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Abstract: Coal fires that are induced by natural spontaneous combustion or result from 

human activities occurring on the surface and in underground coal seams destroy coal 

resources and cause serious environmental degradation. Thermal infrared image data, 

which directly measure surface temperature, can be an important tool to map coal fires 

over large areas. As the first of two parts introducing our coal fire detection method, this 

paper proposes a self-adaptive threshold-based approach for coal fire detection using 

ASTER thermal infrared data: the self-adaptive gradient-based thresholding method 

(SAGBT). This method is based on an assumption that the attenuation of temperature 

along the coal fire’s boundaries generates considerable numbers of spots with extremely 

high gradient values. The SAGBT method applied mathematical morphology thinning to 

skeletonize the potential high gradient buffers into the extremely high gradient lines, which 

provides a self-adaptive mechanism to generate thresholds according to the thermal spatial 

patterns of the images. The final threshold was defined as an average temperature value 
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reading from the high temperature buffers (segmented by 1.0 σ from the mean) and along a 

sequence of extremely high gradient lines (thinned from the potential high gradient buffers 

and segmented within the lower bounds, ranging from 0.5 σ to 1.5 σ and with an upper 

bound of 3.2 σ, where σ is the standard deviation), marking the coal fire areas. The 

SAGBT method used the basic outer boundary of the coal-bearing strata to simply exclude 

false alarms. The intermediate thresholds reduced the coupling with the temperature and 

converged by changing the potential high gradient buffers. This simple approach can be 

economical and accurate in identifying coal fire areas. In addition, it allows for the 

identification of thresholds using multiple ASTER TIR scenes in a consistent and uniform 

manner, and supports long-term coal fire change analyses using historical images in local 

areas. This paper focuses on the introduction of the methodology. Furthermore, an 

improvement to SAGBT is proposed. In a subsequent paper, subtitled “Part 2, Validation 

and Sensitivity Analysis,” we address satellite-field simultaneous observations and report 

comparisons between the retrieved thermal anomalies and field measurements in different 

aspects to prove that the coal fires are separable by the SAGBT method. These 

comparisons allowed us to estimate the accuracy and biases of the SAGBT method. As an 

application of the SAGBT, a relationship between coal fires’ decadal variation and coal 

production was also examined. Our work documented a total area increase in the beginning 

of 2003, which correlates with increased mining activities and the rapid increase of energy 

consumption in China during the decade (2001–2011). Additionally, a decrease in the total 

coal fire area is consistent with the nationally sponsored fire suppression efforts during 

2007–2008. It demonstrated the applicability of SAGBT method for long-term change 

detection with multi-temporal images. 

Keywords: spontaneous coal combustion; gradient convolution; mathematical morphology 

thinning; gradient thresholding method; temperature and emissivity separated (TES) 

algorithm; long-term monitoring  

 

1. Introduction 

Coal fires, which occur on the surface (primarily in coal waste piles) and in underground coal seams 

and are caused by spontaneous combustion, natural events (lightning, forest fires, and peat fires), and 

human activities (mining and domestic fires), cause severe environmental effects. These effects 

include noxious gas emissions (e.g., SO2, NO, CO, and CH4), an increased concentration of heavy 

metals in the soil (e.g., mercury, zinc, copper, lead, iron, and germanium), and land surface effects 

associated with fissures, cracks, land subsidence, and collapse [1–6]. Coal fires can also be responsible 

for the total or partial loss of the coal resource. According to the literature [7], the annual CO2 

emission of the Wuda syncline amounts to 90,000 to 360,000 tons. 

The methods involved in the detection of coal fires typically incorporate the identification of 

changes in the land surface temperature, electrical conductivity, magnetic field, heavy metal 

concentration, and gas emissions, whereas remote sensing-based coal fire research mainly focuses on 
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coal fire-related thermal anomaly detection [8]. The first reported study on the detection of 

spontaneous coal seam combustion and used infrared photography in coal waste pile fires [9]. Through 

developments in airborne thermal infrared sensors, coal fires and the depth of burning were detected in 

Pennsylvania [10]. Airborne thermal infrared data acquired during the daytime and nighttime have 

been used to identify high-temperature targets against low-temperature backgrounds [11]. Then, the 

use of orbital images (Landsat-5 Thematic Mapper (TM) and NOAA-9 AVHRR) in the isolation of 

high-temperature areas from cold backgrounds during the night was evaluated [12]. It has been reported 

that the Landsat TM bands 4, 5, and 7 performed well when estimating areas affected by fires [11].  

The Landsat TM bands 6 and 7 were then used in the same region [13]. A dual infrared band algorithm 

based on the Landsat TM data has been used to delineate areas affected by underground fires [14]. 

After the launch of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

sensor in 1999, ASTER data with five thermal infrared (TIR) bands and a 90 m spatial resolution 

became a highly respected moderate resolution data source for coal fire research. ASTER has been 

considered the primary data source for coal fire detection in related studies [15,16] and has been used 

in combination with other data sources as reference data for cross-validation in the literature [8,17,18].  

Multiple coal fire anomaly detection methods have been applied using LANDSAT-5 TM, LANDSAT-7 

ETM+, and ASTER by many authors [8]. The density slicing method using a temperature threshold 

was previously applied [19–21]. These thresholds are economical and effective for a regional study 

site, specific sensor, or certain weather condition. Methods based on sub-pixel analysis have also been 

used in fire detection. As initially proposed [22] and recently employed [2], sub-pixel approaches 

estimate the temperature of each pixel, considering two pure pixels representing areas with different 

temperatures. This method is effective to estimate the pixel’s sensitivity to coal fires. However, due to the 

high variability in a coal fire’s distribution (e.g., spots, lines, and regions), it is difficult to locate uniform 

proportions to match the fire’s area inside of a pixel. In addition, the sub-pixel algorithm relies on  

high-resolution images or survey data for sub-pixel modeling, which may not be promptly available. In 

addition, the contextual or moving window method for thermal anomaly detection has been used by 

multiple authors [23–25]. The moving window method is exquisitely designed and applied to a series 

of spatial filters, which are square windows in dimensions of continuous odd numbers. A statistical 

threshold was used to tag the potential coal fire-induced anomaly pixels. Then, the pixels identified as 

fires were counted, and a cut-off percentage was given to separate the anomaly pixels that were then 

aggregated to clusters. For fine-tuning, a false alarm removal criterion was applied. Therefore, non-fire 

patches were excluded by their dimension, standard deviation, and contrast to neighboring background 

pixels. Through this process, large thermal anomalies, flat temperature areas, and small hot spots 

(corresponding to water bodies, illuminated slopes, and industrial plants, respectively) were removed. 

This method is non-interactive and depends on a statistical threshold (the mean value plus the standard 

deviation) to determine potential fire-related anomaly pixels in the window and a cut-off percentage 

(70%) to segment the potential fire pixels into the final coal fire pixels from a counting number matrix. 

The window size depends on the rate of correctly detected pixels. The determination of these thresholds 

and the window size is statistically based and depends on the known coal fires [26]. Moreover, a 

comprehensive or multiple field fusion method has been proposed in the literature [27–29], which 

identifies anomaly pixels by combining the related environmental or geological fields (vegetation 

coverage, pyro-metamorphic rocks, fumarolic minerals, burn pits, trenches, subsidence, and cracks, 
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along with surface thermal anomalies) and the knowledge of many local experts. This in situ-based 

approach has a sound physical basis and considers the direct and indirect factors induced by coal fires 

but can be costly due to its dependency on field measurements. This approach partly depends on 

“indigenous” knowledge, which is not accessible for non-local researchers and is not easily 

reproduced, as mentioned in the literature [27].  

In the Wuda Coalfield, the fire areas with consistently burning fire spots have exhaust gas 

vents/cracks exposed on the surface that are detectable by remote-based methods and would not be 

masked by the background temperatures of approximately 300 K. On 27 March 2013 we measured an 

average temperature of 770 K (497 °C) for the burning fire spots in the field survey, which was 

conducted to obtain the peak temperatures on the surface. In an experiment of a simulated coal fire [25], 

it has been reported that the surface radiant temperatures of the coal fire range from 300 °C to 900 °C  

(573 K–1173 K). 

