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Abstract: The applications of object-based image analysis (OBIA) in remote sensing studies 

of wetlands have been growing over recent decades, addressing tasks from detection and 

delineation of wetland bodies to comprehensive analyses of within-wetland cover types and 

their change. Compared to pixel-based approaches, OBIA offers several important benefits 

to wetland analyses related to smoothing of the local noise, incorporating meaningful  

non-spectral features for class separation and accounting for landscape hierarchy of wetland 

ecosystem organization and structure. However, there has been little discussion on whether 

unique challenges of wetland environments can be uniformly addressed by OBIA across 

different types of data, spatial scales and research objectives, and to what extent technical and 

conceptual aspects of this framework may themselves present challenges in a complex wetland 

setting. This review presents a synthesis of 73 studies that applied OBIA to different types of 

remote sensing data, spatial scale and research objectives. It summarizes the progress and 

scope of OBIA uses in wetlands, key benefits of this approach, factors related to accuracy and 

uncertainty in its applications and the main research needs and directions to expand the OBIA 

capacity in the future wetland studies. Growing demands for higher-accuracy wetland 

characterization at both regional and local scales together with advances in very high resolution 

remote sensing and novel tasks in wetland restoration monitoring will likely continue active 

exploration of the OBIA potential in these diverse and complex environments. 

Keywords: object-based image analysis (OBIA); GEOBIA; wetland; review;  

sensors; monitoring 
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1. Introduction 

Global losses of wetland areas, increasing anthropogenic pressures on their resources and the 

uncertainty of future climate change effects urgently call for more sustainable and adaptive conservation 

and management strategies which, in turn, require better understanding of wetland ecosystem properties 

and spatio-temporal variation [1–3]. Yet, research abilities to detect and characterize wetland ecosystems 

and to monitor their dynamics are often constrained by the limited on-site access, the risk of disturbing 

vulnerable habitats and species, and high surface complexity caused by fine-scale variation in 

topography, hydrologic properties and vegetation [4–6]. These challenges make it difficult to obtain 

sufficiently large, representative and repeated samples from the field surveys in wetlands and thus to 

generalize ecological information across broader landscapes [7,8].  

These limitations have increasingly encouraged applications of remote sensing data from satellite, 

airborne and more recently unmanned aerial vehicles (UAVs) for wetland analyses and monitoring. 

Remote sensing offers the benefits of capturing extensive study areas at the same state of plant phenology 

or inundation, spectral sensitivity of sensors to variation in wetland surface composition, and greater 

cost efficiency of repeated data collection compared to field surveys [9–11]. However, the overall 

success and practical utility of remote sensing-based wetland assessments have been contingent on the 

accuracy of image interpretation and feature extraction. Achieving high accuracy in wetland 

environments may be challenging [10], particularly with image pixels as primary mapping units. First, 

heterogeneity in local pixel values, variable soil moisture and spectral similarities among cover types 

often constrain discrimination of classes and lead to infamous “salt-and-pepper” speckle in the mapping 

outputs [12–14]. Second, spatial resolution of commonly used image datasets (such as 30-m Landsat) is 

frequently insufficient to detect fine-scale wetland features and class boundaries, and spectral mixing of 

different classes at subpixel scales may reduce mapping accuracy [15–17]. Finally, pixel-based 

approaches may be limited by the lack of ecologically meaningful information on spatial context and 

class neighborhood relationships in the pixel grid structure [18], unless ancillary geospatial or field 

information is available to inform wetland delineation and classification.  

Object-based image analysis (OBIA) offers a promising framework to address these constraints in 

heterogeneous wetland landscapes and to facilitate repeated monitoring of their composition and surface 

properties. In OBIA, the images are first segmented into “objects” that are groups of pixels representing 

ground patches, entities or their elements (primitives) which subsequently can be classified into 

categories of interest by unsupervised, supervised or rule-based algorithms [14,19,20]. The key benefits 

of OBIA relative to pixel-based methods include: (1) the possibility to incorporate object-level shape, 

texture and relevant contextual variables into classification, in addition to spectral values of the input 

image layers [19,20]; (2) smoothing some of the local variation within objects, which may reduce the 

salt-and-pepper noise and enhance classification accuracy [13,17,21,22]; and (3) accounting for the 

landscape hierarchy of patch, cover type and ecosystem structure by working with multiple object layers 

nested within each other at different spatial scales [23–26]. The approximation of ground entities and 

patches by image objects makes them more ecologically relevant and potentially more resilient to minor 

geospatial positioning and image registration error than pixel units [5,27].  

Over the recent decades, object-based methods have been used in a broad array of wetland studies, 

from detection and delineation of wetland bodies in different landscapes to comprehensive analyses of 
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within-wetland cover types and their change [28]. Several studies reported the improvement in wetland 

classification accuracy with OBIA compared to pixel-based methods up to 31% [22,24,29,30]. However, it 

remains unclear whether the challenges of wetland environments can be uniformly addressed by OBIA 

across different types of data, spatial scales and research objectives, and to what extent technical and 

conceptual aspects of this framework may themselves present challenges in a complex wetland setting [28]. 

Among previously published literature reviews, those focusing on OBIA progress have predominantly 

included studies from non-wetland landscapes [20,31], while the reviews of remote sensing applications 

in wetlands [9–11] have not aimed at detailed discussions of OBIA-specific issues. Thus, the time for a 

targeted synthesis of the OBIA progress and challenges in wetlands is ripe given the demand for novel 

OBIA applications in wetland restoration projects and exotic species monitoring [3,8,32] and the 

growing use of high- and very-high resolution imagery from new remote sensing platforms such as 

UAVs [33–35]. New insights about technical and conceptual limitations of OBIA in wetlands [28] also 

highlight the urgent need to better understand the nature of present constraints and develop solutions in 

the future research efforts.  

This paper presents a synthesis of 73 studies that used OBIA in different types of wetlands, either 

published or available online before 31 December, 2014. The main objectives of this assessment were: 

(1) to review the progress and scope of the OBIA applications in wetland environments; (2) to summarize 

the key strengths and unresolved challenges of this framework in the context of wetland remote sensing 

research; and (3) to discuss the main needs and future directions to expand the potential of OBIA in 

wetland analyses. The synthesis is organized as follows: Section 2 provides the overview of research 

objectives, data and geographic context of the included papers; Section 3 introduces basic OBIA 

principles and discusses key benefits of OBIA for wetlands, while Section 4 addresses the main factors 

affecting OBIA accuracy and current limitations. Section 5 concludes with the summary points and a 

review of the future research needs.  

2. The Scope of Reviewed Papers  

2.1. Research Objectives and Focus 

This review focused on 73 papers selected from the literature searches in ISI Web of Science and 

ProQuest databases and several references cited in earlier manuscripts and reviews, either published or 

available online before 31 December 2014 (more than half were published in or after 2009). These 

included peer-reviewed journal articles, conference papers and chapters of book and PhD thesis 

publications. This review specifically focused on vegetated wetlands (i.e., colonized by aquatic 

macrophytes) of diverse types [36] such as fresh- and salt-water estuarine, riverine, lacustrine, palustrine 

and selected marine (mangrove) ecosystems (Table 1, [5–8,12,13,15–18,22–30,32,34,37–87]) and 

excluded studies of solely deepwater and open-water aquatic ecosystems such as seagrass beds. The 

OBIA applications and main research objectives fell into several broad groups (with some papers 

applicable to more than one of these):  

(1). Wetland detection & delineation: studies detecting wetland presence and/or delineating their 

boundaries in landscapes with significant proportion of non-wetland natural and anthropogenic land 

cover [14–16,18,26,29,38–40,55,63,64,73,74,84–87].  
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(2). Typological classification of delineated wetland units: assignment of mapped wetland bodies 

into hydrological, geomorphological and ecological categories without detailed mapping of  

within-wetland cover [6,27,29,37,43,44,55,65,66,73,79,80];  

(3). Classification of within-wetland cover types and/or vegetation: mapping within-wetland surface 

composition and vegetation types, sometimes targeting specific classes such as invasive plant species 

(e.g., [5,8,12,13,17,23–25,28,30,32,34,41,45,48–50,52,53,57,68,69,74–77,79–85]); 

(4). Analysis of wetland change over a particular period of time [7,34,39,46,48,55,59,67,86]; 

(5). Analysis of within-wetland biophysical and ecological properties using OBIA outcomes for 

subsequent ecological study: wildlife habitat analyses [25,26,56,58,63], spatial modeling of ecosystem 

properties such as carbon stocks [70], net primary productivity [78], wetland geomorphology and 

vegetation structure [42,77,88], and analyses of disturbance [60,61,64]. 

Table 1. General characteristics of reviewed studies by major geographic region. 

