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Abstract: Supervised target detection and anomaly detection are widely used in various 

applications, depending upon the availability of target spectral signature. Basically, they 

are based on a similar linear process, which makes them highly correlated. In this paper, 

we propose a novel adjusted spectral matched filter (ASMF) for hyperspectral target 

detection, which aims to effectively improve target detection performance with anomaly 

detection output. Specifically, a typical case is presented by using the Reed-Xiaoli (RX) 

anomaly detector to adjust the output of supervised constrained energy minimization 

(CEM) detector. The adjustment is appropriately controlled by a weighting parameter in 

different detection scenarios. Experiments were implemented by using both synthetic and 

real hyperspectral datasets. Compared to the traditional single detection method (e.g., 

CEM), the experimental results demonstrate that the proposed ASMF can effectively 

improve its performance by utilizing the result from an anomaly detector (e.g., RX), 

particularly in situations with a complex background or strong anomalies. 

Keywords: hyperspectral imagery; adjusted spectral matched filter; constrained energy 

minimization (CEM); Reed-Xiaoli detector (RXD); receiver operating characteristics (ROC) 
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1. Introduction 

Hyperspectral imaging (HSI) provides significant information about spectral characteristics of 

materials in the surface of the Earth [1]. Due to high spectral resolution, each pixel (considered as a 

vector) in a hyperspectral dataset can be seen as a “fingerprint” of the underlying materials within the 

spatial point. Based on these spectral signatures, HSI has extraordinary potential to identify small 

targets of interest [2]. The targets, as mentioned here, are primarily man-made objects or objects with 

signatures being spectrally distinct from image background, which are generally embedded in a single 

pixel area and cannot be easily identified by visual inspection [3]. The major objective of hyperspectral 

target detection is to detect these targets by exploiting the spectral signatures of the materials. As a 

result, over the last decade, target detection has received considerable interest in the HSI community, 

and has been widely used in reconnaissance and surveillance related applications [4,5]. 

In general, detection algorithms can be divided into two categories [6–8]. One is with known target 

signature, which to directly decide whether or not the pixel is a target. Another is anomaly detection, 

which is to search pixels whose spectral signatures are different from their surrounding background. 

In supervised target detection, the target spectral characteristics are often defined by a single target 

spectrum [9] or a target subspace [10]. Spectral matched filter (SMF), as a standard technique, is 

widely used in detecting objects of interest in HSI [11]. SMF is based on the assumption of a linear 

model where the spectral signature of the target and the background clutter covariance matrix are 

assumed to be known. Another well-known signature-based approach is constrained energy 

minimization (CEM) [2], where a finite impulse response (FIR) filter is designed to maintain the 

desired target while minimizing the entire image output energy. In contrast to SMF, the use of 

correlation matrix in CEM may be easier to be implemented in real-time processing [12,13]. The 

orthogonal subspace projection (OSP) algorithm [14,15] is based on maximizing the signal-to-noise 

ratio (SNR) of the target in the subspace orthogonal to the background. Other matched subspace 

detectors (MSD) can also be derived from the generalized likelihood ratio test (GLRT) by constructing 

different subspace models [16–18]. In [10], an adaptive matched subspace detector was introduced, 

which is now called adaptive coherence estimator (ACE). Additionally, all the above target  

detectors can be extended to their corresponding nonlinear versions through the use of a kernel-based 

approach [19,20]. 

In anomaly detection, no prior knowledge of the target spectral signature is used. In [21], a spectral 

anomaly detection algorithm was developed for detecting targets of unknown spectral distribution. 

This algorithm is now commonly referred to as the Reed-Xiaoli (RX) anomaly detector which has been 

successfully applied to many hyperspectral anomaly detection applications [22]. It is considered as the 

benchmark anomaly detection algorithm. Several variations of the RX detector have been proposed in 

the literature [12,23–26]. As an example, in [12], a modification to the RX algorithm was derived by 

substituting the correlation matrix for the covariance matrix, so that RX can be implemented in  

real-time more easily. A subspace model has also been investigated in anomaly detection [27].  