Based on the coal fire’s thermal level and spatial characteristics, this study proposes a self-adaptive 

gradient-based thresholding method (SAGBT) for coal fire detection in the absence of basic 

field/geological data. The thermal spatial characteristics of coal fires can be summed up in two aspects: 

large-scale homogeneity and poor horizontal thermal conductivity. The coal fire risks were induced by 

the coal properties and environmental conditions [30,31]. In Wuda, the relatively large-scale, 

homogenous, fine yellow quartz sandstone overlays, and the short and sparse vegetation contribute to 

the similar thermal conductivity across the region. However, the thermal anomalies induced by coal 

fire areas do not reach far from the burning centers because they are restricted to the collapsed region, 

faults, and fissures, which results in poor horizontal thermal conductivity and therefore causes a sharp 

decrease in the temperature domain on the edge. A given coal fire cannot be far from the burning 

center, which is supported by the research [32]. In the field, it has been observed that high 

temperatures do not extend more than 2–3 m from the observed hot cracks; in addition, the temperature 

gradients are significant, with temperatures varying by more than 500 °C over a distance of less than 

20 m [32]. These characteristics of coal fires suggest that the attenuation of temperature along the coal 

fire’s boundaries generates considerable amounts of spots with extremely high gradient values, resulting 

in uneven gradients in the integrated pixels (ASTER’s 90 m pixel). This SAGBT method is remote 

sensing-based, primarily depends on the spatial distribution of the most direct coal fire-induced factor and 

energy release, and uses the basic outer-boundary of the coal-bearing strata to simply exclude false alarms.  

This research addresses the following four key issues in coal fire detection: a temperature retrieval 

method for the TIR images; a gradient calculation algorithm based on supersampled images to 

guarantee adequate image matching; a skeletonization method to reduce the gradient buffers to single pixel 

lines; and the determination of thresholds and related convergence analysis for the SAGBT method. 

For monitoring the coal fire changes in the Wuda Coalfield, several authors have successfully 

evaluated the development/shift of coal fire zones, change in area of fires/fire risk regions, and 

background radiance variations. Comparing two Landsat datasets (TM and ETM+) for 1987 and 2002, 

Kuenzer et al. used a maximum likelihood based interactive classification that indicated that the  

coal-covered surfaces nearly doubled in area in the Wuda Region over a 15-year period [33]. Tetzlaff 

(2004) compared two ETM scenes (obtained on 25 September 2001 and 28 September 2002) and two 

BIRD datasets (16 January 2003 and September 2003), and showed that these datasets are capable of 

detecting major shifts or activity changes in terms of hot coal fire surface anomalies and background 
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radiance variations in the Wuda area [17]. Li et al. (2005) also detected coal fires by a statistical 

method from 2002 to 2004 based on multi-spectral coal fire demarcation [34]. Yang et al. (2005) 

normalized two Landsat-7 ETM+ images (obtained on 12 August 1999 and 22 September 2002) and 

extracted thermal anomalies with different surface environmental parameters. The comparison proved 

that the coal fire area in Wuda enlarged greatly in those years [35]. Chen et al. (2007) processed two 

scenes of Landsat-7 TM and ETM+ data for 1992 and 2002 and separated coal fires as thermally 

anomalous areas lying in or around coal containing regions with ancillary data and other images [36]. 

By three-dimensional mapping and comparison analysis, they discovered that the coal fire changes in 

the Wuda Coalfield from 1997 to 2002 increased from 16,200 m2 to 38,610 m2 [36]. Kuenzer et al. 

(2008) introduced a multi-temporal coal fire mapping technique for all major coal bed fires in the 

Wuda coal field based on field observations and high-resolution satellite data [27]. They monitored 

coal fire developments such as shrinkage and change in area for different coal fire zones and proposed 

a protection of valuable coal resources in the Wuda syncline [27]. Kuenzer et al. (2012) applied the 

same approach for coal fire change detection from 2000 to 2005 and in 2010 and showed that over the 

past 10 years a trend can be observed showing underground fires moving eastwards [29]. Jiang et al. 

(2010) monitored coal fires for 1989, 2001, and 2005 in the Wuda Coalfield, and analyzed the spatial 

distribution, rate of change, and extending direction of coal fires. The results indicated an annual fire 

area increasing at the rate of 61.3 × 103 m2 (2.48% of total area) [37]. Kuenzer et al. (2008) used  

multi-diurnal MODIS data, especially bands 20, 32, and band ratio, and proved that MODIS has a high 

potential for the detection of coal fire zones and coal fire hotspots, as well as for regular thermal 

monitoring activities; however, it is difficult to detect coal fire size changes or intensity changes from a 

comparison of only two MODIS data sets [8].  

This coal fire change detection generally compared 2–3 scenes of TIR images, and lacked  

co-analysis with the coal productions. In addition, there is no published research on the use of a remote 

sensing method to perform a change detection analysis for a continuous time period spanning more 

than 10 years in the Wuda Coalfield. Our change detection adopted the no-interactive coal fire 

thresholding algorithm, SAGBT, for estimating the decadal change. On the basis of experiments and 

validation, this algorithm demonstrated convergence and matching of the observed coal fire areas. 

Since the thresholds are self-adapted based on the thermal spatial distribution of different images obtained 

in different seasons, this method provides an opportunity to monitor long-term coal fire changes using the 

TIR images from ASTER sensor. Our research also explores the possibility of estimating the CO2 

emissions due to coal fire propagation using change detection results. A temporal animation performed in 

Google Earth is used to dynamically visualize these changes. As an application and an estimation of 

efficiency for the SAGBT, we analyzed 10 years of change in coal fires via a time-series analysis. 

2. Study Area and Data 

2.1. Study Regions 

The Wuda Coalfield is located in Wuhai City in the southwestern Inner Mongolia Autonomous 

Region of China (Figure 1a). The area is on the northern edge of the Helan Shan mountain range, west 

of the Ordos Plateau, and is located less than 10 kilometers from the western banks of the Yellow 
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River and less than 10 kilometers from the southern edge of the Ulan Buh Desert (Figure 1b). The 

coalfield is bounded by the latitudes 39°28'21.15"N and 39°34'6.01"N and the longitudes 

106°36'21.83"E and 106°39'15.53"E. The altitude varies from 1090 m to 1380 m (average 1207.4 m) 

according to the data from the Shuttle Radar Topographic Mission (SRTM). The study area closed by 

the coalfield’s outer boundary in Figure 1c covers approximately 27.59 km2 and includes the following 

three mines: Suhaitu, Huangbaici, and Wuhushan.  

 

Figure 1. Location of the Wuda Coalfield. (a, b) The study area is in Inner Mongolia, 

China. (c)  The Wuda Coalfield includes three coal mines, which are characterized by an 

“ear-shaped” syncline. The red polygons depict the coal fires for 22 June 2013, 22:58 

(local time: GMT+8), which were extracted by our SAGBT method.  

2.2. Remote Sensing Data for Algorithm Development 

This research used images from the ASTER sensor. ASTER is a payload of NASA’s Terra satellite 

and acquires images at a 15-m spatial resolution using four spectral bands in the visible and  

near-infrared regions (VNIR) (bands 1–3 and 3N) of the electromagnetic spectrum. ASTER has five 

spectral bands in the thermal infrared (TIR) range (bands 10 to 14, from 8.125 to 11.65 μm), which 

produce images at a 90-m spatial resolution. The thermal images from ASTER can be used to retrieve 
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the surface temperature and surface spectral emissivity and have been used in a wide variety of 

applications, including environmental monitoring, geological mapping, and hazard prediction.  

