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Abstract: Clay content (fraction < 2 µm) is one of the most important soil properties. It 

controls soil hydraulic properties like wilting point, field capacity and saturated hydraulic 

conductivity, which in turn control the various fluxes of water in the unsaturated zone. In 

our study site, the Kairouan plain in central Tunisia, existing soil maps are neither exhaustive 

nor sufficiently precise for water balance modeling or thematic mapping. The aim of this 

work was to produce a clay-content map at fine spatial resolution over the Kairouan plain 

using a time series of Landsat Thematic Mapper images and to validate the produced map 

using independent soil samples, existing soil map and clay content produced by TerraSAR-X 

radar data. Our study was based on 100 soil samples and on a dataset of four Landsat TM 

data acquired during the summer season. Relationships between textural indices (MID-Infrared) 

and topsoil clay content were studied for each selected image and were used to produce clay 

content maps at a spatial resolution of 30 m. Cokriging was used to fill in the gaps created 

by green vegetation and crop residues masks and to predict clay content of each pixel of the 

image at 100 m grid spatial resolution. Results showed that mapping clay content using a 
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time series of Landsat TM data is possible and that the produced clay content map presents 

a reasonable accuracy (R2 = 0.65, RMSE = 100 g/kg). The produced clay content map is 

consistent with existing soil map of the studied region. Comparison with clay content map 

generated from TerraSAR-X radar data on a small area with no calibration point revealed 

similarities in topsoil clay content over the largest part of this extract, but significant 

differences for several areas. In-situ observations at those locations showed that the Landsat 

TM mapping was more consistent with observations than the TerraSAR-X mapping. 

Keywords: topsoil clay content; Landsat TM; MID infrared index; soil maps;  

TerraSAR-X radar data 

 

1. Introduction 

Integrated water resource management requires an improved understanding of soil at fine scales. Soil 

texture is a key parameter allowing the establishment of pedotransfer functions to derive hydrodynamics 

soil parameters such as wilting point, field capacity or saturated hydraulic conductivity. Clay content (soil 

fraction <2 µm) is considered the most important parameter to be estimated. It is related to the cation 

exchange capacity of soils [1] and allow a tight control of soil hydraulic properties like water storage 

and availability to crop plants, field capacity and wilting point. It is the first statistical factor to be taken 

into account when building pedotransfer functions [2,3]. 

Soil texture maps are difficult to derive. Existing soil maps are neither exhaustive nor precise enough, 

and often describe soil types rather than texture. Point measurements through soil analysis can be 

performed to complete those maps but are expensive and dense sampling is required to characterize 

adequately the spatial variability, making broad-scale quantitative evaluation difficult [4]. Moreover, 

laboratory analysis performed by chemical treatments are expensive and time-consuming [5,6]. New and 

quick methods to measure soil properties and variability are required for the development of soil 

interpretations [6,7].  

In recent decades, the soil science community has proposed several methodologies to better estimate 

topsoil texture using remote sensing [8–12]. Remote sensing data are an important component of 

predictive soil mapping. It provides a spatially contiguous, quantitative measure of surface reflectance, 

which is related to some soil properties [13]. This tool facilitates mapping inaccessible areas by reducing 

costly field surveys [14]. It also helps to produce more accurate and updated soil properties’ maps 

through large scale studies by relating field-measured variables such as clay content to surface reflectance 

through linear regression models to supply continuous estimates for environmental variables [15]. 

Mapping of continuous variables from high resolution imagery such as Landsat Thematic Mapper (TM) 

has largely depended on modeling empirical relationships [15]. Landsat TM sensor has been providing 

near-continuous multispectral coverage, with wavelengths covering the visible (0.45–0.69 µm),  

near-infrared (0.76–0.9 µm) and shortwave infrared (1.55–2.35 µm) domains, supplying adequate data 

set for studies of improved management of natural resources [16]. 

Some studies have shown that physical factors (particle size and surface roughness) and components 

(surface mineralogy, organic matter content and moisture) control soil spectral reflectance [17]. Mineral 
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composite maps, including ferrous minerals, iron oxide and clay minerals, could be produced using 

remotely sensed data such as Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced Thematic Mapper 

Plus (ETM+), Landsat-8 Operational Land Imager (OLI), Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectroradiometer (MODIS) 

through composite indices [18–21]. Other researchers [8,22] have used hyper spectral data for clay 

content prediction, calcium carbonate (CaCO3), iron and cation-exchange capacity (CEC). Models for 

soil attribute prediction from spectral data, also named spectral transfer functions, have been developed 

recently [23–26]. Spectral transfer functions relate soil properties estimated from samples collected in 

the field and spectral reflectances measured above those samples, usually in the laboratory. Surface 

mineralogy can be derived by wavelength-specific charge transfer and crystal field absorptions 

associated with the presence of iron and iron-oxides (Fe2+ and Fe3+), and vibrational absorptions 

associated with hydroxyl bonds in clay, absorbed water and the carbonate ion [17,27]. The middle 

infrared index (MID-infrared), which is a normalized difference index between TM5 and TM7 

shortwave infrared bands, allows discrimination between sandy and clayey soils [20,21]. These bands 

are near the two main water absorption bands (1.4 µm–1.9 µm). The presence of clay in the soil 

composition enhances the absorption in TM7 band (2.2 µm). The use of such bands requires dry bare 

soil, which makes this method more suited to mapping semi-arid lands. All these studies indicate that 

the electromagnetic energy interacts with some soil properties in specific wavelengths. An analysis of 

the behavior of these wavelengths can be utilized in the modeling process to determine and map some 

soil attributes such as clay content. In our case, we used the MID-infrared index to produce clay content 

maps over semi-arid lands using time series of Landsat TM data. A similar index as the STI (Soil Tillage 

Index) was used to detect and quantify crop residue out of the soil baseline [28–30].  