In subspace anomaly detectors, the input spectra are projected onto a subspace, whose bases are 

defined by some projection vectors. Both subspace and RX anomaly detectors intend to suppress the 

background clutter. Similar to the signature-based supervised target detectors, all the aforementioned 

anomaly detectors can be extended to corresponding kernel-based nonlinear versions as well [28,29]. 
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Signature-based target detection and anomaly detection generally are considered as two independent 

tools. However, it is easy to find that there are inextricable links between these two kinds of 

algorithms. This is due to the fact that they are based on a linear process that exploits the first or 

second order statistics to identify targets, estimating the background covariance matrices or their 

corresponding subspaces [6,30]. Based on this observation, target and anomaly detectors can be 

considered as detection pairs, in which, target detection performance can be improved by considering 

anomaly detection output. In this paper, we analyze the connections in a typical detector pair (i.e., the 

CEM and RX algorithms), and, specifically, we propose an adjusted spectral matched filter (ASMF) to 

improve the performance of CEM target detection by adjustment according to the corresponding RX 

anomaly detector. Note that both CEM and RX utilize the second order statistics, although high-order 

statistics may offer some advantage [31]. 

The remainder of this paper is organized as follows. Section II briefly describes CEM and RX 

algorithms. In Section III, the ASMF is proposed by combining the CEM and RX. Section IV conducts 

a detailed evaluation of the proposed method using synthetic data. Section V performs experiments 

using real hyperspectral datasets. Finally, section VI draws the conclusion. 

2. CEM and RX Algorithms 

In this section, we provide a short overview of the CEM and RX algorithms. One is a classical 

method in supervised target detection, and the other is the benchmark of anomaly detection. 

2.1. CEM Algorithm 

Given a finite set of observations S={r1,r2,…,rN}, where ri=(ri1,ri2,…,riL)T for 1 ≤ i ≤ N is a sample 

pixel vector. Suppose that the desired signature d is also known a priori. The objective of CEM is to 

design a FIR linear filter with L filter coefficients {w1,w2,…,wL}, denoted by an L-dimensional vector 

w=(w1,w2,…,wL)T that minimizes the filter output energy subject to the following constraint: 

1
1
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l ll

d w

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Let yi denote the output of the designed FIR filter resulting from the input ri. Then yi can be  

written as: 
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Therefore, the average output energy produced by the observation set S and the FIR filter with 

coefficient vector w=(w1,w2,…,wL)T  specified by Equation (2) is given by: 

 2

1 1 1

1 1 1TN N NT T T T T
i i i i ii i i

y
N N N  

   
          
   w wr r w rr w w R w  (3)

where 
1

1 N T
i iiN 

   R rr  turns out to be the L × L sample autocorrelation matrix of S. 

Minimizing Equation (3) with the filter response constraint 
1

1
LT

l ll
d w


 d w  yields: 

 2

1

1
min min

N T
ii

y
N 
   w w

w R w  subject to 1T d w  (4)



Remote Sens. 2015, 7 6614 

 

The solution to Equation (4) was shown in [2] and called CEM detector with the weight vector w* 

given by:  
1

*

1T






R d
w

d R d
 (5)

Thus, the CEM algorithm can be written as: 
1 1

1 1

* (CEM( ) )
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2.2. RX Algorithm 

The RX algorithm is given by: 
1RX( ) ( ) ( )T

b b
 x x u x u (7)

where ub is the estimated background mean vector and ∑ is the estimated background covariance matrix, 

which can be estimated globally from the whole hyperspectral image or locally with a dual-window. In this 

research, the global detection is applied. To estimate ∑ globally, the background pixels are usually 

modeled as a mixture of multivariate Gaussian distributions. The RX(x) in Equation (7) actually is a 

measure that calculates the well-known Mahalanobis distances. Mathematically, RX also can be 

considered as an inverse operation of the principal components analysis. 

Furthermore, in order to improve the performance of CEM, our interest is focused on a simplified 

RX version which was introduced in [12] by replacing the sample covariance matrix by the sample 

correlation matrix. As a result, the RX algorithm can be also written as: 
1RX( ) T x x R x  (8)

which uses x and R−1 in place of (x-ub) and ∑−1, respectively, so that RX can be easily implemented in 

real-time without updating the sample mean, and there is no visible and appreciable difference for RX 

to use ∑−1 or R−1 [32]. 