Region No. Wetland Types and Corresponding References 
Study Area 

Range (km2) 

Spatial 

Resolution (m) 

Africa 4 
River floodplain [37]and inland seasonally flooded freshwater [38]; 

mangroves and coastal marshes [39,40] 
134.6–6400 12.5–30 

Australia 4 Mangroves [22] and riparian wetlands [59,79] 2–10 2.4–4 

Canada 12 

Diverse peatland types [27,43–47], coastal freshwater and estuarine 

marshes [48–50], river floodplain [51], small isolated freshwater 

wetlands [26] and riparian [52] 

16–1467 0.2–30 

China 10 

Inland seasonally flooded freshwater [7,17,53,54],  

river floodplain wetlands [55,56], coastal salt marshes [34,57,58],  

alpine wetlands of Tibet Plateau [55,59] 

2.3–356,000 0.61–32 

Other South &  

East Asia 
6 

Tropical peat swamps [60,61], peatland [5], mangroves [24,62]  

and river floodplain [63] 
0.1–5331 0.02–30 

Europe 9 
Diverse peatland types and bogs [64–67], river floodplain [68–71]  

and coastal saltwater marshes [72] 
0.4–1500 0.3–30 

Siberia 1 Peatland [73] 125,000 300 

Central &  

South America 
11 

River floodplains [74–78], inland permanent and seasonally flooded 

freshwater wetlands [79,80], mangroves [12,23,81,82] 
16-1,777,000 1-125 

USA 16 

River floodplain wetlands [8,29,83], coastal freshwater, brackish 

and salt marshes [13,25,28,30,32,84,85], isolated freshwater 

wetlands of different types [6,15,16,18,86,87] 

0.4-5,400 0.2-30 

The studies represented various wetland regions of the world, but most of them were conducted in 

North America (USA and Canada), Central and South America and China (Table 1). Although their 

spatial extent varied greatly, most analyses focused primarily on wetland mapping or change detection 

for one or more of the common research objectives listed above. Wetland types represented in this review 

were also diverse, including coastal freshwater and tidal marshes, mangroves, freshwater wetlands in 

river floodplains, riparian ecosystems, diverse wetland types in peatland landscapes, tropical peat 

swamps and small isolated freshwater wetlands with scattered distribution (Table 1). Several analyses 

were conducted in spatially extensive and biologically diverse wetland regions of international 

importance and sites of protected status under Ramsar Convention, such as Poyang Lake [7,17,53,54], 
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Dongtan Nature Reserve [58] and Xianghai and Zhalong wetlands [56] in China, Brazilian Pantanal 

wetlands in South America [79,80], Kushiro wetland in Japan [5], Koshi Tappu Wildlife Preserve in 

Nepal [63], and European Eider Treene Sorge Lowland [65], Danube Floodplain [68] and Biebrza River 

Valley [71], as well as other protected areas including Florida Everglades National Park in USA [8,83] 

and other nature reserves and wildlife refuge sites [28,34,67].  

2.2. General Characteristics of Input Data and Classification Accuracy 

The reviewed studies varied in spatial resolution, spatial extent and spectral characteristics of the 

input data (Table 1, Figure 1). There was a strong positive correlation between log-transformed size of 

study area and spatial resolution (or pixel size in ground units) of the primary remote sensing data  

(R2 = 0.61, p-value < 0.001; Figure 1), suggesting that on average, studies focusing on smaller spatial 

extents tended to use higher-resolution imagery. At the same time, there was a substantial variation in 

landscape size in applications of popular medium-resolution sensors such as Landsat (30 m).  

 

Figure 1. Spatial scale of the reviewed papers: significant positive correlation between  

log-transformed study area size and spatial resolution (R2 = 0.61, p-value < 0.001). 

The majority of studies used broadband “passive” remote sensing data acquired in visible, near- and 

mid-infrared electromagnetic spectral regions. Among these, spatial resolution varied from 125 to 300 m 

of Moderate Resolution Imaging Spectroradiometer (MODIS) and Medium Resolution Imaging 

Spectrometer (MERIS) to moderate-resolution (10 to 32 m) data from missions such as Landsat, SPOT, 

Beijing-1 [7,15,17,23,38,56,59,65,86,88] and high-resolution (pixel size ≤ 4 m) commercial satellite and 

aerial imagery with pixel size up to 0.15 m from a UAV [34] and 0.02 m from a balloon and camera 

system [5]. Four studies used hyperspectral airborne imagery at high resolutions between 0.6 and 4 m 

for classifying wetland communities and species in Florida, USA [8,83], mapping mangrove species in 

Australia [22] and river floodplain cover types in a small area in Iowa, USA [29].  

Seventeen studies used the data from synthetic aperture radar (SAR) either as the primary input or in 

combination with Landsat or other sensors [27,37,40,43,47,53,54,71,73–80,82]. Most of these utilized the 

data from Radarsat, Radarsat-2 and JERS-1 missions [47,73–77,79]; some used ENVISAT ASAR [37,53,54] 
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and ALOS PALSAR [40,79,80]; spatial resolution of these datasets varied between 10 and 100 m. Radar 

images as inputs to OBIA have been especially critical for wetland analyses in humid regions with frequent 

cloud cover limiting the availability of multi-spectral images and the consistency of seasonal time  

series [37,75,82]. Several high-resolution studies using multi-spectral imagery additionally incorporated 

light detection and ranging (lidar) datasets to facilitate the overall wetland classification or discrimination of 

specific classes and landscape features [6,25,28,32,59,71,77,80,89]. The importance of data type and spatial 

resolution for wetland analysis outcomes will be discussed among the factors affecting OBIA accuracy 

in Sections 4.2 and 4.3. 

3. Strengths and Benefits of the OBIA Framework in Wetland Analyses 

3.1. Background on General OBIA Principles  

The purpose of this section is to introduce the basics of OBIA terminology and implementation. The 

OBIA process typically starts with segmentation of input images into local groups of pixels, i.e., objects 

that become spatial units in subsequent analysis, classification and accuracy assessment [19]. Object shape, 

size and spectral properties depend on research goals and segmentation approach. Various techniques exist 

such as “top-down” algorithms splitting the image into smaller regions based on spectral value thresholds 

or constraints on local variation, bottom-up region-growing methods that derive objects by merging pixels 

locally, and more complex approaches combining top-down and bottom-up logic [20,90]. The goal of 

segmentation is often to approximate meaningful landscape entities recognizable at a given image 

resolution (e.g., buildings, vehicles or trees in aerial photos [91–93]). However, in complex landscapes 

with variable patch characteristics, “typical” objects may be hard to define, and segmentation is used to 

produce smaller, spectrally homogeneous “primitive” objects that can be classified into larger cover type 

extents. This is frequently the case in wetlands, and most of the reviewed studies used primitive objects 

as spatial units of analysis. 

Segmentation outputs are often controlled by parameters that constrain within-object spectral 

variation, or heterogeneity, as well as other method-specific criteria. For instance, with popular  

multi-resolution segmentation approach (MRS; [94]), the outcome of different-sized objects is 

determined by the choice of input image bands and their relative weights, relative importance of shape 

(geometry) versus color (spectral) properties and by scale which controls allowable within-object 

heterogeneity. As a result, large number of potential object layouts becomes possible, and choosing 

among them is difficult even when relying on expert knowledge. Recently, new tools have been proposed 

to facilitate automatic decision on segmentation specifications, such as the Estimation of Scale Parameter 

(ESP) tool for MRS (ESP; [95,96]), but they have not been extensively tested in wetlands yet.  

Object classification may be performed by supervised, unsupervised and rule-based methods similar 

to pixel-based analyses; however, with objects as spatial units there is a wider choice of candidate 

features to facilitate discrimination. In addition to spectral variables, objects and their class-related 

typologies may be characterized by geometry (e.g., area, perimeter, various shape indices), texture 

(metrics of within-object variation in pixel values of a given band) and “contextual” metrics describing 

adjacency or distance to classes, spectral differences with neighbors or relationships with objects from 

other levels of segmentation hierarchy. Classification may be conducted either instantaneously by a 
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single classifier algorithm, or as a multi-step process combining simple threshold rules and statistical 

classifiers at different object levels and data subsets according to research goals. Hierarchical 

classifications are also common, where class identities at one object level are used to inform 

discrimination at the next level in top-down or bottom-up direction [22,23,68]. 

Accuracy in OBIA outcomes may be assessed at either segmentation or classification steps, 

depending on research objectives. Segmentation accuracy focuses on the geometric match between 

landscape entities and image or class objects by measuring the degree of over- and under-segmentation 

of the target reference units [93]. For classification, accuracy is typically assessed as a match between 

the identity of reference ground locations and their assigned image classes using a traditional confusion 

matrix or fuzzy accuracy metrics in mixed-cover areas. The use of “point” matches between object-based 

classification outputs and reference data requires caution, because test locations may not be independent 

if they fall inside the same object. In studies focusing on delineation of a single class (such as “wetland” 

or “water”), alternative accuracy metrics may be used describing frequencies, spatial extent or size ranks 

of detected targets relative to all reference units [18,86,87]. 

Finally, the process of OBIA implementation greatly varies among studies and depends on both 

research objectives and the software. Among the reviewed publications, the most common software 

choice was eCognition (Trimble Inc.; formerly by Definiens Inc. with some of earlier versions also 

named Definiens) which allows developing custom algorithm sequences, or “rule sets” combining 

segmentation, classification and other steps of data analysis, refinement and export. This software also 

facilitates hierarchical segmentations into multiple object layouts (“levels”) for the same image, where 

the boundaries of larger upper-level objects are preserved within the lower-level geometry. Examples of 

other software included VLS Feature Analyst (FA) in [64]; BerkeleyImgSeg [87], ENVI (ZOOM) 

feature extraction module (Exelis VIS Inc.) [59], rule-based and thresholding procedures in ESRI 

ArcMap [86] and open-source SPRING [74] developed in the National Institute for Space Research of 

Brazil (INPE) which more recently has contributed to the next open-source OBIA software InterImage 

by the Computer Vision Laboratory of the Department of Electrical Engineering of the Catholic 

University of Rio de Janeiro. One study [44] performed segmentation with the Sized-Constrained Region 

Merging (SCRM) software written in the Interactive Data Language (ITT Visual Information Solutions 

Inc.) and classification—with the data mining tool See5 for C 5.0. Several other OBIA tools exist such 

as IMAGINE Objective add-on for ERDAS IMAGINE (Hexagon Geospatial Inc.) and open-source 

Monteverdi2 by Orfeo Toolbox, but these were not used in reviewed wetland studies. 