We attempted to obtain the daytime/nighttime ASTER TIR image pairs to represent the thermal 

distribution for different seasons, and then the corresponding Level-1B products (Table 1) were 

processed by a temperature emissivity separation algorithm. However, there is only one pair of 

daytime/nighttime images available over the Wuda Coalfield in ASTER’s historical inventory, which 

includes data for 29 November 2007 (winter images). Thus, we tasked ASTER with acquiring images 

over the study site during the spring and summer of 2013. Two day/night image pairs for the same date 

were acquired on 27 March 2013 (close to the spring equinox) and on 22 June 2013 (summer solstice) 

to calibrate our algorithm. The nighttime TIR images for 12 April 2013 and 1 July 2013 were also 

obtained as supplementary data to compare the nighttime coal fire delineation with the closest 

nighttime images. The historical image pair for 29 November 2007 (winter) was used to illustrate the 

method when applied to a different time of the year/season. An additional scene for 21 September 

2002 was used as a comparison to work performed by others. The published ancillary data and the 

geological data from the literature [38] were used to generate a coal fire risk area composed of the 

outcrop of the lowest coal seam and the over-thrust fault line for the removal of false alarms. All the 

TIR images were cropped by this outer bounding box of the Wuda Coalfield. Unless specified, the TIR 

images are these cropped images in the following sections. In the subsequent paper, “Part 2, 

Validation and Sensitivity Analysis,” we report comparisons using LST measurements during the 

ASTER overpass during the simultaneous field campaigns on 27 March 2013 and 22 June 2013.  

Table 1. ASTER scenes for algorithm development.  

Acquisition Date, Time (month/day/ year time UTC) Day/Night 

03/27/2013 03 Day 

03/27/2013 14 Night 

04/12/2013 14 Night 

06/22/2013 03 Day 

06/22/2013 14 Night 

07/01/2013 14 Night 

11/29/2007 03 Night 

11/29/2007 14 Day 

09/21/2002 14 Night 

2.3. Remote Sensing Data for Decadal Change Detection (2001 to 2011) 

Nighttime data are ideal for this study because solar heating of the Earth’s surface contributes 

significantly to the total radiant energy flux during the daytime. In addition, topographic unevenness 

and land cover/land use differences may cause differential solar heating during the daytime [2]. 

Therefore, the nighttime thermal infrared images can decrease the impact of differential solar heating 

and differences in topography and land cover, such as bare soil and desert [39]. However, because of 

the limited availability of nighttime ASTER data in the Wuda Coalfield, we have used five sets of 

daytime data acquired in 2001, 2003, 2005, 2006, and 2010 to make up for the nighttime ASTER data 

gap. An algorithm developed by combining both daytime and nighttime ASTER data is also a unique 
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aspect of this research. Table 2 provides the scene IDs and dates of the ASTER images used in the 

study. In this paper, we used a simplified scene ID to identify these ASTER images, keeping the first 

eight digits to represent the year, month, day, and hour (local time: UTC+8 hours). 

Table 2. ASTER scenes used in change detection. 

Aster Scene ID 1 Acquisition Date (dd/mm/yyyy) Day/Night 

ASTL1B_0108080402180108190577 8 August 2001 Night 

ASTL1B_0209211454220210140292 21 September 2002 Night 

ASTL1B_0309240347540310110308 24 September 2003 Night 

ASTL1B_0504131458440504160548 2 13 April 2005 Night 

ASTL1B_0510060353310510080444 06 October 2005 Night 

ASTL1B_0612280354140701010054 28 December 2006 Night 

ASTL1B_0711291458560806290389 29 November 2007 Day 

ASTL1B_0804211459100804240676 21 April 2008 Night 

ASTL1B_1003260354351003290102 26 March 2010 Night 

ASTL1B_1101241458341101270384 24 January 2011 Night 

ASTL1B_0108080402180108190577 23 December 2013 Day 
1 ASTER Scene IDs follow the image identification system used by the ASTER GDS, Japan Space Systems. 

The first 12 digits represent the date and time (UTC) of data acquisition (yymmddHHMMSS), in the 

following we used this shortened Scene IDs with first 8 digits; 2 This scene is a repaired image. The original 

image had a triangle-shaped data gap in the northeast part of the image, which occupied 2% of the coalfield area 

and influenced 4.21% and 2.83% of the coal fire area in the previous and next images, respectively. To complete 

the change detection, this gap was filled with mean values of pixels from the two images before and after this 

acquisition date. We estimated the fire area influenced by this data gap would not change the trend of the fire area. 

2.4. Coal Production Data for the Wuda Coalfield 

The coal production data for the last decade were collected from published coal industrial yearbooks 

(SACMS 2001–2011) and a news report from the local official newspaper, Inner Mongolia Daily [40,41]. 

3. Preliminary Data Preprocessing and Analysis 

3.1. Atmospheric Correction 

The Thermal Atmospheric Correction module in ENVI®, which incorporates an in-scene 

atmospheric compensation (ISAC) algorithm [42], was applied to the Level 1B ASTER images prior to 

their incorporation into the temperature inversion workflow. This algorithm has been widely used on 

multispectral thermal infrared and hyperspectral images [43]. The methods based on ISAC use the 

actual at-aperture radiance data in the hyperspectral image cube to remove the atmospheric influence 

associated with atmospheric transmissivity, up-welling path radiance, and down-welling sky 

irradiance. ISAC does not use any site-specific weather data, such as temperature, relative humidity, or 

air pressure, which makes this algorithm suitable for studying remote sites, such as our study site. 
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3.2. Land Surface Temperature and Land Surface Emissivity Retrieval 

A variety of methods and algorithms has been proposed to retrieve the Land Surface Temperature 

(LST) and Land Surface Emissivity (LSE) from thermal infrared data. Methods to retrieve the LST 

that compensate for the emissivity effects can be classified into the following three categories:  

Single-channel methods, two-channel or split-window methods, and two-angle methods [44–46]. The 

single-channel methods rely on accurate atmospheric profiles [47], which are unavailable for our study 

site and image acquisition dates. The popular split-window method requires prior knowledge of the 

emissivity. The two-angle method requires one measurement at a significantly longer atmospheric path 

and depends on knowledge of the angular distribution of the surface emissivity [48,49]. These methods 

are unsuitable for complex land surfaces [45]. Emissivity methods have been proposed to estimate the 

LSE or its shape, and common LSE algorithms include the reference channel method [50], normalized 

emissivity method (NEM) [51], alpha residuals [52], thermal spectral indices [53], and spectral  

ratio [54]. A complex temperature emissivity separation (TES) technique for the ASTER data has been 

proposed [55], which combines multiple modules, including approaches based on NEM, relative 

emissivity ratio, and maximum minimum difference (MMD), with an absolute accuracy of 1–4 K and a 

relative accuracy of 0.3 K [55]. 

In this study, we used the TES-MMD method considering the following: (1) the availability of 

multispectral capabilities in the thermal infrared region of the ASTER sensor and (2) the lack of 

surface emissivity data and historical meteorological data, which are required when using the  

single-channel and split window methods. 

3.3. Reasons for Gradient-Based Thresholding: Seasonal and Diurnal Variations in the  

Thermal Distribution 

The LST was inverted through the TES-MMD process. Then, these thermal distributions were 

mapped in color-filled contour maps to demonstrate the seasonal and diurnal (day/night) variations in 

the thermal patterns. First, we compared the ASTER-derived thermal distribution for the nighttime 

images acquired on the following four dates: 27 March 2013, 22 June 2013, 21 September 2002, and  

8 December 2007. These dates are close to the spring/autumnal equinoxes and the summer/winter 

solstices and can adequately represent the four seasons. 

We mapped the thermal levels to a uniform color scale from 260 K to 310 K (Figure 2). Green tones 

predominate for the nights of the spring/autumnal equinoxes, with average temperatures of 278.06 K  

for 27 March 2013 and 283.69 K for 21 September 2002. On the night of 22 June 2013 (summer  

solstice), the map shows a warmer tone, corresponding to a mean LST value of 293.62 K. The mean 

temperature for the night of 8 December 2007 (close to the winter solstice) was 268.75 K, and cold 

blue tones predominate. 
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(a) (b) 

(c) (d) 

Figure 2. Thermal distribution over the Wuda Coalfield for the nighttime ASTER images 

acquired on the following four dates: (a) 27 March 2013; (b) 22 June 2013; (c) 21 

September 2002; and (d) 8 December 2007. 