3. Adjusted Spectral Matched Filter 

In the section, we further analyze the relationship between CEM and RX. By taking advantage of 

their respective features, we build a novel ASMF algorithm for target detection. 

3.1. The Relationship between CEM and RX 

It is important to note that the target detection result generated by the CEM algorithm can be 

visualized as a grayscale image, in which, the higher the probability of detecting a target, the greater 

the output value of the pixel. Targets are claimed in terms of the value returned by CEM, so that the 

pixel with the highest value of CEM(x) will be considered the first target, and so on. Notice the 

denominator in Equation (6) is a constant, so the CEM can be written as: 

1

CEM( )
T

M




x R d

x
 

(9)

where M=dTR−1d as a constant can be discarded. Thus, we can easily find that there is a close 

relationship between the formula xTR−1x of RX and the numerator xTR−1d of CEM. 
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These two processes can be written as (xTR−1/2)(R−1/2x) and (xTR−1/2)(R−1/2d) separately [33], and 

both of them can be considered as a two-step processing. The first step is projecting the signal x into 

the operator R−1/2. This step represented as xTR−1/2 constrains the background into a very low level  

(to eliminate principal component) while retaining or amplifying anomalous signatures. In the second 

step, RX returns the energy of xTR−1/2 directly, while CEM calculates the energy of xTR−1/2 by 

projecting it onto R−1/2d. This means, by CEM, those pixels similar to the target signature will be 

amplified and that do not match the target signature will be suppressed again. In other words, through 

this step, CEM can extract the targets from a set of anomalies (which are potential targets). 

However, CEM cannot always generate a satisfactory result. In some situations, the operator R−1/2 is 

only with difficulty able to suppress all the background energies effectively, and there may be some 

low probability objects maintaining great power [34,35]. Sometimes, the energy of an anomaly (which 

unfortunately is not a target) is too strong to be constrained under the desired target level, which leads 

to false alarm. 

A practical detection experiment is used to illustrate this circumstance. When detecting a real target 

in a dataset [36] as shown in Figure 1, the CEM output includes many unacceptable false alarms,  

as shown in Figure 2a. On the other hand, by performing the RX anomaly detection, we can see that 

the greatest false alarm in the CEM output is also the strongest anomaly in the result of RX, as shown 

in Figure 2b. Here is the dilemma: we detect targets through a supervised target detection algorithm 

but are interfered by many unwanted anomalies, while we detect all the anomalies through anomaly 

detection but do not know which one is the desired target. It is expected that the proposed ASMF can 

resolve such a dilemma. 

 

Figure 1. 3D cube of the Target Detection Self-Test dataset including HyMap  

reflectance images of Cook City in Montana, USA, cover an area of 280 × 800 pixels with 

126 spectral bands. 

(a) (b) 

Figure 2. Hyperspectral image target detection results, where (a) is CEM result and (b) is 

RX result. 
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3.2. Adjusted Spectral Matched Filter 

As shown in Figure 2, both the CEM and RX detectors constrain most pixels in the scene to a very 

low level with regard to background pixels. For abnormal pixels, due to the constraint of the target 

vector, the output of CEM is decreased relatively compared to the RX output. Only for the target 

pixels, the output of CEM may be increased. Therefore, even if there are many abnormal pixels with 

large output energy, by comparing the results of CEM and RX, we can determine whether the anomaly 

is a true target or a false alarm. In this way, we can construct a comparing factor for the outputs of 

target and anomaly detectors pixel-by-pixel. Finally, this factor is used as a feedback to adjust the 

results of CEM to increase the reliability of target detection. 