3.2. Using Image Segmentation to Address Heterogeneity and Noise 

In the reviewed analyses, OBIA offered several critical advantages to pixel-based approaches, such 

as the possibility to work with ecologically relevant spatial units at different scales and incorporation of 

non-spectral information in object generation and classification. These approaches also frequently 

resulted in smoothing of the local noise at object level and reduction of the “salt-and-pepper” speckle in 

classification outputs. Speckle is a common problem in wetland studies that may originate both within 

monotypic cover types due to intrinsic spectral variation and within mixed areas due to fine-scale 

patchiness and diversity of plant composition [7,25,57]. This problem becomes especially notorious with 

high-resolution data where greater spatial detail and color variation may expose non-relevant landscape 
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elements (shadows, branches) and limit the accuracy for target entities [13,26]. Averaging pixel values 

at the object level smoothens local variation and often reduces the influence of marginal, mixed and 

unusually colored pixels [26,37,57,74]. As a result, classification accuracy may increase with greater 

average object size or heterogeneity relative to pixel units, as reported in wetland studies using very 

high-resolution aerial photography [13], medium-resolution Landsat data [17] and in non-wetland 

analyses [97]. Similarly, aggregation of pixels to coarser resolutions prior to segmentation may increase 

the accuracy initially but ultimately reduce it with overly large input units [44]. 

Smoothing of the local noise at object level was particularly useful in studies using SAR data to map 

wetland cover types in Amazon floodplain [74–76], Brazilian Pantanal [79,80] and northern forested 

regions of Canada [27] and Siberia [73]. Radar backscatter may exhibit substantial speckle due to 

complexity of both horizontal and vertical structure of wetland ecosystems which affects relative 

contributions of different scattering modes and thus the local variation of the modified signal [37,73]. 

Averaging of the radar pixel values at the object level often facilitated delineation of wetland units and 

vegetation types and enhanced their correspondence to semantic objects of interest across the gradients 

of inundation [27,37,54,74,75,80]. Similar noise-alleviating benefits were also important in studies 

combining radar and multi-spectral Landsat or MODIS data via hierarchical OBIA to enhance the 

accuracy of mapping floodplain vegetation types, e.g., in the Amazon River and tributaries [77,78]. 

Importantly, the advantage of image object units for “smart filtering” of the local noise often 

facilitated wetland classifications despite the lack of “typical” or “standard” semantic objects for a given 

class in these complex environments [49]. In most reviewed studies, the outputs of initial segmentation 

represented patch elements, or “primitive” objects, while larger patches and semantic entities (e.g., 

vegetation classes or habitat types) were recovered later via classification of these primitives [17,25,58]. 

Smoothing of the local variation at the primitive object level may enhance the contrast among landscape 

elements and facilitate not only classifications, but also spatial modeling with geographic information 

science (GIS) tools using objects as units of analysis. For instance, two studies in different wetland 

regions of China [56,58] used primitive objects generated by multi-resolution segmentation as spatial 

units for GIS-based bird habitat suitability analysis and modeling. An inevitable challenge, however, is 

choosing the most “optimal” segmentation layout from large array of possible parameter combinations, 

as discussed in more detail in Section 4.4 below. 

3.3. Detection and Delineation of Wetlands as Landscape Units 

A number of studies applied OBIA to delineate wetlands as semantic objects, either as a standalone task 

or to isolate wetlands for subsequent analysis. Such delineation can be greatly facilitated by unique 

spectral, textural and geomorphological characteristics of wetlands that contrast with adjacent upland areas 

and open water [15,16,18,87]. These properties may include distinctive soil moisture content and 

inundation affecting reflectance in moisture-sensitive bands [16,26] and backscatter in radar  

sensors [73,74], or unique geomorphological structure and landscape position shaped by topographic and 

hydrological factors [41,77,84–86]. These characteristics may assist in separating wetlands from other 

land cover types due to greater contribution of the surface and soil moisture to spectral signals, 

reflectance of water through canopy gaps and presence of specialized hydrophilous vegetation with 

unique spectral properties compared to upland plants [30,48,59].  
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At the image object level, a number of physically meaningful non-spectral attributes may also 

accentuate wetland presence and extent. For instance, shape, size, spatial relationships and adjacency 

metrics helped to finalize detection of isolated wetlands by separating them from wetlands connected to 

water bodies in [15]. Some studies utilized image texture, or metrics of spectral heterogeneity and 

landscape patterning, in wetland detection, as either object-level texture attributes or as ancillary input 

image layers to OBIA [16,39]. Smoothing of local spectral variation at the object level may further 

enhance spectral contrasts among “wetter” and “drier” landscape units and facilitate delineation of 

wetland bodies as discrete entities [15,16,18].  

The OBIA framework also makes it convenient to combine multiple complementary datasets for 

wetland delineation without overly complex data fusion [73,77]. In particular, digital elevation models 

may elucidate topographic properties and landscape position of wetlands and to predict potential zones of 

soil saturation based on topographic-hydrological feedbacks [47,68,77,86]. For instance, an effort to detect 

small (median area of 0.67 ha) palustrine emergent wetlands in semi-arid California Sierra-Nevada 

Foothills [87] combined multi-spectral IKONOS imagery with topographic information derived from 

DEM, thus highlighting the contrasts between small wetlands and irrigated pastures or other upland 

cover types. A study in the USA’s Prairie pothole region [86] developed binary water/non-water maps 

and performed terrain analysis to identify depressions, which then facilitated unsupervised cluster-based 

classification of wetlands according to their hydrological function. In locations with complex and locally 

variable terrain, topographic properties highlighting locations of wetland and riparian features may be also 

derived from lidar data [6,41,42,70]. Delineation of wetland units as discrete objects is often an important 

first step of hierarchical approaches prior to identifying different classes of wetland systems [73] or 

mapping within-wetland cover types and habitats [26,41]. 

An important challenge in wetland delineation is potential “fuzziness” and positional uncertainty of 

their spatial boundaries, especially in areas with complex inundation gradients and mixed vegetation 

forming transitional fringes [7,15,55]. Standing tall vegetation may also obscure wetland boundaries [88] 

and reduce the extent of detectable area, which may be an important concern for mapping smaller 

wetland bodies [86]. The issue of fuzziness may be at least partially addressed by (1) assessing 

hydrological variability at different dates to obtain more “generalized” boundaries [86]; (2) when possible, 

incorporating high-resolution images or ancillary data to improve the precision of delineation [48]; and (3) 

focusing on detection of wetland presence and prevalent extent, rather than boundary precision per se [15]. 

Some studies also suggested using subpixel estimates of percent water cover to improve delineation 

accuracy, particularly in small wetlands [86]. Notably, from an ecological standpoint, fuzzy boundaries 

are both interesting and important as transition zones between marshes and adjacent uplands that have 

been of growing interest to management in face of the threats posed by the sea level rise in flood-prone 

landscapes [98]. OBIA may be used to delineate specific wetland zones based on hydroperiod, local 

topography and phenology [7,45,53] and facilitate their repeated monitoring. 

3.4. Stepwise and Hierarchical Relationships in Advanced Wetland Classifications 

The possibility to perform OBIA at spatially linked “nested” object levels greatly facilitates 

hierarchical approaches to classification of wetland ecosystems. The utility of such hierarchies was 

recognized in earlier pixel-based studies [99,100] demonstrating that to more reliably classify wetland 
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components, wetland units first have to be differentiated from other landscape elements. Furthermore, 

spatial complexity of wetland cover types may limit the capacity to classify them in a single effort and 

instead may call for the use of different discriminating features and even spatial scales for different class 

groups [17,25]. For instance, in [28] broader salt marsh vegetation zones were more effectively detected 

with objects from 1 m CIR satellite imagery, while surface water channels were more easily 

distinguished from 0.3 m RGB aerial photography. In [17], specific wetland plant functional types 

differed in object scale which maximized mapping accuracy for individual classes from Landsat data. 

Hierarchical procedures my accommodate these different requirements at individual analysis steps while 

preserving object boundaries across the levels of the classification scheme [23,25,27,62,68]. 

The key benefit of hierarchical OBIA in wetlands is in the possibility to account for spatially “nested” 

physical and ecological aspects of their organization. As landscape units, wetlands often exhibit unique 

spectral properties due to their moisture status, vegetation and spatial configuration [18,39,86,87]; 

therefore, it is reasonable to separate them from upland cover types prior to mapping their internal 

features. In turn, hydrological and topographic variation within wetlands may shape unique regimes and 

geomorphological features such as mudflats [45,53,68,78] and “zones” of vegetation types with different 

flooding adaptations along the gradients of elevation and bathymetry [17,28,71,78,84,101,102]. 

Differences in morphology, color and phenology within such zones form important landscape context 

for individual elements of wetland cover [28,32] and, thus, provide useful strata for characterizing more 

specific ecosystem properties and habitats [25,58].  