For the day/night analysis of the thermal distribution patterns, we then assumed that the thermal 

levels during the spring and autumnal equinoxes are similar, and we chose 27 March 2013 to represent 
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the spring and fall considering the limited availability of ASTER images (Figure 3a). The image pair for  

22 June 2013 (summer solstice) represented the summer (Figure 3b) and the image pair for 29 November 

2007 represented the winter season (Figure 3c). The differences in the mean temperatures between the day 

and night can be observed as follows: 26.55 K for spring (day = 304.61 K, night = 278.06 K);  

11.06 K for summer (day = 304.68 K, night = 293.62 K) and 11.15 K for winter (day = 280.18 K,  

night = 269.03 K). Briefly, the day and night temperature difference during the spring is more dramatic 

than during the winter and summer. For the winter map, the fire areas present a brighter contrast 

compared with the background, considering the relatively lower mean LST. In addition, the temperatures 

for the winter map are distributed more similarly between the day and night than in other seasons.  

We observed a general seasonal variability in the daytime and nighttime thermal levels. The thermal 

anomalies, however, showed similar daytime and nighttime spatial distribution patterns for a given 

date, thus allowing for the retrieval of the anomalies during the daytime and nighttime. 

Anomaly identification using a single threshold has shown limited success in separating the thermal 

contributions from the background; thus, a relative or dynamic threshold approach is proposed. Our 

temperature gradient-based thresholding model assumes that the thermal gradient distribution should 

be stable within a short period, although the distribution of high temperatures is significantly different 

considering summer/winter or daytime/nighttime.  

 
(a) (b) (c) 

Figure 3. Cont. 
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(d) (e) (f) 

Figure 3. Thermal distribution map of the day/night pairs for the same date during 

different seasons representing spring/fall, summer, and winter. The images were acquired 

on (a) 27 March 2013, 11:48 A.M.; (b) 22 June 2013, 11:54 A.M.; (c) 29 November 2007, 

11:54 A.M.; (d) 27 March 2013, 22:53 P.M.; (e) 22 June 2013, 22:59 P.M.; and (f) 29 

November 2007, 22:58 P.M.;  Local Time: GMT+8. 

3.4. Thermal Anomalies and the Definition of Coal Fire Areas 

It was observed that the temperature of a coal fire area during the combustion stage was higher than 

61 °C (334 K) [31]; the average temperature at cracks is 237 °C (510 K) [32]. By summarizing 

multiple coal fire studies, the temperatures around the fire sources have been determined to range from 

150 °C (423 K) to 250 °C (523 K) [2]. The coal fire in the Wuda Coalfield initiated from spontaneous 

combustion spots, propagated along the cracks, and merged into a plane [31]. Therefore, not all the 

pixels were saturated, especially at the hot spot and along the thermal conducting cracks, where the 

pixels are a mixture of fire zones and lower temperature surfaces. In certain areas, the pixel-integrated 

temperature was below the fire source (423 K–523 K, 150 °C–250 °C) and the minimum temperature 

values for spontaneous combustion (334 K).  

A criterion to determine the threshold to separate thermally anomalous pixels (hot spots) from the 

background pixels is essential, but using certain temperatures does not work due to different locations, 

coal properties, and environmental conditions. Therefore, we defined coal fire areas as temperature 

anomalies derived from the TIR images restricted by strip boundaries, in which the LST sharply 

decreases from the high temperature burning centers to a low temperature background temperature. 

We used this definition to flag pixels with temperatures above a threshold, which was defined as an 

average temperature reading from the high temperature buffers (with a range greater than 1.0 σ from 
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the mean) and along the extremely high gradient lines (thinned from the potential high gradient buffers 

segmented within the lower bound range 0.5–1.5 σ and the upper bound 3.2 σ, with σ as the standard 

deviation), as coal fire areas. The potential high gradient buffers are redundant in screening out the 

homogeneous low gradient background and the extremely high gradient points resulting from the 

burning spots. The high temperature buffers were defined by a segment value of 1.0 σ from the mean. 

Because we observed that the thermal anomalies segmented by 1.6 σ fit the surveying map of 21 

September 2002 very well, we considered a 0.6 σ tolerance factor to our 1.0 σ as a lower bound to 

compensate for the differences caused by uneven solar heating, variations in slope, aspect, and 

vegetation cover, which can mask the thermal anomalies related to coal fires, according to the field 

survey observations [32]. 

4. Algorithm of SAGBT 

4.1. The Workflow of SAGBT 

As shown in the algorithm flow chart (Figure 4), the source of the data is a temperature image  

(Figure 4a) derived from a temperature retrieval method. A gradient calculation method (Figure 4 “[2]”) 

was used to profile the magnitude of the difference among the adjacent pixels. The gradient image 

(Figure 4b) recorded the significance of the temperature variation. To connect extremely high gradient 

pixels, we used two procedures. First, we segmented the gradient images by a pair of lower and  

upper bounds, such as 1.0–3.2 σ, and retained the relatively high gradient values (see the process in 

Figure 4 “[3]”). These intermediate segmented gradient pixels around the high temperature anomalies 

form ring shaped areas, called potential high gradient buffers (Figure 4c). Then, a mathematical 

morphology thinning method (see the process in Figure 4 “[4]”) was applied to skeletonize these ring 

areas into lines with a width of one pixel, called extremely high gradient lines (Figure 4d).  

 

Figure 4. Flow chart of the gradient-based thresholding algorithm. The gray rectangles are 

processing modules (“1” to “7”). The bent rectangles are temporary or final files (“a” to “g”). 
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Another branch of this method is to segment the high temperature areas. These areas can prevent 

the reading of low temperatures from cold areas along the extremely high gradient lines. We used a 

relative board segment value of 1.0 σ to guarantee a high-temperature area (defined as high temperature 

buffers in Figure 4e), which was used to match the 11 extremely high gradient skeletons to obtain  

11 different intermediate thresholds; each threshold equals a mean temperature along an extremely high 

gradient skeleton. Finally, the average value of the 11 intermediate thresholds is considered as the threshold 

(Figure 4f) for a temperature image. Among these image processes, a basic outer boundary of the  

coal-bearing strata is used to subset the image within the coalfield to narrow down the target coal fire areas 

and remove false alarms. The key steps (including the gradient calculation, potential high gradient buffer 

segmentation, high temperature buffer segmentation, mathematical morphology thinning, and threshold 

identification) are specifically presented in the following sections. In this study, these automatic fire 

detection modules were implemented using Interactive Data Language (IDL). 

4.2. Gradient Calculation 

The thermal images used in this study were supersampled to facilitate geometric matching between 

the VNIR and TIR images. During the supersampling, one original TIR-derived pixel was resampled 

into 36 pixels with a single LST value. For these supersampled datasets, we applied a gradient filter 

structure modified from the common Sobel filter and expanded the structure to calculate pixels for 

intervals of six pixels. The convolution structures incorporated into the methodology are presented in 

Equations (1) and (2), as follows: 
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Only the magnitude of the gradient was retained, considering our assumption that the extremely 

high gradient values are strongly correlated to the coal fire’s edges. The gradient orientation was not 

observed to contribute to the threshold calculation. Figure 5b shows the high gradient lines distributed 

along the 90 m pixel boundary when the common Sobel filter was applied to the supersampled image. 

When using our extended Sobel filter, the gradient image calculated by Equations (1)–(4) showed 

smooth and more reasonable bright lines in Figure 5c around high temperature areas in Figure 5a. 

 
(a) (b) (c) 

Figure 5. Gradient calculations from the temperature images: (a) temperature image for  

27 March 2013 (unit: K); (b) gradient image resulting from the original Sobel method (the 

horizontal and vertical lines with high gradient values match the pixel edges of the original 

90 m resolution thermal image (unit: K/m); (c) gradient image divided by our expanded 

Sobel convolutions (unit: K/m). 

4.3. Potential High Gradient Buffers 

In the gradient counter map, we found extremely high gradient centers located at the center of the 

small closed counters that were distributed into rings (Figure 6), which form the potential boundaries 

of coal fires. Thus, an intermediate result consisting of the potential high gradient buffers segmented 

by a lower bound and higher bound was used to include these extreme centers. These buffers were then 

skeletonized to the extremely high gradient lines to trace the extremely high gradient centers.  

These potential high gradient buffers became thinner and shorter as the lower and higher 

segmentation bounds became narrower. As shown in Figure 7, narrower potential high gradient buffers 

allow for more accurate threshold identification, but fewer pixels are available to define the shape of 

the coal fire area. Through visual interpretation, we found that the extremely high gradient values 

surrounding the thermal anomalies range from 0.03 to 0.05 (Figure 7a–c). Values higher than 0.05 

correspond to strong burning areas and values lower than 0.03 correspond to areas with stable 
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temperature. Thus, we proposed wider potential high gradient buffers ranging from 0.5 σ to 3.2 σ to 

include these extremely high gradient centers.  

