based on 20/30-m rather
than 250/500-m is clearly promising, particularly because the capability to identify vegetation density
seems to play a critical role. This kind of spatial resolution would considerably reduce the resolution
bias resulting from mixed coarse-resolution pixels [68] in fragmented areas, such as inter-dune vegetation
patches or when vegetation patches cluster. This would also improve substantially the accuracy in the
more arid northern areas. Nevertheless, the operational production of such 20/30-m dynamic maps
represents a technical challenge, as the timeliness of their delivery is critical for planning the activities of
national control centers and survey teams. Besides, providing an update on a 10-day basis would require
the use of both Sentinel-2 A and B and most certainly their combination with Landsat-8 in order to ensure
a sufficient temporal coverage. In the case of large cloud contamination, the fusion of high-resolution
with low-resolution imagery ought to be considered.

Still, these findings have to be related to the bio-geographical cycle of desert locust in Mauritania.
The senescence detection allows clearly a reliable mapping in summer breeding areas located in the
south of the country. According to Babah and Sword [69], the south and southwest represent the
main, if not the only breeding areas. Detections are less accurate in winter and autumn breeding areas
dominated by fragmented vegetation patches where the vegetation density appears as the key limiting
factor for detection at 500-m. These northern areas are mainly survival biotopes, but they remain
fundamental for desert locust reproduction and, thus, for monitoring. Even if the assessment is limited to
Mauritania, similar findings are expected in other areas of the distribution area, especially in those with
similar climates.

4.4. Near-Real-Time Dynamic Dryness Mapping Case Study

In the previous section, it was found that the SVM and the DT perform equivalently. However, the
DT looks more efficient for larger-scale implementation, because its simpler decision rules require less
computing time, which is particularly valuable for near-real-time monitoring. In order to demonstrate
the potential of the method to capture vegetation senescence dynamics, DT was applied every ten days
on images covering a subset region of Mauritania from the beginning of July 2010 to the end June 2011,
which simulates an operational context well. This area covers the intersection of the “southwest” and
“Aftout” regions (Figure 8). The north-south climatic gradient is well represented, as shown by the small
number of pixels detected by the green area in the northern part of the area labeled as bare soil in the land
cover map (Figure 8a). The diagonal shown as bare soil corresponds to the highway linking Nouakchott
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to Nema. The presence of the town of Boutilimit and neighboring villages, with a high grazing pressure,
explains the low canopy cover along the highway. The bare small circles enclosed in the vegetation
(Figure 8b) correspond to villages. The landscape is mainly composed of narrow dunes with a NE-SW
orientation and separated by rolling plains.
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Figure 8. Characteristics of the studied area. (a) Land occupation (source: GlobCover
2009). (b) Maximum values of green area from 1 June 2010–31 May 2011

Consequently, the three classes (“growth”, “density reduction” and “drying”) were mapped every ten
days (Figure 9). Grey areas are pixels labeled as grassland on the land cover map that are not detected
as green vegetation during the considered 10-day interval. The vegetation growth appears gradually
and first in the southeastern part and then spreads to northern regions, according to the rain progression
along the rainy season. The vegetation density reduction first appears mainly in the south during the
second 10-day interval of September 2010 (Figure 9f), then generalizes in October and, finally, leads
to senescence in early November. However, this cycle does not occur homogeneously throughout the
area. Drying patches appear during the first 10-day interval of September 2010 (Figure 9e), especially
around the villages and the highway, while these pixels were not detected by the green area before and
are classified as growing in late September (Figure 9g). Two areas identified as “growth” appear after a
drying of the vegetation; one west near the highway on 11 October 2010 (Figure 9i) and one east during
the next 10-day interval (Figure 9j). Some vegetation patches, predominantly in the north, become first
senescent and loose their density afterwards as the transition from 01 October 2010 (Figure 9h) to 21
October 2010 shows (Figure 9j).

As these observations concern large areas, it limits the probability of misclassifications due to noise.
Several reasons can explain the temporal evolution of these patches. First, sporadic rains heavily
influences vegetation: a rainfall event, even limited spatially, may lead to a re-greening of the vegetation.
Second, the vegetation density reduction can occur at any time by the combined action of wind and
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grazing pressure. This does not necessarily precede drying and can also follow it or occur concurrently.
In the cases of density reduction occurring due to dryness, locusts should have already migrated, because
they depend on green vegetation for feeding. Thus, in areas where the vegetation has already started to
dry, the risk of gregarization by the concentration of populations is lower, and the survey teams may
be redirected.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t)

Figure 9. Classification into ∎ “growth”, ∎ “density reduction” and ∎ “drying” every 10-day
from the 21/07/2010 to the 21/01/2011 (a–s). Map (t) summarizes the dynamic dryness
status at the end of the second 10-day interval of October. It highlights areas less suitable for
desert locusts (in grey and yellow scales).
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In terms of desert locust monitoring, the dynamic dryness map (as shown in Figure 9t) highlights the
areas where vegetation has already dried out (grey), as well as where and for how long vegetation is in
senescence (orange shades) or its density decreases (yellow-brown shades). This color code allows the
interpreter to identify quickly, on the one hand, the areas from where the locusts are flying away (grey and
yellow-brown shades) and, on the other hand, the areas still to be prospected, as density reduction might
favor gregarization (orange shades). Those areas flagged in grey and yellow are less likely to shelter
desert locusts, as they seek fresh and green vegetation to feed. Survey teams currently in those areas can
be redirected to more favorable habitats (orange tones), translating into more efficiency monitoring in a
cost-effective fashion.

5. Conclusions

Given the differential feeding behavior of desert locust and the extent and remoteness of their
distribution area, remote sensing appears as a valuable tool for mapping their potential habitats. This
study used 10-day MODIS mean composites over Mauritania to demonstrate the identification of the
onset of dryness, as an indicator of a loss of attractiveness of habitats for locusts. The detection method
relies on the temporal behavior of two indices: the Normalized Difference Vegetation Index, depending
on green vegetation, and the Normalized Difference Tillage Index, sensitive to both green and dry
vegetation. Two temporal metrics of NDVI and NDTI were selected by ROC curves for their ability
to discriminate between three classes: “growth”, “density reduction” and “drying”. Three algorithms
were benchmarked, and the decision tree was found to be both accurate (71%) and computationally
economical. Smoothing the time series prior to the extraction of the metrics increased the overall
accuracy by 5%. Several factors affected the classification accuracy: the north-south climatic gradient,
the vegetation density, the period at which the vegetation was mapped and the relief. Finally, the method
was applied over a southern region of Mauritania for the years 2010–2011. The resulting dynamic
dryness maps appeared consistent with the seasonal vegetation cycle. The results obtained pave the
way for the first operational implementation of the senescence dynamic maps and, consequently, further
strengthen the capacity of the locust control centers, as well as supporting FAO’s preventative control
strategy. As density appears as the key limiting factor, new and future satellites, such as Landsat-8 and
the future Sentinel-2, will allow computing NDTI-like indices at 30 and 20 meters of spatial resolution,
respectively, leading subsequently to a more accurate vegetation status recognition. The use of a longer
time series of data is also expected to strengthen the results.
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