Specific strategies of hierarchical OBIA implementation in reviewed studies varied due to unique 

landscape structure of wetland regions, research objectives and input data. Some analyses started by 

separating wetlands from other cover types before delineating wetland-specific elements [26,49,62], 

sometimes with the help of ancillary information from wetland inventories and similar  

sources [26,27,50,64,71,89]. In contrast, other studies performed bottom-up aggregation of primitive 

objects and small landscape elements (e.g., patches, trees, bushes) into more general surface classes or 

wetland types [67]. Several studies combined both top-down and bottom-up analyses to delineate 

complex semantically and spatially structured groups, for example, mangrove communities amidst other 

wetland classes in [22] and [23], or wetland vegetation types in the river floodplain [68] shaped by 

hydrological units and inundation regimes. Greater complexity of hierarchical procedures, however, would 

be likely to limit their transferability, calling for more coherent strategies of their development. Particularly 

promising are the new tools for automated selection of segmentation parameters that may simultaneously 

identify multiple meaningful and hierarchically connected scales of object delineation—such as the ESP 

tool for MRS in eCognition [95,96].  

3.5. Diversity of Object-Level Variables for Class Delineation and Discrimination 

3.5.1. Spectral Variables 

Remote sensing classifications of wetland cover are often challenged by spectral confusions resulting 

from strong effects of moisture on reflectance and backscattering, spectral variation in mixed areas [50] 

and presence of senescent vegetation obscuring unique signals of live communities [51]. As a result, 

spectral variables alone may not always separate classes sufficiently well [13]. Object-based analyses allow 
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incorporating textural, geometric and contextual features defined at the level of object units, which together 

with spectral attributes produce a rich pool of candidate variables for both instantaneous [6,50,53] and 

multi-step classifications [23,32].  

It is important to note that among reviewed studies spectral attributes based on the image bandwidths 

were still the most common discriminating features [6,27,28,81]. Most analyses incorporated object-level 

values of image bands sensitive to surface moisture and vegetation greenness (e.g., red, green,  

near-infrared) and their mathematical combinations such as normalized difference vegetation index 

(NDVI) [6,7,39] and band ratios [32,45]. A much wider choice of spectral bands and indices is possible 

with hyperspectral remote sensing; however, such data have been relatively less common in object-based 

wetland studies. Four analyses in this review used airborne hyperspectral images to characterize general 

cover types [29] and wetland-specific vegetation groups and species [8,22,83]. Prior to OBIA, these 

studies determined the most useful bands with the aid of data-reducing statistical techniques such as 

minimum noise fraction transformation.  

With radar data, spectral variables represent the backscattering signal after the radar pulse has 

interacted with wetland surface and thus provide critical information for discriminating surface cover 

types. Depending on the sensor wavelength, polarization, incident angle and structure of vegetation, the 

backscatter response may be dominated by surface scattering, volume scattering, or by “double-bounce” 

effect caused by the signal’s interaction with multiple surfaces inside deeper canopies, e.g., tree trunks 

and water in flooded forests [37,74–76]. SAR wavelength plays an important role in object-based 

classifications; for instance, the shorter-wavelength C-band was useful for detecting herbaceous marsh 

vegetation [37,78] but had limited sensitivity in forests [37,103]; while the longer L-band wavelength 

was sensitive to size of scattering elements in woody canopies and thus especially informative in forested 

wetlands [77,82]. In all the studies using SAR data, signal properties at the object level were typically 

more important than non-spectral attributes for differentiating ecosystems with diverse plant 

morphology and canopy structure, such as flooded forests, herbaceous marshes, man-made wetlands and 

rice paddies [27,37,71,74,75,78,80,82,104]. Finally, with lidar data, the return signals following 

interaction with wetland surfaces have to be preprocessed into raster models of terrain elevation, canopy 

surface metrics or other topographic and structural indices before they can be summarized in OBIA or 

integrated with other remote sensing data [6,28,41,69,88]. Most wetland studies utilized lidar 

information as complementary to primary multi-spectral variables, except two riparian studies relying 

primarily on lidar-based structural metrics in woody canopies [69,88]. 

3.5.2. Texture Variables 

Among the non-spectral attributes, texture variables were the most commonly discussed and perhaps 

the most controversial in terms of their added benefits to object-based classification. Texture may be 

evaluated by various metrics of heterogeneity in pixel values within a defined neighborhood, from simple 

standard deviation of spectral bands to more computationally demanding grey level co-occurrence 

matrix, or GLCM [105] functions [26,27,43,46,48,72,103]. In the reviewed studies, texture metrics were 

used both at the pixel level as inputs to initial segmentation [16,18,24,30,46], and as object-level 

attributes estimated from informative spectral bands such as near-infrared [18,48].  
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The key benefit of texture metrics is that, given the appropriate spatial scale, they may capture the 

unique “patterns” of spatial configuration and spectral variability among cover types and assist in their 

discrimination, sometimes compensating for limited spectral information in the input data [13,30]. 

“Characteristic” textural properties may be found in wetland vegetation types which exhibit unique 

spatial arrangement and density of dominant plant species [17,48] or specific distribution of gaps in 

woody canopies. For instance, in the study of Thailand mangroves [24], distribution of canopy gap sizes 

promoted development of lacunarity metrics to facilitate classification of mangrove species. Interesting 

metrics of texture based on Japanese Earth Resources Satellite-1 (JERS-1) radar data were proposed for 

a broad-scale wetland mapping in Siberia [73], derived as local estimates of variance in the smooth 

signal and wavelet coefficients to highlight differences in landscape configuration among riparian, 

forested and bog wetland features. Metrics of “geotexture” based on variation in local neighbor objects 

were used in classification of boreal wetland types in Canada in [44].  

The overall utility of texture for wetland classifications, however, was not universal. Several studies 

of marshes dominated by herbaceous vegetation reported the lack of improvement in accuracy with 

added texture at different input data resolutions [17,57,72]. The analysis of a salt marsh in the Yangtze 

River Estuary with 0.61 m pan-sharpened IKONOS imagery [57] attributed the lack of textural benefits to 

the likely similarity in texture among saltmarsh plant types. In the study of wetland plant functional types 

using Landsat data [17] characteristic fine-scale spatial patterns of disturbed reed patches had likely been 

“smoothed” at the level of 30-m pixels even before segmentation thus reducing the informative value of 

texture. In the classification of wetland vegetation in the Hudson River Estuary [30], texture was useful 

for improving the overall classification accuracy, but not as beneficial for the accuracy of the target 

invasive species class. Generally, the strongest benefits of texture were found in studies using high 

resolution (≤4 m) data and target classes with substantial differences in spatial patterning, such as 

vegetation, water and bare mud in [13].  

3.5.3. Shape and Contextual Variables 

Geometric attributes describing object shape and size were overall less frequently used in wetland 

analyses than spectral and texture metrics. In part this could be explained by common reliance on small, 

geometrically similar primitive objects as mapping units. However, even larger, “whole” patches of 

wetland cover types may exhibit large variation in geometric properties. For instance, bodies of open 

water may occur within the same landscape as linear features (streams and rivers), variable-sized and 

more “compact” units (small lakes and ponds), or large standalone objects (large reservoirs and portions 

of sea/ocean). Water channels may be difficult to accurately classify even with high-resolution data when 

they vary in sinuosity and when presence of floating aquatic macrophytes makes them similar to other 

cover types [28,30,49]. Not surprisingly, shape and size metrics were most beneficial when research 

objectives targeted wetland elements of a particular geometry type. For instance, in [26] such metrics 

were used to characterize partially submerged “linear” logs as wetland turtle habitat elements. Object 

area facilitated classification of small isolated wetlands within the matrix of rangeland and agriculture 

in [87] and delineation of wetland shrub cover types in [50]. Shape index (a measure of deviation from 

an idealized geometry such as square or circle) was used as one of the attributes for delineating the 

swamp class in a Quebec landscape [43].  
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Contextual variables describing adjacency, distance and neighborhood relationships were typically 

used after the results of segmentation or primitive object classification had been already integrated to 

“whole” patches of classes, making spatial associations among objects more meaningful. The most 

commonly used variables included proximity, adjacency, distance and relative border to “benchmark” 

classes affecting position of other surface types along the gradients of inundation, such as water bodies, 

channels, or streambeds [25,27,41,81]. To facilitate discrimination of riparian cover types in Australian 

tropical savannas [41], several contextual variables were utilized, including relative border to riparian 

vegetation and presence of and distance to streambed. In some cases, contextual relationships allowed 

to refine already developed classifications by re-assigning small misclassified objects within larger 

patches [6] and to address specific confusions among selected class pairs, such as between shrubs and 

floating vegetation in [50] and between two cattail species in [25]. Useful contextual information may also 

be provided by object attributes that had been “inherited” from higher or lower hierarchical levels [39,72], 

such as the identities of more general landscape units.  

In summary, most of the reviewed studies took advantage of the rich palette of class-discriminating 

features available at the level of objects, even when these objects were patch primitives rather than whole 

patches. The OBIA framework also facilitated the use of ancillary datasets and complementary sources 

to generate class-discriminating object attributes such as digital elevation models [56,59,84,86,87],  

lidar-based terrain and canopy surface models [6,32,41,42] and existing spatial data on hydrological, soil 

and other wetland components [16,26,29,43,50,65,68,73,80,89]. However, a large variety of possible 

object features creates the challenge of choosing the best-discriminating ones while minimizing their 

redundancy [28,53], which will be discussed in Section 4.5 below.  