For the CEM and RX algorithms, we construct a factor for the ASMF as 
-1

-1
=

T

T
A

x d

x x

R

R
. Furthermore, 

a weighting factor n is added to A so that we can control the strength of the adjustment. Thus,  

the ASMF is expressed as: 

ASMF( )=CEM( ) nAx x  (10)

where 
1

1
CEM( )

T

T
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


x R d

d R d
x  is the output of CEM, An as an adjusting factor shows the likelihood of an 

anomaly being a target, and n is a predefined power (which can be simply 1 or 2). Obviously, by this 

adjustment, those pixels similar to target and have been extracted by CEM, will be amplified again;  

but those non-target pixels with large anomalous energy will be reduced. 

Since background energy has been reduced to a low level due to the constraint in CEM, the 

adjusting factor A aims to enhance real targets from the potential ones. Thus, factor A  with a larger 

weight n can increase the separability between the real targets and other anomalous pixels, which 

would generate better detection performance. However, due to the diversity of background and the 

existence of noise, significantly increasing the weight n may also amplify non-target pixels, resulting 

in new false alarms. To illustrate this phenomenon, the ASMF with different values of n are tested in 

the real hyperspectral dataset (Figure 1). As shown in Figure 3, the weight n is set to 0, 0.5, 1, 2, 3, and 

4, respectively. When n is set to 0, the ASMF becomes the CEM algorithm, and there are two main 

anomalous outputs greater than the target (Figure 3a). When n = 0.5, the target output is obviously 

enhanced but still less than the anomalies (Figure 3b). With the increased n, the proposed ASMF 

method compresses the outputs of anomalies to smaller values, which is helpful to highlight the 

targets. Unfortunately, when the weight n  continues to increase (such as n = 4), some background 

pixels are amplified to a high level, as shown in Figure 3f. To quantitatively evaluate the detection 

performance of using different n, the receiver operating characteristic (ROC) curves [37] are adopted. 

As shown in Figure 4, the detection performance rises continuously from n = 1 to n = 2, and the 

performance of n = 3 is close to that of n = 2. However, when the weight n exceeds a threshold value 

(n = 4 in this experiment), the performance of ASMF begins to degrade. Therefore, we choose 1 and 2 

as the parameter of ASMF, which provide stable detection performance. 

In addition, we compare the computational complexity of five different methods which are CEM, 

RX (using covariance matrix and correlation matrix respectively), ASMF with n = 1, and ASMF with 

n = 2. The computing times of each algorithm obtained by a MATLAB program in the real data 
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detection (Figure 1) are listed in Table 1. The computer utilized in the experiments is equipped with an 

Intel Core 2 Quad CPU with 2.5 GHz and 4 GB of main memory. As we can observe from this table, 

the CEM detection is faster than RX using covariance matrix, but the RX (using correlation matrix) 

without moving the mean value will be slightly faster than CEM. The computing time of ASMF is 

longer than both CEM and RX, but it is still acceptable for actual applications. 

 

Figure 3. 3-D plots of the detection results for the HyMap dataset by implementing 

different weight n in ASMF. 

 

Figure 4. ROC curves corresponding to the detection results reported in Figure 3. 

Table 1. Computing time of five algorithms in the detection of the HyMap real data. 

Algorithm CEM 
RX Using  

Covariance Matrix 

RX Using  

Correlation Matrix 
ASMF n = 1 AMSF n = 2 

Computing time 3.90 s 4.06 s 3.80 s 6.75 s 6.86 s 
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It is worth mentioning that, when n = 1, 
1 1

1 1

T T

T T

 

 


x R d x R d

d R d x R x
 has a similar but different form with 

ACE, which is 
1

1 1)
ACE( )

T

T T



 


2(x R )

(d R d (x R x)

d
x . Their difference will be demonstrated in the following 

experiments. Furthermore, both the CEM and RX algorithms can be restructured by changing the 

correlation matrix to covariance matrix and the proposed ASMF method can also be applied.  

4. Experiments with Synthetic Data 

To demonstrate the performance of ASMF, synthetic data are used first. As shown in Figure 5, an 

airborne visible/infrared imaging spectrometer (AVIRIS) [38] dataset covers an area of 320 × 320 pixels, 

and its spatial resolution is approximately 5 m. The image has 224 spectral channels in wavelengths 

ranging from 370 to 2510 nm, in which the wavelengths of 1350–1420 and 1810–1940 nm are  

water-absorption bands and removed in the experiments. To generate synthetic data, specific targets were 

implanted into this scene. 