 
(a) (b) (c) 

Figure 6. Potential high gradient buffers compared with a rough thermal anomalies map. 

(a) Generally declares the range of digital values in each image greater than the mean value 

plus the 1.6 Standard deviation (Mean + 1.6 σ) as thermally anomalous; (b) gradient 

counter map, mapped with digital values ranging from Mean + 1.0 σ to Mean + 3.2 σ; (c) 

overlay map with the rough anomalies map and gradient counter map. 

 
(a) (b) (c) 

Figure 7. Potential high gradient buffers segmented using a different lower segment bound 

for the 27 March 2013 image: (a) segment values ranging from 0.5 to 3.2 σ; (b) values 

ranging from 1.0 to 3.2 σ; and (c) values ranging from 1.5–3.2 σ. 
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4.4. High Temperature Buffers 

Figure 8a,b illustrate that the majority of the extremely high gradient lines are located along the 

edges of the potential high temperature areas. However, a small number of those lines were located 

around low temperatures, which could lead to an incorrect identification of the coal fires. These false 

positives were eliminated by overlaying the high temperature buffers to restrict the thinned gradient 

lines within the high-temperature areas. The survey data indicated a match between the coal fire areas 

and the temperature images, particularly for temperatures above a threshold range 1.6 σ to 2.0 σ from 

the mean value. Therefore, the high temperature buffers were defined using an extended segment value 

of the mean temperature plus 1.0 σ, which is an empirical value with sufficient tolerance in the 

temperature domain. As shown in Figure 8b, the 1.0 σ segmentation threshold produced high 

temperature buffers. The statistics regarding these buffers for multiple ASTER scenes are presented  

in Table 3.  

(a) (b) 

Figure 8. Segmented high temperature buffers for 27 March 2013, 11:54 (Local Time:  

GMT+8). (a) High temperature buffers segmented by the mean value plus 0.5 σ; (b) high 

temperature buffers segmented by the mean value plus 1.0 σ. 

  

WGS84, UTM Zone 48N
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Table 3. Mean and standard deviation for the temperature images from multiple ASTER scenes. 

No. 
Date Time of 

Acquisition 
Day/Night 

MEAN T 

(K) 
STDEV, σ 

Mean + 0.5 

σ 

Mean + 1.0 

σ 

Mean + 1.6 

σ 

Mean + 2.0 

σ 

1 2013/03/27 03 Day 304.61 2.31 305.77 306.93 308.32 309.25 

2 2013/03/27 14 Night 278.06 1.90 279.01 279.96 281.09 281.85 

3 2013/04/12 14 Night 283.92 1.95 284.90 285.87 287.04 287.82 

4 2013/06/22 03 Day 304.68 1.91 305.63 306.59 307.73 308.50 

5 2013/06/22 14 Night 293.62 1.39 294.32 295.01 295.84 296.40 

6 2013/07/01 14 Night 292.35 1.51 293.10 293.86 294.76 295.36 

7 2007/11/29 03 Day 280.18 2.46 281.41 282.64 284.12 285.10 

8 2007/11/29 14 Night 269.04 3.69 270.88 272.73 274.94 276.41 

4.5. Mathematical Morphology Thinning and Extremely High Gradient Lines 

We applied mathematical morphology thinning to trace the extremely high gradient lines (boundary 

lines) connecting the extremely high gradient pixels. The mathematical morphology method is based on set 

theory, lattice theory, topology, and random functions for the analysis of geometrical structures [56]. 

Thinning is a mathematical morphology method that is particularly useful for skeletonization. The 

method preserves the shape’s connectivity and the overall shape’s dimensions and reduces the line 

width by removing the boundary pixels that are not shape endpoints. The thinning method, when 

applied to a binary image, iterates the algorithm and removes boundary pixels (pixels that have more 

than one non-zero neighbor pixels), as long as doing so does not create locally disconnections (i.e., split 

the non-zero image into two parts), until the binary image converges into lines one pixel in width [57]. 

The thinning method totally defined eight structuring elements 3 × 3 in size. Structuring elements are 

used to check if a central pixel and its eight neighbors in a binary image fit one of these eight 

structuring elements. If one structuring element fits, the central pixel is removed (assigned as zero). 

The process is repeated in a cyclic fashion until the thinning produces no further change. The final 

result is also a binary image, a connected skeleton one pixel in width [57].  

In the SAGBT algorithm, the potential high gradient buffers were skeletonized to lines one pixel in 

width, or extremely high gradient lines, corresponding to the high gradient pixels in the gradient image 

(Figure 9a). The spatial confirmation between the extremely high gradient lines and the extremely high 

gradient pixels facilitates the delineation of the coal fire boundaries. In the following, we overlaid the 

extremely high gradient lines onto the corresponding high temperature buffers and retrieved the 

average temperatures. These averages were used as thresholds to separate the fire areas. Figure 9b 

shows the extremely high gradient lines overlaid with the retrieved fire areas. It is observed that a 

majority of the coal fire areas, especially the large coal fires, are adjacent to at least one extremely high 

gradient line. The large coal fires are surrounded by multiple extremely high gradient lines. However, 

some extremely high gradient lines do not match the coal fire areas, which would result from 

temperature variations such as solar heating, slopes, and aspects or weak temperature anomalies such 

as slowly combusting coal waste piles. Thus, the positive gradient anomalies do not strictly match the 

coal fire’s boundaries. In this algorithm, there is insufficient information to close these lines to coal 

fire polygons because the extremely high gradient lines are unconnected. Thus, we adopted the mean 

temperature threshold as a substitution of these gradient anomalies in the SAGBT method due to the 

good connectivity of the temperature contours.  
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(a) (b) 

Figure 9. Extremely high gradient line tracing results for the ASTER image acquired on 27 

March 2013, 11:54 (Local Time: GMT+8): (a) extremely high gradient lines over the 

gradient image; (b) extremely high gradient lines over the gradient image (contrast 

stretched) and the fire areas delineated by SAGBT. 

4.6. Fine-Tuning Threshold and Thermal Anomalies 

To increase the accuracy, we defined the final threshold as the mean value of the thresholds (each 

an average temperature value along the gradient lines) from multiple potential high gradient buffers 

(each segmented from a same temperature image). For a certain gradient image, we generated an 

image sequence with 11 potential high gradient buffer maps by changing the lower bound values from 

0.5 σ to 1.5 σ (0.1 σ increments) and observed that changing the potential high gradient buffers does 

not produce significant changes in the intermediate threshold, resulting in the stability of the 

delineation of the coal fire (red areas in Figure 10a–c); however, the extremely high gradient lines 

varied significantly (blue lines in Figure 10a–c). We inferred that this thresholding is more robust than 

using single thinned extremely high gradient lines. Using this refined average threshold, the coal fires 

can be mapped (red areas in Figure 10d).  

638000
.0 0 0 0 00

638000
.0 0 0 0 00

640000
.0 0 0 0 00

640000
.0 0 0 0 00

642000
.0 0 0 0 00

642000
.0 0 0 0 00

43
72

00
0.0

0
0
0
00

43
72

00
0.0

0
0
0
00

43
74

00
0.0

0
0
0
00

43
74

00
0.0

0
0
0
00

43
76

00
0.0

0
0
0
00

43
76

00
0.0

0
0
0
00

43
78

00
0.0

0
0
0
00

43
78

00
0.0

0
0
0
00

43
80

00
0.0

0
0
0
00

43
80

00
0.0

0
0
0
00

0 1,000 2,000500
Meters

WGS 84, UTM Zone 48 N

±

Extremely high gradient lines

638000
.0 0 0 0 00

638000
.0 0 0 0 00

640000
.0 0 0 0 00

640000
.0 0 0 0 00

642000
.0 0 0 0 00

642000
.0 0 0 0 00

43
72

00
0.0

0
0
0
00

43
72

00
0.0

0
0
0
00

43
74

00
0.0

0
0
0
00

43
74

00
0.0

0
0
0
00

43
76

00
0.0

0
0
0
00

43
76

00
0.0

0
0
0
00

43
78

00
0.0

0
0
0
00

43
78

00
0.0

0
0
0
00

43
80

00
0.0

0
0
0
00

43
80

00
0.0

0
0
0
00

0 1,000 2,000500
Meters

WGS 84, UTM Zone 48 N

±

Extremely high gradient lines
Coal fire boundaries



Remote Sens. 2015, 7 6595 

 

 
(a) (b) (c) (d) 

Figure 10. Extremely high gradient lines (thinned from potential high gradient buffers 

segmented by different lower bounds) compared with the thermal anomalies (extracted by 

the corresponding intermediate threshold readings from different extremely high gradient 

lines). The red areas demonstrate the thermal anomalies extracted by different intermediate 

thresholds; the blue lines indicate different corresponding extremely high gradient lines, 

which are thinned from the different potential high gradient buffers with the following 

lower bounds: (a) mean + 0.5 σ; (b) mean + 1.0 σ and (c) mean + 1.5 σ; (d) thermal 

anomalies segmented by the fine-tuned threshold. 