3.6. Object-Based Approaches for Wetland Change Analysis 

Smoothing of the local noise and accentuation of landscape entities makes OBIA attractive for the 

analysis of wetland change; however, to date such applications have been less common than single-date 

or single-year analyses. Because the availability of suitable imagery is usually temporally discrete, 

detectable changes between the pairs of dates may often appear “patchy” [23] and thus may be 

characterized as spatial units, i.e., change objects [39]. Reduction of noise at the object level is also 

important, as it increases the probability that observed changes indeed result from landscape 

transformations rather than abnormal pixels and noise. Objects may also provide meaningful spatial basis 

for assessing surface cover transitions in highly heterogeneous, mixed-cover wetlands. Detecting shifts in 

“hard” class boundaries in such areas may be problematic; alternatively, local dynamics of surface 

inundation and phenology may be inferred from changes in class membership values at the level of small 

primitive objects [7]. A promising, yet under-explored, research strategy is the “object fate analysis” [106] 

focusing on spatially explicit assessment of change in the object geometry. Such an approach takes into 

account not only the overall shifts in class sizes, but also spatial arrangement, and therefore, spatial 

“context” of detected transformations. 

Among the reviewed studies performing change analysis, the most common approach to detect 

transition was spatial overlay of the individual-date classification results [7,59,67,72]. Specific purposes 

of change assessments varied, including, e.g., the analysis of bush encroachment in a degraded sub-alpine 

bog in Estonia [67], the study of three-decade transitions in alpine wetlands in Tibet focusing on signals 
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of ecological succession and high-altitude climate change [59], the analysis of dominant surface 

transitions of the largest freshwater wetland in China during the low water season [7], broad-scale 

analysis of aquatic and terrestrial class shifts in a Canadian peatland landscape [46] and the study of 

small wetland size change from 1989 to 2005 in the U.S. Prairie Pothole region as a basis for 

characterizing wetland hydrologic functions [86]. In these studies, OBIA facilitated change detection by 

alleviating local noise, accounting for wetland textures and providing the basis for delineating wetland 

bodies and their transitions as landscape entities.  

Successful change analysis relies on a key assumption that in order to be detected, the magnitude of 

transitions should exceed the sizes of individual pixels or even primitive objects; otherwise, the 

diagnostics of “change” may be limited or obscured by noise [59]. This underscores the importance of 

image spatial resolution in assessing and interpreting wetland dynamics. Medium and coarse-resolution 

data may have limited sensitivity to local smaller-size transitions and may be more effective for spatially 

contiguous cover types, such as glaciers and lake-wetland complexes in [55]. In contrast, high and very 

high-resolution data may be suitable for detecting fine-scale transitions of wetland components and even 

distributions of individual species following local hydrological variation and management actions [51]. 

Some of wetland ecological processes, such as exotic plant species invasions, may be manifested as  

fine-scale yet rapid incremental changes, and their timely detection may be of critical value for planning, 

management and conservation [30,34]. Advances in very high-resolution data with pixel size <1 m are 

extremely promising for this task, as shown by the detection of invasive coastal marsh Spartina spp. 

using UAV-collected imagery in [34].  

Finally, a special challenge should be noted for wetlands with high magnitude of short-term variation, 

where between-date changes may represent both long-term transitions and short-term effects of plant 

phenology and disturbance [45,53,74,107]. Investigating long-term shifts in such systems requires 

disentangling surface trends from transient phenomena, and in case of small isolated wetlands—accounting 

for seasonal hydrological processes that are not entirely “visible” to remote sensors [16,86]. The OBIA 

framework may facilitate alternative approaches in such landscapes using primitive objects as the spatial 

units of change trajectories. For example, in a dynamic classification of Poyang Lake, China [53] 

primitive objects were generated at the time of high patchiness at the peak of the low water season and 

used to map seasonal classes, or “dynamic cover types”, as sequences of states and transitions from 

multi-date images over one flood cycle. The use of dual-date SAR images in the study of Amazon Basin [74] 

allowed to develop a “vegetative-hydrological classification scheme” accounting for different flood 

regimes of upland and wetland cover classes; similar approaches were used in other radar-based studies 

of large and complex inundated tropical landscapes [75,76]. These and other studies of dynamic wetland 

regions [38,45] suggest that prior knowledge about the system phenology and hydrological regimes can 

be used to constrain change trajectories to physically and ecologically plausible classes, and that OBIA 

provides important spatial and temporal context for more accurate mapping and interpretation of 

dynamic regimes while smoothing local noise.  
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4. Factors Affecting the Accuracy of Wetland OBIA Applications 

4.1. Accuracy in Wetland OBIA 

Given high variability in geometric properties of wetland patches, the assessment of accuracy in reviewed 

studies focused largely on the match between mapped classes and identities of selected test locations using a 

traditional confusion matrix. Test samples often represented pixels, or “point” locations [6,39,59], reference 

plots or ground polygons [23,27,41,43], or primitive objects with known characteristics [7,45,48,51,53]. 

Several studies used fuzzy accuracy assessment to account for sub-object class mixtures in complex 

areas [7,32,48]. In wetland delineation analyses, alternative measures of accuracy were employed such 

as proportion of wetlands detected relative to known references [87] or the degree of overlap between 

mapped and reference wetland polygons, summarized for target classes [27] or ranked wetland size 

groups [15,16,18]. Two studies of the riparian zone in Central Queensland, Australia [42,88] evaluated 

accuracy as linear coefficients of determination (R2) between remotely sensed and field metrics of 

riparian morphology and plant cover. To overcome common limitations on reference data in wetlands, 

studies used ancillary information such as regional wetland inventories [86,89], expert interpretation of 

aerial photos and objective sampling interpolation techniques to select reference data based on spectral 

similarity with known locations [8,83]. 

Figure 2. Classification accuracy in the reviewed papers: (a) histogram of the highest overall 

classification accuracy from 61 reported cases, and (b) distribution of classification 

accuracies with respect to the number of classes in the scheme (multiple statistics reported 

in some papers). 

Among the reviewed studies, the overall classification or mapping accuracy was reported in 61 cases 

(Figure 1), and the distribution of the highest values per study or classification level was skewed to the 

left showing more values on the higher accuracy end, with the mean of 84.6% and the median of 85.9% 

(Figure 2a). No significant correlation was evident between the highest overall accuracy and either 

spatial resolution or spatial extent (p-value > 0.1) of the study area. Furthermore, the accuracy was not 

strongly associated with the number of target classes (Figure 2b), and values exceeding 90% were 
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reported with both simple and more complex classification schemes. Generally, the occurrence of 

accuracies below the 85% benchmark increased after the number of classes exceeded 4; however, very 

few analyses used more than 10 to 11 classes. One study [8] tested discrimination of larger sets of 

wetland plant species with advanced machine-learning techniques and reported decline in accuracy from 

98% with 10 classes to 89% with 40 classes. In addition, four studies compared object-based accuracy to  

pixel-based classification outcomes and reported the improvement of the overall accuracy by 1.5% [30], 

7% [22], 28.8% [29] and 31% [24] with OBIA relative to the best pixel-based result. However, caution 

is needed for interpreting such accuracy comparisons, because studies vastly differed not only in their 

data and methods, but also in the quantity and characteristics of test samples. Furthermore, relatively 

common post-classification manual editing of OBIA results may increase the final map accuracy but 

reduce objectivity and clarity on method-specific performance and transferability [50]. 

These issues raise the questions of how various steps and criteria in OBIA affect the ultimate accuracy 

and how different studies approached these decisions. The process of OBIA is not fully automated, and 

its options for user customization may become particularly complex and ramified in wetland analyses. One 

obvious factor in the classification success concerns conceptual definitions of semantic classes and their 

feasibility to be discriminated [17,27,56]. A number of reviewed studies addressed this challenge by 

choosing distinctive, albeit sometimes general, wetland cover type definitions [7,13,26,50]; focusing on 

plant functional types rather than more similar species or communities [17,39] and using temporal (i.e., 

seasonal) information in class definitions to incorporate phenology and hydrological regimes [53,74,104]. 

The final outcome of OBIA classifications also depends on several other choices that have to be made 

using quantitative criteria or expert judgment: 

 Spatial scale and spectral properties of image data as inputs to segmentation; 

 The choice of segmentation parameters to generate objects as classification units; 

 The choice of object attributes to discriminate among classes; 

 The choice of a classification approach and statistical algorithm. 

Below, these choices and associated challenges are discussed from the perspective of the reviewed 

wetland studies.  