 

Figure 5. 3D cube of the AVIRIS dataset cover a farmland area of 320 × 320 pixels with 

193 spectral bands. 

4.1. Experiment Using Data without Strong Non-Target Anomalies 

This dataset is a farmland scene in which, the land cover types comprise five main classes, which 

are, soil, tree, grass, sand, and greenhouses. We chose a mineral named actinolite as the implanted pure 

target, whose standard spectrum was from the U.S. Geological Survey (USGS) Digital Spectral 

Library. In order to make it consistent with the AVIRIS data cube, the target spectrum was rescaled to 

the same range of the image and resampled according to the AVIRIS wavelength.  

The target implant method in [39] was used in our work, which is expressed as: 
(1 )f f    z t b (11)

where synthetic spectral signature z with a specified abundance fraction f from a desired target t, 

contaminated by a background signature b, is simulated. By this method, a 5 × 5 target panel with 

different implant fraction f from 0.1 to 0.5 is generated. This means that the implanted targets are all 

sub-pixels. The locations of each target and the implant fractions are shown in Figure 6a, and the 

spectra of target and five main classes of background are shown in Figure 6b. 
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(a) (b) 

Figure 6. (a) Color rendering of the AVIRIS image and implanted target locations.  

(b) Target spectral signature and background classes have spectral signatures in the 

AVIRIS dataset. 

Furthermore, in order to consider noise effect [40,41], we added additive zero-mean white Gaussian 

noise to the test dataset. Different noise variances were in different bands, with the signal-to-noise ratio 

(SNR) being defined as: 
2 2

dB 10 signal noiseSNR 10log ( / ) 
 (12)

where 
2
signal  and 2

noise  are variances of signal and noise components, respectively. Finally, we 

generate five synthetic test datasets with SNR being10 dB, 15 dB, 20 dB, 25 dB, and 30 dB, 

respectively. For each synthetic dataset, we employ the following algorithms for comparison: (1) RX; 

(2) CEM; (3) ACE; (4) the proposed ASMF with n = 1; and (5) the proposed ASMF with n = 2. 

ROC curves are also adopted to quantitatively evaluate the detection performance. Figure 7 shows 

the ROC curves of the detection results, with different SNR values. 

It can be seen that, compared to the conventional CEM, our proposed ASMF method improves the 

detection rate while reducing the false alarm rate (FAR). Further, ASMF with n = 2 produces better 

performance than n = 1 in all the five tested datasets. In addition, as shown in Figure 7, when the SNR 

value is more than 25dB, the ROC curve of ACE coincides with the curve of ASMF with n = 1, which 

means they have similar performance. However, with the increasing of noise level, the ACE algorithm 

yields more false alarms than both of the ASMF and the CEM. To better demonstrate this point, the 

FARs under 100% detection [39] for the four algorithms in comparison are shown in Figure 8. In fact, 

we can see that the FARs of the ASMF with n = 1 is always less than the ACE method, especially in 

the data with SNR = 10 dB. Figure 9 show the detection output transect plots of row 54 using the four 

methods on the test datasets with SNR = 10dB. As shown in Figure 6a, there are five implanted targets 

with 10% implanted fraction in this row. From Figure 9b,c we can see that, although the five target 

pixels are detected by the ACE and ASMF (n = 1), all the outputs of ACE are positive, while in 

ASMF, some of them are negative. In most situations, they generate very similar detection 

performance. However, when the target energy is small, the ACE may lead to more FARs. From 

Figure 9d, it can be seen that the ASMF with n = 2 maintains target energy and suppresses most other 

outputs, which offers the best separability between the targets and other non-target pixels. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 7. ROC curves of AVIRIS dataset, when the SNR value of white noise is (a) 30 dB, 

(b) 25 dB, (c) 20 dB, (d) 15 dB, and (e) 10 dB. 
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Figure 8. False alarm rate under 100% detection of the synthetic dataset with different 

degree of white Gaussian noise. 