5. Performance of SAGBT 

5.1. Convergence Analysis 

To test the robustness and convergence of the thresholding algorithm, we also used different ranges 

of potential high gradient buffers, with lower bound values from 0.5 σ to 1.5 σ and one uniform upper 

boundary of 3.2 σ. We found that the general distribution of the thinned extremely high gradient lines 

does not vary when increasing the lower bound of the potential high gradient buffers. In addition, the 

thresholds from the different potential high gradient buffers and the corresponding segmented coal fire 

areas converged into relatively stable values. For example, the 11 thresholds converged to an average 

temperature of 308.67 K (σ = 0.076738 K) for 03/27/2013 (Table 4). This standard deviation is 

0.0249% of the mean value, indicating relatively close threshold values (Figure 11). Meanwhile, the 

total area of the anomalies had a mean value of 144.79 hectares (σ = 6.2595 hectares, or 4.32% of the 

mean value) (Table 5). Among the six scenes in 2013 and two scenes in 2007, the temperature 

thresholds had an average standard deviation of 0.1249 K, which equals 0.0043% of the mean value 

(292.61 K). This temperature deviation results in an area deviation of 11.49 hectares (less than 6.65% 

of the mean area of the coal fires, 139.66 hectares). We concluded that this algorithm was guaranteed 

to remain stable and was relatively accurate, with less than a 0.0043% temperature deviation and less 



Remote Sens. 2015, 7 6596 

 

than a 6.65% area deviation. The retrieval of thresholds is non-interactive and depends on its own 

thermal pattern. Figures 11 and 12 show that the thresholds and the corresponding coal fire areas for 

the different thermal images vary as the lower bound of the potential high gradient buffers changes. 

 

Figure 11. Threshold changes with different potential high gradient buffers. By increasing the 

lower bound of the potential high gradient buffers, the thresholds remain at certain fixed levels. 

 

Figure 12. Total area of the coal fire changes with potential high gradient buffers. By 

increasing the lower bound of the potential high gradient buffers, the total areas of the coal 

fires show a slowly decreasing trend. 
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Table 4. The thresholds generated from the different potential high gradient buffers (unit: K). 

Date Time of 

Acquisition 
0.5σ 0.6σ 0.7σ 0.8σ 0.9σ 1.0σ 1.1σ 1.2σ 1.3σ 1.4σ 1.5σ Mean. STDEV 

2013/03/27 03 308.58 308.57 308.57 308.61 308.62 308.72 308.71 308.74 308.72 308.75 308.75 308.67 0.0749 

2013/03/27 14 281.51 281.59 281.58 281.66 281.68 281.64 281.68 281.67 281.70 281.77 281.74 281.66 0.0753 

2013/04/12 14 287.43 287.43 287.41 287.44 287.48 287.55 287.53 287.53 287.53 287.46 287.52 287.48 0.0515 

2013/06/22 03 308.75 308.83 308.77 308.80 308.86 308.92 308.95 309.07 309.04 308.90 309.10 308.91 0.1215 

2013/06/22 14 296.61 296.72 296.69 296.75 296.85 296.93 297.02 297.09 296.96 297.06 297.09 296.89 0.1727 

2013/07/01 14 295.25 295.34 295.41 295.52 295.56 295.65 295.69 295.77 295.80 295.86 295.96 295.62 0.2259 

2007/11/29 03 285.08 285.16 285.18 285.23 285.25 285.33 285.37 285.48 285.45 285.55 285.62 285.34 0.1737 

2007/11/29 14 276.24 276.32 276.32 276.22 276.18 276.24 276.25 276.34 276.44 276.46 276.48 276.318 0.1038 

Table 5. Total area of the coal fires delineated by the different thresholds generated from 

the different potential high gradient buffers (unit: ha). 

Date Time of 

Acquisition 
0.5 σ 0.6 σ 0.7 σ 0.8 σ 0.9 σ 1.0 σ 1.1 σ 1.2 σ 1.3 σ 1.4 σ 1.5 σ Mean.  STDEV 

2013/03/27 03 151.22 153.65 153.65 148.79 147.98 139.84 140.65 139.84 139.84 138.22 139.03 144.79 6.2595 

2013/03/27 14 165.76 154.37 155.99 143.89 141.46 147.13 142.27 143.08 139.07 130.97 132.59 145.14 10.2696 

2013/04/12 14 157.34 157.34 158.96 157.34 152.51 135.90 139.95 139.95 140.76 153.32 142.43 148.71 8.8575 

2013/06/22 03 135.61 128.18 133.85 128.18 128.18 126.56 126.56 121.84 124.27 126.56 121.03 127.35 4.4076 

2013/06/22 14 154.73 142.13 145.96 139.01 128.88 124.85 117.70 114.28 120.02 115.90 114.28 128.88 14.3283 

2013/07/01 14 122.06 116.44 114.01 105.10 101.09 95.51 90.65 89.84 89.84 85.01 80.91 99.13 13.6938 

2007/11/29 03 162.81 157.95 154.71 152.28 149.85 145.80 142.56 136.08 139.32 132.03 128.79 145.65 10.9564 

2007/11/29 14 183.87 175.77 175.77 183.87 183.87 183.06 180.63 174.96 171.72 170.91 170.10 177.68 5.5326 

5.2. Coal Fire Mapping and Comparisons 

Using the density slice method, the high temperature areas (coal fire areas) were color coded to 

orange. The maps were classified into two categories, background and high temperature (Figure 13). In 

this study, we ascribe these patches as coal fires. It was deduced that these anomalies were primarily 

induced by their own energy release. However, a shape difference in the anomalies does exist, which is 

most likely caused by an inhomogeneous temperature increase/decrease in the daytime/nighttime 

image on an uneven surface. We also observed that more thermal anomalies were identified in the 

day/night image pair (Figure 13d,e) for the summer than for the spring (Figure 13a,b), which can be 

explained by the larger temperature difference during the spring/fall than the winter/summer, as 

previously mentioned. The anomalies retrieved by our method on 21 September 2002 (Figure 13g) 

show a similar distribution to the intense energy release areas from the study [7] and the thermal 

anomalies from the satellite data in study [58]. However, the coal fire areas are different from the final 

in situ-based results in the literature [58], which is corrected by a fire risk area to reject false alarms. 