4.2. Spatial Scale of Research Questions and Input Data 

The choice of remote sensing data is critical in the OBIA success, and it typically depends both on 

the research objectives and on the availability of data of sufficient quality, appropriate spatial scale and 

affordable cost. The lack of the association between the highest overall accuracy and either spatial extent 

or image resolution (Figure 1) in the reviewed studies suggests that spatial scale was not a direct 

constraint on OBIA performance. Rather, it reflected differences in the spatial scope determined by study 

area size and pixel resolution, and the appropriateness of target classes given the latter. Ideally, image 

object dimensions should significantly exceed the scales of local noise and irrelevant (i.e., non-textural) 

heterogeneity [14,19,20]. With high-resolution data, this is possible through generation of objects that 

are relatively large compared to pixel size. With medium and coarse-resolution data, this task becomes 

less straightforward: while some of the local noise becomes “absorbed” at the pixel level, so do 

meaningful boundaries and textural properties of classes [17,43,88]. 
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Among the reviewed papers, studies operating at larger spatial extents often had to use coarser-resolution 

data of large instantaneous ground coverage, such as 300-m MERIS and 100-m JERS-1 in [73] for  

125,000 km2 West Siberian lowland, or 100-m JERS-1 for 1.77 million km2 in the Amazon basin. With 

such data, minimum mapping units may become too large and more likely to contain class mixtures in 

heterogeneous areas [82]. Studies operating at these broad spatial scales typically had to rely on ancillary 

data from Landsat (30 m), ALOS AVNIR (10 m), IKONOS (4 m) and other commercial satellite images or 

aerial surveys as the source of reference for classification training or validation [27,61,79,80]. In turn, 

among the analyses of moderate-resolution multi-spectral or SAR imagery, the size of study area varied 

greatly, and the choice of data was often motivated by cloud-free image availability, spatial coverage 

and affordability (no cost for Landsat). The 10 to 32 m pixel size was sometimes admitted as too coarse 

for wetland OBIA due to limited sensitivity to patch boundaries and the chance of mixed pixels [17,88]. 

Yet, for large and less well studied regions, moderate-resolution data often become an optimal, 

affordable option. To overcome field sampling limitations, studies at these scales also used ancillary 

high-resolution images for reference, training and validation [53,72]. 

For the analyses of high and very high resolution aerial and satellite images, the key advantage was 

high spatial detail revealing object boundaries, patch geometry and texture [6,12,13,32,50]. However, 

within-class heterogeneity and irrelevant features related to shadows and small ground elements may 

also become accentuated and challenge classifications at these scales [13,45,57]. For instance, in [5] 

fine-scale variability in wetland species composition was a limitation for a supervised OBIA 

classification even at 2-cm resolution, invoking substantial manual post-classification edits of the output 

map. While such efforts can be aided by flexible process trees (such as rule sets in eCognition), overly 

customized and fine-tuned algorithms may be difficult to apply at other locations and dates [21,48,50]. 

Field access limitations may constrain analyses even at high resolution, and some studies also had to 

utilize ancillary aerial photos and GIS data for reference and validation [13,49,52]. 

Finally, interesting challenges with respect to scale arose in studies mapping wetlands of relatively 

small size (<1 ha) but over large study areas [15,16,18,48,87]. For instance, the effort to map isolated 

wetlands in a Florida, USA watershed found that larger bodies tended to be delineated more accurately 

than smaller ones [15,16]; however, combination of pan-sharpened Landsat data (15 m) with DEMs from 

high-resolution contour data allowed for reliable detection of wetlands up to 0.2 ha. Detection of small 

wetlands over large spatial extents may require the use of multiple images taken at different  

dates [32,48,87], and differences in surface phenology may limit the applicability of single-date algorithms 

across the data. Small wetlands are known to provide critical ecological services in human-modified 

landscapes [86,87]; yet, they are often not well represented in regional inventories and poorly understood 

from ecological standpoint [6,87,89]. Improving the capacity to detect and monitor them is an important task 

in the face of changes in climate and regional water uses that may be especially facilitated by object-based 

analyses of high-resolution data [15,26,87]. 

4.3. Characteristics of Remote Sensors  

Spectral properties and physical characteristics of the input data strongly affect the success of recovering 

wetland cover type and patch extents in OBIA. With passive remote sensing, enhanced sensitivity in 

moisture-sensitive near- and mid-infrared regions (e.g., in Landsat and SPOT sensors) or in the red edge 
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zone (Worldview-2,-3) was beneficial for accurate discrimination of wetland vegetation types and wet 

features in a number of studies [17,23,81]. The lack of spectral band representation with certain sensors 

may be somewhat compensated by the use of spectral indices and band transformations [7,25,32,39,45]. 

Flexible OBIA framework also allows using different spectral enhancements at the steps of segmentation 

versus object classification; for example, a tidal marsh vegetation study [25] used principal components 

as inputs to segmentation and band-derived attributes in classification.  

Active remote sensors such as radar greatly facilitated object-based class discrimination in areas 

spanning across gradients of both inundation (from open water to non-flooded upland cover types) and 

plant morphology (from aquatic plants and short grasses to shrubs and trees) [6,76,78,79]. In particular, 

multi-seasonal SAR backscattering was beneficial for (1) detecting wetland classes as objects shaped by 

seasonal inundation extents; (2) enhancing the contrasts among vegetation types based on differences in 

seasonal canopy development affecting double-bounce scattering and other characteristic canopy 

responses; and (3) incorporating differences in temporal variation of backscatter as another characteristic 

of vegetation classes [53,74–76,78]. Given different sensitivities of common radar wavelengths to 

canopy structure, some studies successfully combined C- and L-band sensors in complex wetland 

regions, where relative importance of surface scattering, volume scattering and double bounce varied 

with ecosystem type [75,76,79,80,103]. Other important parameters included band polarization, 

affecting radar scattering intensity following the interactions with wetland surfaces and canopy  

elements [37,40,54,75], and incidence angle contributing to wave penetration into canopies and thus 

affecting the strength of specific responses such as double-bounce effect  [37,75]. 

To enhance the information extraction, a number of wetland studies also combined SAR and  

multi-spectral imagery such as Landsat [27,47,77,82] either as joint inputs to segmentation [53,71] or at 

different steps of analysis [47,78]. Such data fusion takes advantage of both the spectral contrasts among 

structurally similar cover types and radar-sensed differences in inundation and vertical canopy structure. 

However, OBIA results may be sensitive to positioning errors and mismatches in spatial resolution 

among different sensors [88]. Given the logistical “cost” of pre-processing radar data, it is practical to 

consider whether expected benefits could be achieved with more readily available data such as Shuttle 

Radar Topography Mission (SRTM)-based DEMs and water body maps [73,77,80].  

Lidar data has been also increasingly used in wetland studies to facilitate discrimination of spectrally 

similar but structurally different canopies based on architecture and height, such as tall reeds versus 

shorter marsh vegetation in [32], or riparian areas with vegetation overhang [42,69]. However, these 

benefits have not been uniform among wetland types. For instance, in a study of a predominantly 

herbaceous tidal marsh [28], inclusion of lidar did not substantially enhance OBIA accuracy, instead 

over-simplifying recognizable wetland features and exacerbating over-segmentation of tidal channels. 

To take greater advantage of lidar information, future applications should test more comprehensive 

metrics beyond elevation or canopy height alone. Examples of such metrics were demonstrated by a 

study in Australia using lidar-based datasets as the only input to OBIA in a riparian landscape [42]. 

Similarly, an object-based wetland delineation study in Minnesota, USA [6] tested several lidar-based 

landscape metrics to complement spectral information from high-resolution aerial photography; among 

those, compound topographic index (CTI) was especially useful in discriminating wetland and  

non-wetland objects at different levels of slope steepness. Because lidar data of sufficiently high point 
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density to resolve fine-scale marsh canopy structure are not yet available at large spatial extents, the 

benefits of this sensor to date have been limited primarily to local and site-specific studies. 

Finally, the utility of any data source to OBIA objectives may depend on the timing of data 

acquisition. For instance, in [26] using color orthophotos the leaf-off winter stage enabled mapping turtle 

habitat attributes in a forested landscape and delineating wetland boundaries that otherwise would have 

been obscured by tree canopies. Wetland detection may benefit from high inundation stages; the study 

of small isolated wetlands in Florida, USA [16] recommended mapping them at the wettest time of the 

year. Peak times of green vegetation development may result in spectral similarity of plant types, calling 

instead for dates of phenological contrast such as wet-dry, or leaf on-leaf off stages [17,32,38,74,75]. In 

coastal wetlands, high tidal stages may limit the ability of both active and passive sensors to discriminate 

wetland classes due to strong effects of water such as absorption in the infrared and microwave regions. 

In subtropical and tropical zones, multi-date image combinations provide strong basis for separating 

inundated cover types and accentuate object boundaries [53,74,78]. To facilitate more accurate and 

reproducible analyses, future studies should more effectively utilize multi-temporal data by considering 

which hydro-phenological stages provide most information for segmentation and accurate identification 

of wetland typologies or internal cover types [45,78]. 

4.4. The Challenge of Segmentation Parameter Selection 

Segmentation is the key first step in many OBIA analyses, and its outcomes have strong implications 

on subsequent accuracy and interpretability of results. At present, there is no clear standard for  

pre-classification assessment of segmentation effects on the final outcomes in either wetlands or other 

heterogeneous landscapes. In fact, among the reviewed studies, relatively little justification was provided 

for the choice of segmentation metrics, with trial and error being a common approach, a concern 

previously discussed in [28]. Simultaneous testing all of the possible segmentation parameters (e.g., 

combinations of input bands and their weights, scale, compactness, shape, spectral thresholds or all of 

these) is a complicated task and, regrettably, still not a common practice in OBIA studies. Furthermore, 

different types of ground objects may be more effectively highlighted with different values of 

segmentation parameters [28,93], which also complicates the decision about the “optimal” segmentation 

across multiple research objectives. A notable example of an objective supervised workflow was 

demonstrated in a non-wetland OBIA application to landslide mapping [108], where multiple 

segmentation levels were first assessed in terms of their effects on class separability, and then a variable 

importance measure based on random forests machine-learning method was quantified to select the most 

informative object attributes for distinguishing landslides.  