(a) (b) 

 

(c) (d) 

Figure 9. Detection test statistic transect plots of line 54 in synthetic dataset with adding 

10 dB white noise. (a) CEM, (b) ACE, (c) ASMF with n = 1, (d) ASMF with n = 2. 

4.2. Experiment Using Data with Strong Non-Target Anomalies 

Another synthetic data experiment is arranged to examine detection performance in the situations 

where there are other undesired anomalies. For this purpose, we implant two kinds of mineral spectra 

in the AVIRIS dataset, and use one of them as the target. In order to increase the difficulty of 

detection, we chose two similar spectral signatures but belonging to different minerals. As shown in 

Figure 10a, the minerals, named nontronite and actinolite, are used in our experiment. Then, we chose 

the actinolite spectrum as the pure target signature, and the same implant method are used for 

implanting 20 targets with different implanted fractions from 10% to 40%. While the pure spectral 

signature of nontronite is implanted as five undesired anomalies laying in a right row of the 

hyperspectral scene. The detailed locations of both target and anomaly are provided in Figure 10b. 
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(a) (b) 

Figure 10. (a) Implanted target and anomaly spectral signatures. (b) Implanted target and 

anomaly locations. 

Figure 11a–e show the 3-D target detection results. From these figures, we can see that the 

implanted spectral signature of nontronite is detected as apparent anomalies in the output of RX. In the 

results of CEM algorithm, the five anomaly pixels maintain the largest output, while many targets 

(implanted fractions are less than 20%) can be hardly observed. The ACE and the ASMF with n = 1 

can detect all the 20 targets and suppress anomalies to a lower level, but it is still higher than small 

abundance targets. Only in the detection result of ASMF with n = 2, all of the outputs of 20 targets are 

greater than both background and anomalous pixels. 

(a) (b) 

(c) (d) 

Figure 11. Cont. 
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(e) 

Figure 11. 3-D plots of the detection results for the AVIRIS dataset. (a) RX, (b) CEM,  

(c) ACE, (d) ASMF n = 1, and (e) ASMF n = 2. 

Here, we again use the detection output of row 54 to illustrate the performance of each algorithm. 

From Figure 12 we can see that, in this synthetic dataset, the proposed ASMF with n = 2 can detect all 

the different abundance targets without any false alarm, which shows more effective detection. 

 
(a) (b) 

 
(c) (d) 

Figure 12. Detection results transect plots of line 54. (a) CEM, (b) ACE, (c) ASMF with  

n = 1, (d) ASMF with n = 2. 

5. Experiments with Real Data 

5.1. Experimental Design and Dataset 

Real hyperspectral datasets are provided by the Digital Imaging and Remote Sensing Group in 

Center for Imaging Science at Rochester Institute of Technology. These datasets include a self-test  

set and a blind-test set, which were successfully applied for performance evaluation in previous  

studies [42–44]. As shown in Figure 1, the datasets include HyMap [45] reflectance images of Cook 

City in Montana, USA, covering an area of 280 × 800 pixels with 126 spectral bands. The ground 

resolution of imagery data is approximately 3 m. This dataset is also equipped with the exact locations 
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and standard spectral library (SPL) files of all the test targets, so it is one of the standard datasets for 

hyperspectral target detection. There is a grass region located in the self-test dataset, as shown in 

Figure 13a marked by the yellow box. Four real fabric panels (F1–F4) as targets were arranged in this 

region and details of them are listed in Table 2. The spectrum of each target is obtained and 

preprocessed by the project-equipped SPL files. By rescaling the SPL spectra to the true reflectance 

data and re-sampling the SPL spectra according to the sensor wavelength, we obtain the prior target 

spectra for detection, as shown in Figure 13b. Figure 13c–f illustrate the ground truth image including 

different targets. 

Table 2. Characteristics of real targets. 

Name Size Type 

F1 3 × 3 m Red Cotton 
F2 3 × 3 m Yellow Nylon 
F3a 2 × 2 m Blue Cotton 
F3b 1 × 1 m Blue Cotton 
F4a 2 × 2 m Red Nylon 
F4b 1 × 1 m Red Nylon 

  

(a) (b) 

    

(c) (d) (e) (f) 

Figure 13. (a) RGB composites of the HyMap self-test dataset with the location of the 

grass region. (b) Four target spectral signatures. (c–f) Ground truth photos of targets F1, 

F2, F3, and F4, respectively. 