The difference was most likely caused by a definition of coal fires that is based on comprehensive 

factors, whereas our definition primarily depends on thermal infrared data.  
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(a) (b) (c) 

 
(d) (e) (f) (g) 

Figure 13. Coal fire maps for the Wuda Coalfield. The dates of these maps (mm/dd/yyyy) 

are listed as follows. (a) 03/27/2013 (day); (b) 03/27/2013 (night); (c) 04/12/2013 (night); 

(d) 06/22/2013 (day); (e) 06/22/2013 (night); (f) 07/01/2013 (night); and (g) 09/21/2002 

(night). The thermal anomalies (orange areas) may represent coal fires, associated with a 

dramatic gradient variation from the surroundings. The solid black lines are the outcrops of 

the coal seams marked as the following coal seam numbers from east to west: No. 2, 4, 9, 

10, and 12. 
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We observed that the coal fire areas detected with daytime ASTER thermal data are different from 

those detected with nighttime ASTER data on the same day, which may have resulted from the effects 

of uneven solar heating due to different exposition (e.g., south slopes versus north slopes) or different 

thermal surface inertia (fast heating/cooling materials versus slow heating/cooling materials) [8]. In a 

previous study [8], the researchers analyzed MODIS data from four different times of day (morning, 

afternoon, evening, and predawn) and also observed that coal fire patches showed a decreasing trend  

in the number of thermally anomalous pixels towards the afternoon (solar masking) and an  

increasing number of extracted pixels towards predawn. As introduced in our previous efforts, the 

solar irradiation-induced land surface temperature increment was removed by using a DEM-based solar 

radiation simulation [59]. The coal fires extracted from the temperature images retrieved by ASTER TIR 

data were corrected to be coal fires from temperature images without solar irradiation [59]. Corrected coal 

fires were more detailed. The solar irradiation-corrected image changed temperatures locally and 

impacted the definition of what pixels are tagged as coal fires, which generally improved the detection 

of coal fires. However, when removing the solar irradiation from sun-facing slopes, some new thermal 

anomalies appeared on the shady side, and some unexpected noisy pixels emerged. Thus, a rejection 

criterion should be applied to eliminate small thermal anomaly patches before input into the SAGBT 

algorithm for more accurate coal fire detection [59]. 

5.3. Uncertainty and Accuracy 

This paper introduced the SAGBT method. Satellite-field simultaneous observation-based 

validation and accuracy estimation were introduced in a second paper, “Self-Adaptive Gradient-Based 

Thresholding Method for Coal Fire Detection using ASTER Thermal Infrared Data, Part 2, Validations 

and Sensitivity Analysis.” In this subsequent paper, we operate the field measurements at times 

coinciding with satellite overpasses to collect temperature information through planes, lines, and points 

to prove that the coal fires are separable by the SAGBT method. We addressed comparisons to 

understand the coal fire’s thermal patterns and the accuracy and biases of the SAGBT method. In  

this continuation, we conclude that the coal fires identified by the SAGBT approach match the  

high-temperature areas indicated by the fire spots measured in the field with an average offset of  

32.44 m, less than half the resolution of ASTER. The majority (approximately 70%) of randomly observed 

coal fire spots, including records in small-scale coal fire vents/cracks and slowly combusting coal waste 

piles, was located within the coal fire areas extracted from the ASTER image. In our other work, we also 

perform a comparison using coal fire spots and coal fire areas extracted from solar irradiation-corrected 

data by SAGBT. The results indicated that the majority of the points (84.6%) were located within the 

detected fire area and 97.5% of the points were within the one pixel extended buffer area [59]. 

Using the SAGBT method, we extracted the coal fires from the underground (coal seam fires) and 

on the surface (coal waste pile files). During our field campaigns, we recorded the locations of coal 

seam fires (blue crosses at vents, cracks, and outcrops in Figure 14) and the locations of fire spots on 

coal waste piles (green crosses in Figure 14). Figure 14 demonstrates the coal fires extracted from 

images without solar irradiation for 27 March 2013 compared with the locations of these fire spots on 

both coal seams and coal waste piles. We found that the majority of these locations are within or close 

to a detected fire, expect for one coal seam fire spot (Figure 14, red circle in the northern part located 
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on the center sandstone plateau) and one fire spot on a coal waste pile (Figure 14, red circle in the 

southwestern part that is outside of the coalfield and can be eliminated by the false alarm rejection 

criteria). This means using our method could mask some small-scale or weak fire spots, in which the 

temperature of the integrated pixel does not reach the threshold. We observed that the large-scale coal 

fires are underground or coal seam fires (in Figure 14 within the blue circles). These coal fires are 

located along and between the coal seam outcrops, where coal seams are shallow and the oxygen 

supply is sufficient for combustion. The coal waste piles induced relatively weak and small thermal 

anomalies (Figure 14, in green circles). Three of these fires are located on the eastern edge of the 

coalfield, which includes the coal waste piles for the Suhaitu, Huangbaici, and Wuhushan mines from 

north to south. Another coal waste pile is located on the southwestern side of the coalfield near a road, 

which was observed as slowly combusting in our field campaigns.  

 

Figure 14. Coal fire areas above ground and below ground compared with corresponding 

fire spots, coal seam outcrops, and the coalfield’s boundaries. The coal fires were extracted 

using SAGBT from temperature images without solar irradiation for 27 March 2013 (daytime). 



Remote Sens. 2015, 7 6601 

 

We compared the coal fires on 22 June 2013 with the corresponding temperature image (Figure 15a) 

and emissivity image (band 14) (Figure 15b) and also found that the coal fire areas have a weak correlation 

with extremely low emissivity pixels. However, this correlation was not as obvious on 27 March 2013 

as it was on 22 June 2013. This effect could result from coal fire-related emissivity anomalies (e.g., 

heated rocks and soil, moisture evaporation/perception, fumarolic and pyrometamorphic minerals, 

vegetation coverage changes, excavation of overlaying bedrock for fire extinguishment, etc.). This is a 

potential indicator to distinguish coal fires. Thus, future work should examine the connection between 

coal fires and emissivity anomalies and use emissivity as a data source to determine coal fires.  

  
(a) (b) 

Figure 15. Coal fire areas compared with corresponding temperature images and 

emissivity images retrieved from ASTER TIR data by using the TES-MMD method. The 

ASTER data were obtained on 22 June 2013 (nighttime), and the coal fires were extracted 

from the temperature image using SAGBT. (a) Temperature image; (b) emissivity image 

for band 14 of ASTER. 

6. Application of SAGBT on Decadal Change Detection 

6.1. Changes and Time Series Analysis 

Change detection between images from subsequent years was performed to delineate three classes, 

i.e., decrease, increase, and stable, which correspond to extinguished fires, propagating fires, and 
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continuous fires. A post-classification change detection using an image-differencing algorithm was 

used to identify changes in images from subsequent years. To reduce the error and make sure images 

matched within one pixel, a precise geo-registration was applied, with an average RMS error of ±0.296 

pixels. change detection algorithm was applied to 10 scenes of images spanning 11 years (with the 

exception of 2004 and 2009 due to data unavailability) to retrieve change statistics for the study area 

(Table 6). 

Table 6. Changes between adjacent pairs of images. 

No. 
Scene ID 1 A 

(Initial) 

Scene ID 1 B 

(Final) 

Time Interval

BETWEEN 

A&B (Days) 

Increase 

(ha, Blue)

Decrease 

(ha, Green)

Stable (ha,

Orange) 

Total Area of 

B (ha, Black) 

Day for 

Scene B 

Day for Midway 

between Scenes 

A and B 

0 -- ASTL1A_01080804 -- -- -- -- 145.8 1 -- 

1 ASTL1A_01080804ASTL1A_02092114 409 74.52 131.22 14.58 89.1 410 206 

2 ASTL1A_02092114ASTL1A_03092403 368 46.17 71.28 17.82 63.99 778 594 

3 ASTL1A_03092403ASTL1A_05041314 567 81.81 48.6 15.39 97.2 1345 1062 

4 ASTL1A_05041314ASTL1A_05100603 176 115.83 70.47 26.73 142.56 1521 1433 

5 ASTL1A_05100603ASTL1A_06122803 448 114.21 97.2 45.36 159.57 1969 1745 

6 ASTL1A_06122803ASTL1A_07112914 336 166.86 93.96 65.61 232.47 2305 2137 

7 ASTL1A_07112914ASTL1A_08042114 144 60.75 103.68 128.79 189.54 2449 2377 

8 ASTL1A_08042114ASTL1A_10032603 704 135.27 125.55 63.99 199.26 3153 2801 

9 ASTL1A_10032603ASTL1A_11012414 304 161.19 123.93 75.33 236.52 3457 3305 

1 Used this shortened Scene IDs with first eight digits. 

In this time series analysis, a relative time system using the date 8 August 2001 as the orientation 

day (or first day) was defined, and the duration from this day is used to indicate the timespan. Using 

these data, nine pairs of images were processed for change detection. Each of them had an initial date 

and a final date, and their middle day was used to represent the day when change occurred. In 

comparison to some non-adjacent images, we find that the lost area is far larger than the expanded area 

when comparing the images from 2007 and 2010, which means that the newly increased area is larger 

than the extinguished area. This finding fits with the fire suppression project performed between 2006 

and 2010. The change results between 2002 and 2006 showed that in those five years, the areas of 

increase were larger than the lost areas, and also showed a relatively large existing area. In those years, 

with rapid growth in mining activities and relatively weak control of spontaneous combustion, coal fires 

expanded rapidly. 