Several wetland studies also explored specific quantitative and qualitative criteria to determine 

segmentation parameters while avoiding superfluous subjectivity. These strategies included metrics of 

within-object homogeneity and spectral contrast to neighbors to determine the scale of primitive  

objects [7,53], approaches based on local spatial autocorrelation measured by Moran’s I of the spectral 

values [8], also used to optimize segmentation in non-wetland analyses [109], and a set of ranked visual 

criteria used in [28] to compare segmentations’ ability to recover known wetland objects (such as 

patches, channels and tidal zones). Both these and other studies using trial and error often concluded that 

spectral information was more important in wetland object delineation than shape, and that smoothness 
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and compactness criteria affected the outcome much less strongly than spectral properties. Segmentation 

parameters greatly varied among all studies. 

Although the peaks in classification accuracy at certain object scale were sometimes used to identify 

important spatial scales in wetlands [13,17], there is a growing consensus that diverse landscape classes 

may not be always adequately characterized at a single segmentation level [17,28,95,96]. For instance, 

in the study of wetland plant functional types in [17], more narrowly defined plant classes at lower 

hierarchical level differed in segmentation scales which maximized their individual accuracies. 

Similarly, in [13] class-specific accuracies of vegetation, water channels and mud reached maximum 

values at different segmentation scales, and those typically did not match the maximum scale of the 

overall accuracy. These results suggest that searching for a single “optimal” segmentation may not be a 

productive goal in complex landscapes, and instead call for new methods to determine and test 

hierarchical sets of ecologically relevant and spatially linked object levels [23,68]. Examples of such 

methods that should be more rigorously explored in wetlands may include the abovementioned ESP tool 

for eCognition [95,96] and the Plateau Objective Function (POF) in [110] based on spatial 

autocorrelation and within-object variance, which identified segmentation parameters suitable for 

capturing different-sized landscape features in a complex terrain. 

4.5. The Challenge of Selecting Object Attributes for Classification 

The potential diversity of class-discriminating attributes that can be defined for image objects creates 

a major challenge of choosing from large number of features, some of which may be redundant [50,53]. 

This selection becomes even more difficult when specific sets of candidate variables discriminate only 

particular groups of classes [49,62] or when the study spans over different locations or dates. For 

instance, in [48], 43 different aerial photos used 43 unique identification procedures to characterize tidal 

marsh composition. In [50], classification accuracy of a coastal high marsh was higher when rule sets 

were applied to the images they were developed for, versus other images from the same region. In the 

studies of long-term change in seagrass and coastal cover types in Australia [21] and alpine wetland 

transformation in Tibetan plateau [59], rule thresholds and membership functions had to be re-adjusted 

for different image dates due to spectral inconsistencies among Landsat images. However, the routine 

need for algorithm re-adjustment or post-classification manual editing [5,59,67,72,74,80,82] may 

become a serious barrier for repeated monitoring of wetland cover with reproducible algorithms [50]. 

These challenges call for more rigorous uses of quantitative and objective attribute selection methods, 

from simple statistical tests for class separability and redundancy among individual correlated attributes, to 

more advanced machine-learning data mining algorithms that can guided by expert knowledge [108,111]. 

Several studies pre-tested spectral separability of wetland class samples with various individual object 

attributes using specialized statistical metrics such as Jeffries-Matusita and Bhattacharyya  

distances [12,13,37,65,81]. Other studies tested class discrimination with multiple attribute sets using 

automated computer-based strategies, such as eCognition’s [90] feature space optimization  

tool [48,57,80,81] and machine-learning attribute selection algorithms in the open-source Weka [112] 

software [53,87]. These algorithms provide practical and time-efficient opportunities for testing large 

sets of diverse candidate variables, and their importance will likely grow with more intensive data 
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processing needs and increasingly higher spatial detail [34,35] and temporal frequency [7,53,102] of 

novel remote sensing instruments. 

4.6. Importance of the Classification Method 

The choice of a specific classification method may strongly affect wetland mapping outcomes with 

both pixel- and object-based approaches [9–11,17,87]. Most of the reviewed analyses (Figure 3) used either 

custom knowledge-based rule sets [26,48,50,84], or supervised nearest-neighbor classification in eCognition 

software which uses estimates class membership values from training samples and assigns classes to 

unlabeled objects based on fuzzy logic [7,13,16,18,22,24,25,32,53,57,84]. In contrast to pixel-based 

wetland literature, reviewed studies did not employ unsupervised clustering or statistical ordination 

techniques at object level, except one study using unsupervised clustering of image regions to obtain 

wetland and non-wetland mask [74]. Several studies used unsupervised pixel-based classification to 

generate preliminary cover types and then performed more specific object-based analyses for wetland 

delineation [86], classification of wetland units [65] or mapping their intrinsic cover types [84,85]. Such 

hybrid approaches combining pixel and object units were especially useful in complex wetlands with 

heterogeneous surface cover and fuzzy boundaries. 

Figure 3. Applications of classification approaches by general method type and publication year. 

Among the statistical supervised approaches, various methods were used from conventional 

maximum likelihood classifiers [58] to novel machine-learning algorithms [8,17,45,81,83,87]. 

Supervised approaches based on minimum distance in the feature space were more intensively employed 

at the early stages of wetland OBIA (Figure 3), while recent years have been marked with more active 

use of machine-learning algorithms. Their potential, however, remains somewhat under-utilized 

compared to rule-based techniques and eCognition’s fuzzy logic classifier [24,25,46,84,90]. In part, this 

could be explained by the “black box” nature of common machine learning methods and their reliance 

on iterative learning to improve predictive capacity, which constrains the interpretability of their 
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parameters and error in the outcome. Relative performance of various algorithms in wetland setting also 

remains unclear; few studies have compared multiple techniques for the same objective, and among 

those which did, similar approaches were ranked differently [7,83,87]. 

Several machine-learning method families, however, are particularly promising to circumvent the 

challenges of heterogeneity and limited reference data in wetland OBIA. For example, support vector 

machine (SVM) methods perform classification by fitting a hyperplane along the class boundaries in the 

feature space, and therefore may not require training sample sizes as large as methods comparing 

distances to class means. Superior performance of SVM compared to other popular methods was 

reported in mapping of wetland plant communities and species in Florida, USA [8], object-based 

classification of Galapagos mangroves in [81] and the study of wetland plant functional types in Poyang 

Lake, China [17]. Decision tree learning methods such as classification and regression trees (CART) and 

random forest have also been successful in wetlands [8,17,88]; in [87], two decision tree methods and 

k-nearest neighbor (k-NN) classifier surpassed in accuracy logistic regression, SVM and Bayesian 

algorithms. Neural networks [17,83,103] can be internally customized for complex classification tasks, 

as demonstrated by >13% improvement in accuracy of wetland plant community mapping with new 

adaptive learning vector quantization neural network compared to minimum distance, maximum 

likelihood and spectral angle mapper classifiers [83]. Importantly, the success of machine-learning 

algorithms strongly depends on their parameter specifications, which could partially explain the lack of 

consensus on their relative performance. Pre-classification testing for the optimal parameters should be 

an integral part of their use, such as the “grid search” for controls on decision margin and error penalty 

in SVM [102], the number of hidden layers in neural networks or limits on regression tree “growth” and 

“pruning” in decision tree approaches [44]. 

Method specifications and the order of their implementation become particularly important in 

hierarchical and stepwise OBIA [23,25]. While accuracy is often assessed at the final map stage, errors 

at individual steps, threshold rules and hierarchical levels may accumulate and disproportionately 

contribute to final accuracy values. Furthermore, classifications schemes are often designed based on 

the expected hierarchical relationships among land cover types and management units [27], ecological 

hierarchies in vegetation communities [17,25], topography and hydrology [13,68], but not as often with 

spectral characteristics and spatial attributes ultimately affecting class separability in given data. More 

profound understanding of the sources and pathways of error propagation in multi-step wetland analyses 

is necessary to inform hierarchical studies and more effectively reconcile ground-based structure of 

landscape entities with their optical properties [113].  

5. Conclusions  

5.1. Key Summary Points from the Reviewed Studies 

It is evident from the reviewed studies that OBIA framework offers several important advantages to 

wetland analyses in various regions of the world, and its use as a flexible, multi-scale approach will 

likely actively continue in these complex and diverse environments. However, it is also obvious that the 

progress in applications and further improvement of delineation and classification accuracies are 
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currently hampered by wetland surface complexity, dynamics and by the shortcomings in OBIA 

implementation. Several collective conclusions follow from the synthesis of reviewed papers.  

1. OBIA is useful for alleviating local spatial heterogeneity of wetland cover as a “smart filtering” 

strategy, particularly with high and very high resolution data. Integrating pixel signals at the scale of 

image objects allows smoothing some of the local noise and accentuating spectral contrasts among 

the target cover types. This advantage becomes especially important for resolving fine-scale wetland 

composition with high-resolution data, where high local variation in pixel values may be caused by 

the detail on structural and ecological vegetation properties, shading and small ground surface 

elements. Furthermore, reducing local heterogeneity does not require an exclusive match between 

semantic “ground” objects and the segmentation output; on the contrary, it is often achieved by the 

use of small primitive objects that “absorb” local noise or spatial autocorrelation and serve as 

mapping units to recover larger patches through classification. 