Before starting the experiments, we use the RX algorithm to simply view the distribution of 

potential anomalies in this dataset. As shown in Figure 14, there are abundant anomalies existing in the 

city region, which are distinct from natural background. In contrast, the grass region where the targets 

are present shows few abnormal points. For this reason, both local and global images are used to 

evaluate our algorithm. Since all the targets were located in the open grass region, the portion of  

90 × 90 pixels was chosen as the local image which covers the entire open grass region (see  

Figure 13a). For the global image, the whole hyperspectral dataset is used, which includes 

heterogeneous background increasing the difficulty of target detection. 



Remote Sens. 2015, 7 6625 

 

 

Figure 14. 2-D plots of the detection results of the RX algorithm. 

5.2. Experiment Using a Local Image with Homogeneous Background 

In the experiment using the local image, the background is relative homogeneous. The detection 

results are reported in Figure 15. The left column lists the locations of F1–F4 in this grass region, then, 

the 2-D plots of the detection results of CEM, ACE, ASMF with n = 1, and ASMF with n = 2 are 

shown from left to right, respectively. In order to show the detection results more clearly, all the 2-D 

plots are simply linearly enhanced from 0 to the max. We can observe that all the compared algorithms 

can detect the targets. The difference is that the proposed ASMF method provided brighter target 

pixels and less isolated pixels as false alarms, especially when n = 2. For quantitative evaluation 

purposes, Figure 16 presents the ROC curves corresponding to the detection results reported in  

Figure 15. Further, we compare the target detection FARs under 100% detection of the four algorithms 

in Table 3. In the detection of target F2, all the algorithms detected the target effectively with no false 

alarm. In the detection of target F1, F3 and F4, these curves and the FAR scores reveal that our 

proposed ASMF offers a lower FAR, which is more superior to the conventional CEM algorithm.  

It should be pointed out that, in this considered dataset, the ACE and ASMF with n = 1 exhibit the 

same detection performance. 

     
(a) 

     
(b) 

     
(c) 

Figure 15. Cont. 
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(d) 

Figure 15. Locations and detection results obtained by the compared algorithms of (a) F1, 

(b) F2, (c) F3, and (d) F4, where results of CEM, ACE, ASMF with n = 1, and ASMF with 

n = 2 are shown from left to right in each row. 

 
(a) (b) 

(c) (d) 

Figure 16. ROC curves corresponding to the detection results reported in Figure 15. (a) 

F1, (b) F2, (c) F3, and (d) F4. 

Table 3. FARs under 100% detection. 

Algorithms CEM ACE ASMF n = 1 ASMF n = 2 

F1 4.95 × 10−4 6.18 × 10−4 6.18 × 10−4 2.47 × 10−4 

F2 0 0 0 0 

F3 1.24 × 10−4 0 0 0 

F4 2.30 × 10−3 2.00 × 10−3 2.00 × 10−3 2.00 × 10−3 

5.3. Experiment Using the Entire Image with Heterogeneous Background 

In the experiment of using the global image, the 2-D plots of the detection results of all the 

compared algorithms for different targets are shown in Figure 17a–d. Obviously, the added pixels, 
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especially the abnormal pixels in the city region, greatly interrupt target detection. In the outputs of the 

CEM, the brightest pixels are distributed in the city region (as shown in the detection of F1, F3 and 

F4), which are conspicuous false alarms. By using our proposed ASMF method, the false alarms are 

partly suppressed while the real targets are enhanced. In particular, the ASMF with n = 2 produces the 

fewest false alarms and the largest target outputs. 

Based on these detection results, the ROC curves are shown in Figure 18, and Table 4 lists the 

FARs by each algorithm under 100% detection rate. In the comparison, we can see that our proposed 

ASMF method greatly improved the detection performance. In the detection of F1, F2, and F4, ASMF 

with n = 1 has the same performance as ACE and is better than CEM. However, in the detection of F3,  

the ASMF with n = 1 performs more excellently than ACE. In this work, the ASMF with n = 2 

generates the best performance. As shown in Table 4, it is remarkable that the proposed ASMF with  

n = 2 provided the lowest FAR than other compared methods. 