6.2. Comparison of Coal Fire Areas and Coal Production over the Ten-Year Period 

To visualize these changes, a time series plot spanning approximately 10 years (2001–2011) was 

charted to examine the trends in the three indicators (increased, decreased, and stable). As shown in 

Figure 16, the red line represents stable or actively burning areas over the last 10 years, the blue  

line represents the increased areas or the propagation magnitude, and the green line represents the 

decreased areas. 

The red line in Figure 16 shows that the maintained area slowly increased and reached its peak in 

2008, then decreased until early 2010, when it began to increase again. The blue line (increases) in 
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Figure 16 reached its peak on 14 June 2007, and then sharply declined between the middle of 2007 and 

early 2008, which might be a result of the fire suppression work performed during that period. In the 

reported work of Kong et al. (2010), nationally founded fire extinguishing efforts existed from 2006 to 

2008 [60]. The green line in Figure 16 indicates the decreased area, which has a similar shape to the 

total area but lags behind the total area. The black line in Figure 16 shows the total changed area, 

which indicates that the underground coal fires were most severe between late 2007 and early 2008. 

 

Figure 16. Increased, decreased, and stable areas over the last 10 years. 

To determine the relationship between coal fire magnitude and mining activity intensity, we 

referenced the coal industrial yearbooks and placed the productions of every year into a time series 

plot for the production of the Wuda Coalfield reported in the yearbooks during the period 1999–2008  

(Figure 17). In these yearbooks (SACMS 2001–2011) and the report in Inner Mongolia Daily [40,41], 

between 1999 and 2008, the production of the Wuda Coalfield was reported. In late 2008, a corporate 

merger and acquisition occurred; afterwards, production for the merged company, the Wuhai Energy 

Company, was presented only in terms of its overall production for all coalfields, and specific 

production information was not provided for the Wuda Coalfield after 2009. 

Overall, in the decade since mid-2003, the plot of the fire area has been rising. During the same 

period, the coal fire area shows a positive correlation with the increased production, which was a 

response to a high demand of coal consumption. This general coal fire increasing trend was also 

discovered by Jiang et al. (2010) and Kuenzer et al. (2012) [29,37]. As we estimated in another  

study [61], the emission of CO2 from coal combustion in 2007 was 9.01 × 104 tons with a coal 

production of 624 × 104 tons. We then estimated an annual CO2 emission rate per ton of coal 

production to be 9.01 × 104/624 × 104 = 0.0144. Estimating the coal production in the Wuda Coalfield 

in 2009 at 602.85 (the average production of the previous two years), the coal production levels from 
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2010 to 2012 for the Wuhai Energy Company were corrected to 577.8 × 104 tons, 555.0 × 104 tons, 

680.4 × 104 tons by a scale factor of 0.38. Multiplying by the annual CO2 emission rate, we calculated 

the accumulated CO2 emission in the study period (2001–2010) to be 71.16 × 104 tons. That is the 

GHG emissions from coal fires in the Wuda Coalfield in the studied decade. 

 

Figure 17. Coal production volume in Wuda Coalfield (1999–2008) and Wuhai Energy 

Company (2009–2012). 

7. Conclusions and Vision 

We proposed a different coal fire detection method, the Self-Adaptive Gradient-Based Thresholding 

(SAGBT) method, which uses ASTER thermal infrared data to separate coal fire-induced  

thermal anomalies.  

The analyses of images acquired during different seasons and image pairs acquired on the same date 

showed that the thermal anomalies present seasonal differences, but the day and night temperature 

distributions are similar. We observed an attenuation of the coal fire’s temperature on the edges of the 

coal fire’s boundaries, which resulted in extremely high gradient values along the boundaries. Based 

on this characteristic, we implemented a gradient-based thresholding method with the following three 

modules: gradient, temperature, and threshold definition. The image analysis incorporated an extended 

Sobel filter to process the supersampled TIR images and generate a regional temperature gradient 

representation. In addition, we used mathematical morphology thinning to skeletonize a potential high 

gradient buffer image and match the high temperature buffers to estimate the threshold. Better results 

were achieved using the mean threshold derived from the multiple potential high gradient buffers.  

Methods based on ASTER images can effectively detect thermal anomalies. We delineated the 

anomalies using a TES-MMD method without emissivity and meteorological data. The SAGBT 

method is remote sensing-based; it primarily depends on the most direct coal fire-induced factor and 

energy release and uses the basic outer boundaries of the coal-bearing stratum to simply exclude false 
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alarms. The proposed gradient-based thresholding method is a spatially based method to retrieve 

thermal anomalies from the different images obtained during the nighttime and daytime. This method 

is non-interactive and programmed by the IDL and primarily relies on the images’ thermal 

distributions. This method used a limited and basic field/geological dataset; it is a relatively simple and 

economical method to estimate the intensity of regional coal fires. It also presents an opportunity to 

detect long-term coal fire changes using the ASTER TIR images from the historical inventory. In 

addition, this method offers an alternative way to detect unknown coal fires in a certain area without 

sufficient in situ observations and field surveying data. 

Fire maps show that fire areas are located along the coal seam outcrops, particularly the coal seam 

numbers 2, 4, and 9. The change detection time series plot reveals that, during the initial years, the fire 

areas started to decrease but soon began to increase moderately from 2003 to 2007. Since 2008,  

the spread of fires has sharply decreased, which was most likely because of government-sponsored 

extinguishing efforts. However, the spread of fires sharply increased again after 2010. With the 

comparison of the historical industrial figures, we found that the fluctuation of coal fire areas is similar 

to the curve of coal production in the Wuda Coalfield. Meanwhile, the coal fire area also shows a 

positive correlation with coal productivity in China, supported by the coal production over the last 

decade. We infer that coal fires are related to human activities, particularly mining. Additionally, the 

CO2 emissions in the study period (2001–2010) were estimated to be 71.16 × 104 tons.  

Using the calibrated SAGBT method and the MMD-TES algorithm, we offer a novel approach to 

delineate coal fires in northern China and other coal fires that exist in the country using the historical 

inventory of TIR data without ground measurements and meteorological records. This non-interactive 

SAGBT method also offers the possibility to create multi-temporal change products using a uniform 

criterion for the temperature anomalies i.e., coal fires. These products will aid investigation of the 

resources lost, the environmental impacts, and the greenhouse gas emissions from coal seam 

combustion in the long term. 

However, coal fires are complex from a remote sensing perspective and are difficult to accurately 

detect. This study focused on a subset of the Wuda syncline, and the geological and land cover/use in 

this area is relative homogeneous. Thus, if we extend the SAGBT method to other large-scale coal fire 

areas, then this method must be improved in the following ways: partition by the geological setting, 

geomorphology and land cover/use, so that the SAGBT method can be used in each small regional 

area; and study more specific false alarm removal criteria to exclude false alarms (such as water 

bodies, illuminated slopes, and industrial plants) or map a fire risk area to mask coal fire-related 

anomalies. In particular, emissivity data are very useful in identifying geological boundaries such as 

strata boundaries and faults, which could help to divide a large area. When improved, emissivity 

anomalies could be considered as a data source to determine coal fires or eliminate false fires. We 

observed that removing solar irradiation can improve the accuracy of coal fire detection for daytime 

TIR images. In this work, due to the reduced vegetation coverage in the Wuda Coalfield and even in 

Northwestern China, coal fires are less often confused with wild fires. However, separating coal fires 

from wild fires is essential in order to extend the SAGBT worldwide. A combination of coal fire risk 

area, coal fire-induced surface characteristics, and very high temperature areas were expected to be 

modeled as accepting/rejecting criteria for distinguishing coal fires from wild fires. Further research 
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should also focus on using field survey data collected on the ASTER overpass date and the estimation 

of the ASTER sensor’s degradation effects on the detection of anomalies. 
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