2. OBIA is useful for mapping isolated wetlands as semantic objects. The object-based framework is 

useful for capturing the contrast in topographic, hydrological, geometric and ecological 

characteristics between wetland units and their landscape matrix, either based on image spectral data 

alone, or using ancillary geospatial information. This allows delineating whole wetlands as landscape 

entities and makes OBIA especially useful for studying small, hard-to-detect isolated wetlands 

scattered in mixed-cover landscapes [6,26,86,87].  

3. OBIA framework facilitates hierarchical approaches to detection and classification of wetland 

ecosystems and their components. Creating spatially linked nested object layers allows preserving 

object boundaries at different classification and analysis levels and controlling for the effects of the 

outlying pixels. In wetland studies, this capacity allows to build multi-step analyses, often starting 

by separating wetlands from other landscape cover types and then characterizing their nested cover 

types and habitat elements using topographic, hydrological and vegetation-based strata. This strategy 

allows resolving specific confusions among classes individually and incorporating expert knowledge 

and ancillary data into the analysis. However, it is likely that classification error accumulates when 

classification results from one hierarchical level are used as the input to steps at the next level. Such 

error propagation has not been investigated extensively and calls for more efforts to determine its 

effects on classification uncertainty. 

4. Flexibility of the OBIA framework is coupled with the risk of overly subjective algorithms that may 

be difficult to validate, reproduce or generalize. Flexible implementation of OBIA algorithms 

enables the researcher to develop custom procedures adaptable to the study objectives and specifics 

of a given landscape. However, different stages of the analysis require decisions on input datasets, 

segmentation parameters, discriminating attributes and classification methods that may be difficult 

to pre-test in their entirety. To narrow down the options, OBIA studies often have to rely on prior 

knowledge of the landscape and expert judgment, which may introduce subjective biases. To reduce 

the effect of subjectivity while preserving the contribution of expert knowledge, future studies should 

more rigorously utilize statistical and machine-learning techniques in attribute selection and 

classification to explore candidate methodologies with lower cost of time and labor.  

5. The capacity to use OBIA to monitor wetland change and long-term dynamics is still  

under-developed compared to strategies for single-date or same-year seasonal analyses. Most of the 
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reviewed studies applied OBIA to produce “static” classifications and maps, using either single-date 

data or multi-temporal images highlighting class differences in surface phenology. In contrast, 

applications of OBIA to wetland dynamics are still relatively few, conducted mainly as  

post-classification overlay of mapped cover type extents. Quantifying wetland change from such 

analyses is likely to be affected by segmentation and classification inaccuracies at individual dates. 

An under-explored but promising alternative strategy is to trace the “fate” of object geometry and 

spatial context relationships [106]. Advancing this technique in wetlands would enable novel 

approaches to modeling their dynamics and uncovering the drivers of their landscape processes.  

6. A number of wetland-specific challenges to remote sensing-based landscape inference remain 

important concerns in OBIA, despite its ability to alleviate local surface heterogeneity and reduce 

“salt-and-pepper” speckle. Spectral similarity of diverse classes due to homogenizing effects of 

moisture or dead vegetation signals may reduce classification accuracy and the effectiveness of class 

discrimination. In highly diverse mixed-community wetlands, subpixel heterogeneity, mixing of 

class signals and dilution of fine morphological features limits separability of cover types even at 

very high spatial resolutions of the input data [5,22,88]. Difficulties in field access and mobility often 

constrain the feasible scope of field sampling [7,32] and thus may limit sample representativeness 

for classification training and testing [51]. Advances in very high resolution and near-surface remote 

sensing are promising for resolving these issues by providing more detailed and comprehensive 

descriptions of wetland surfaces and enabling more effective use of texture to discriminate classes 

based on spatial structure and intrinsic patterns. 

5.2. Future Research Needs for OBIA in Wetlands 

Cumulative evidence from the reviewed literature suggests several important directions to strengthen 

and expand the potential of OBIA in wetland analysis and monitoring. First, there is an urgent need for 

more automated and user-friendly strategies to navigate rich datasets and facilitate objective choices of 

parameters and techniques at different stages of the OBIA process. Complexity of wetland composition 

and the lack of prior ground knowledge may limit the expert’s ability to make accurate judgments on the 

most appropriate segmentation and classification outcomes, thus calling for more rigorous data mining 

approaches, recognition systems and attribute selection. In turn, more targeted testing and comparisons 

of the new machine-learning methods are needed to better elucidate their relative performance and to 

establish clearer standards and strategies for pre-testing their key parameters. To fulfill these 

recommendations, more training, education and potentially stronger partnerships with computer 

scientists and statisticians would be needed on the researcher’s side.  

Second, more automated tools and parameterization are needed specifically for high-resolution 

delineation and monitoring of wetland vegetation within landscape extents that are too large or too 

inaccessible for comprehensive field surveys. Particularly important tasks include assessing plant 

establishment at early stages of wetland restoration [3], detecting spread of invasive species [34] and 

improving the accuracy of wetland mapping for valuation of ecosystem services and budgeting for restoration 

and management actions [52]. Applications of OBIA to these novel questions are currently limited by the 

lack of guiding standards and tools for objective, data-driven selection of image segmentation parameters 

and by the challenges of transferring algorithms across locations and dates [48,50]. Specific 
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recommendations include: (1) more rigorous comparative testing of the unsupervised indicators of 

ecologically relevant segmentation scales such as local variance in the ESP tool [95,96] or objective 

functions [110]; (2) more wetland-specific comparisons of segmentation method performance to inform 

technique selection and parameterization; and (3) developing guiding standards on acquiring and  

pre-processing input image data to maximize spectral and phenological contrasts between target classes 

and their landscape matrix and to reduce the chance of fuzzy boundaries.  

Third, to facilitate more comprehensive object-based analyses of wetlands with complementary 

remote sensors (such as passive multi-spectral and active radar and/or lidar), more consistent and robust 

strategies are needed to generate multi-dimensional objects from the inputs and to validate their 

ecological relevance for a given application. For wetlands, an especially promising direction is the 3D 

representation of spatial hydro-ecological and vegetation units as landscape “objects” [69], similar to 

terrestrial “LIDARScapes” concept [114]. Such representations would greatly facilitate not only 

mapping, but also modeling of wetland ecosystem processes such as transfer of solar radiation in 

canopies affecting seasonal dynamics of plant biomass and photosynthesis, habitat properties for 

canopy-dwelling wildlife and monitoring of broader-scale hydro-ecological zones within complex 

marshlands. Rapidly developing theory and tools for lidar-based 3D ecosystem modeling in forested and 

other upland ecosystems [88,114–117] offer useful prototype strategies that should be adapted for similar 

analyses in wetland settings. 

Fourth, there is an urgent need to strengthen OBIA applications to the analyses of wetland change. 

Many wetland regions globally are experiencing rapid transformations such as alpine wetlands affected 

by melting of glaciers and climatic shifts in high-altitude regions [55,59], tropical wetlands altered by 

drought [78] and deforestation [39,82], coastal systems threatened by sea level rise [98] or, conversely, 

declining water levels [49], and marshes invaded by exotic species [30,34,57]. Accurate assessment of 

these changes is critical for research, planning, management and restoration; yet, commonly used  

post-classification change detection approaches may suffer from error at individual dates. Given the 

discrete-time availability of remote sensing data, new strategies are needed to detect the changes as 

processes and regimes [7,74] and to track the “fate” of landscape entities over time [106]. The success 

of such approaches is likely to be contingent on accurate, data-driven object detection and delineation, 

calling again for more effective automated tools for specific method and parameter selection.  

Finally, the potential of OBIA should be more rigorously utilized in wetland ecosystem ecology 

beyond cover type mapping and change detection alone. In particular, hierarchical OBIA is promising 

for multi-scale analyses of ecosystem structure and function and their scaling from patch levels to 

broader spatial extents [70,78]. For instance, benefits of objects over pixels as spatial units for empirical 

modeling of vegetation parameters such as biomass and canopy properties have been shown for upland 

forests [118,119]; however, in wetlands, such analyses are yet to be developed. Even prior to active use 

of the OBIA framework, ecologists have discussed hierarchical organization of landscape ecosystems as 

spatially nested “objects” shaped by regional climate, landforms, vegetation, disturbance and other 

factors [120–122]. These developments produced several efforts to characterize and document landscape 

ecosystems, including wetlands [123], in the Upper Great Lakes Region [121,124], at the time relying 

heavily on intensive field surveys and manual mapping. Advances in GIS, remote sensing and 

hierarchical OBIA offer new cost-effective venues to reproduce such analyses in other regions and to 

use them repeatedly to assess ecosystem changes following climatic, successional and land use 
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transformations. These efforts would call for stronger theoretical linkages between the analyses of 

spectral data and ground knowledge of ecological and physical processes; however, the basis for these 

linkages has been already growing as shown by innovative OBIA applications in geomorphology and 

ecosystem studies [20,108,110,118,125–127]. Continuing efforts to combine ecological, geographic and 

spectral information via hierarchically organized landscape framework would be of great utility to 

studies of pressing ecological questions in wetlands, taking them to the new levels of spatio-temporal 

research inquiry.  
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