CEM ACE 

  
ASMF n=1 ASMF n=2 

  
(a) 

CEM ACE 

  
 ASMF n=1 ASMF n=2 

  
(b) 

Figure 17. Cont. 
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CEM ACE 

  
ASMF n=1 ASMF n=2 

  
(c) 

CEM ACE 

  
ASMF n=1 ASMF n=2 

  
(d) 

Figure 17. 2-D plots of the detection results using the whole HyMap dataset by all the 

comparison algorithms of (a) F1, (b) F2, (c) F3, and (d) F4. 

(a) (b) 

Figure 18. Cont. 
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(c) (d) 

Figure 18. ROC curves corresponding to Figure 17 of (a) F1, (b) F2, (c) F3, and (d) F4. 

Table 4. FARs under 100% detection. 

Algorithms CEM ACE ASMF n = 1 ASMF n = 2 

F1 8.08 × 10−4 3.3 × 10−4 3.3 × 10−4 1.25 × 10−4 

F2 4.91 × 10−5 0 0 0 

F3 3.83 × 10−3 1.14 × 10−3 6.29 × 10−4 4.69 × 10−4 

F4 1.20 × 10−3 3.21 × 10−4 3.21 × 10−4 9.38 × 10−5 

In summary, the experiments conducted using both local and global real datasets indicate 

satisfactory performance of the proposed ASMF method. Although the original CEM algorithm can 

detect targets effectively in many circumstances, the ASMF can be more adaptive in a complex 

environment where there exist strong abnormal pixels. We believe that the ASMF is a simple yet 

powerful method to improve the original target detection performance. 

5.4. Analysis of Using Covariance Matrix 

All the algorithms can be implemented using the covariance matrix. Thus, in this subsection,  

we further investigate the performance difference between the algorithms with the covariance matrix. 

The ROC curves are shown in Figure 19, where the correlation-based algorithms (RX-R, CEM-R, 

ACE-R and ASMF-R) marked by the thin lines are compared to the standard covariance-based 

algorithms (RX-C, CEM-C, ACE-C and ASMF-C) marked by the thick lines. 

We can see that, in the detection of target F1–F3 (Figure 19a–c), the results of covariance-based 

algorithms are slightly better than those algorithms with correlation matrix, but in the detection of target 

F4 (Figure 19d), the situation is reversed. In fact, these two kinds of algorithms have similar detection 

performance in our experiments, and both of them are improved by the proposed ASMF method, 

especially when n = 2. It is worth mentioning that, although in most situations the ROC curve of ASMF 

with n = 1 coincides with the curve of ACE (using correlation or covariance matrix), it offers better 

performance than ACE in the detection of target F3, as shown in Figure 19c. For clearer demonstration, 

the 3-D detection results of target F3 by ASMF with n = 1 and ACE are shown in Figure 20. Obviously, 

the performance improvement is owed to keeping the sign of the detection results. 
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(a) (b) 

(c) (d) 

Figure 19. ROC curves of the HyMap real hyperspectral datasets according to the 

correlation-based and covariance-based algorithms when the target is (a) F1, (b) F2, (c) F3, 

and (d) F4. 

 

(a) (b) 

 

(c) (d) 

Figure 20. 3-D plots of the detection results of target F3. (a) ACE-R; (b) ACE-C;  

(c) ASMF-R (n = 1); (d) ASMF-C (n = 2). 
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6. Conclusions 

In this paper, we presented a novel ASMF method based on the combination of supervised target 

detection and anomaly detection. A typical case was demonstrated by fusing CEM and RX algorithms, 

in which, RX detection result was used to adjust the output of CEM. Meanwhile, to pursue the 

effective adjustment and avoid over-amplification of background signals, a tunable factor was arranged 

to control the strength of the adjustment. Experimental results on synthetic and real data show that the 

proposed method significantly improved the target detection precision in comparison with the  

original method. 
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