The aim of this research was to map topsoil clay content at fine spatial resolution over the Kairouan 

plain. This study used time series of Landsat Thematic Mapper (TM5) images and a dataset of 100 soil 

samples collected over our study area. To produce clay content map, we proceeded in three steps. The 

first step consisted in studying relationships between the MID-infrared index and observed clay content 

from calibration data. The second step was to combine multi-temporal Landsat TM data through 

cokriging to predict topsoil clay content within the Kairouan plain. The final step was to validate the 

produced clay content map by independent soil samples and by comparison with existing soil map and 

with topsoil clay content map produced from TerraSAR-X radar data. 

2. Study Area and Data 

2.1. Study Area: The Kairouan Plain  

The Kairouan plain [31] is located in central Tunisia (9°30′E–10°15′E, 35′N, 35°45′N) (Figure 1). The 

climate in this region is semi-arid, with an average annual rainfall of approximately 300 mm/year, 

characterized by a rainy season lasting from October to May, with the two rainiest months being October 

and March. As is generally the case in semi-arid areas, the rainfall patterns in this area are highly variable 

in time and space. The landscape is mainly flat, and the vegetation is dominated by agricultural production 

(cereals, olive groves, fruit trees and winter and summer market gardening). Soil units reflect high spatial 

and vertical variability of alluvial deposits, except along wadi. The last flood of 1969 changed some soil 
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horizons with sandy deposits of up to 100 cm and existing soil maps may become outdated. The dominant 

major soil group is classified as Fluvisols and saline soils [32]. Soil texture presents a large spatial 

variability from the south to the north of our region [33]. The clay content is ranging from 15.3 g/kg to 

684.58 g/kg. Mainly four soil units exist in the study area. The first unit includes Vertic saline soils. The 

second unit is Fluvisols characterized by a loamy soil texture located near the wadi bed of Merguellil. 

Another soil unit includes Fluvisols with coarse soil texture on the downstream part of the Merguellil 

River. The last soil unit, located in the north of Kairouan, includes clayey soil. Vertic soil is an indicator 

of the presence of montmorillonite clay. The organic matter rate is very low, near 0.5% from the surface 

to 10 cm, which corresponds to an isohumic diagnostic property of all soil units.  

 

Figure 1. Study area and location of calibration and validation samples. 

2.2. Data Collection and Processing 

2.2.1. Ground Measurements  

The dataset used in this study includes 100 samples. A first dataset of 30 samples was collected in 

March 2010 [12] over a limited area within the plain of Kairouan. An additional campaign was conducted 

during the summer season of 2013 after cereal harvesting over a larger part of the plain within a 670 km2 

area (Figure 1). During this campaign, 70 samples with a large spatial range of soil textures were selected 

along main and agricultural roads of the study area. Sample points were selected based on visual 

assessment of topsoil textural changes. These samples were located in bare soil areas and cereals  
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fields [12] corresponding to homogeneous areas extracted from MID-Infrared index maps, and over 

some olive fields with a vegetation fraction coverage lower than 10%. These plots are of sufficiently 

representative size (3 × 3 pixels) and easily accessible. The samples were collected from the surface to 

a depth of 5 cm. About 20 g were extracted for topsoil texture analysis. The initial samples were air-dried 

and sieved up to 2 mm. Topsoil texture measurements were carried out over the selected fields to measure 

clay content (soil fraction <2 µm), fine silt content (between 2 and 20 µm), coarse silt content (between 

20 and 50 µm) and sand content (between 0.05 and 2 mm) by means of a classical laboratory analysis 

(Robinson pipette). To divide the dataset into calibration set and validation set, we kept one sample out 

of two. We considered 50 samples for calibration and 50 samples to validate the clay content map 

produced in this study. For clay content, the mean and standard deviation were 325.74 g/kg and 179.04 

g/kg, respectively, and the measured values ranged between 15.3 and 684.6 g/kg. The coefficient of 

variation was high, about 55%. For sand content and silt content, the coefficients of variation were, 

respectively, about 85% and 60%. It confirms the high variability in the distribution of sand content over 

the Kairouan plain. Analyzed fields are plotted into texture triangle according to the USDA classification 

as illustrated by Figure 2. We can distinguish three dominant soil classes: clayey soil, silty soil and sandy 

soil as a continuous distribution between sandy and silty clay classes. 

 
Figure 2. Distribution of 100 analyzed soil samples over the Kairouan plain across the 

USDA soil textural triangle. 

2.2.2. Remote Sensing Data 

To produce the topsoil texture map, time series of Landsat TM5 (2009) archival images were used. The 

Landsat TM5 was launched on 1 March 1984 and decommissioned on 5 June 2013. These images were 

downloaded from http://earthexplorer.usgs.gov/. Landsat TM5 data are acquired at 30 m spatial resolution. 

These images were geometrically and atmospherically corrected. All images are projected in the Universal 

Transverse Mercator system (UTM/Zone 32/North). The root mean square error of ortho-rectification is 

less than 1/2 pixel for each image. Visible, near- and mid-infrared bands calibration were carried out as 

developed in [34]. The method is based on a multi-temporal algorithm for detecting clouds, cloud shadows, 

free water and for estimating aerosol optical thickness (AOT). Subsequent preprocessing included 

Cl: Clay 
SiCl: Silty clay 
SaCl: Sandy clay 
CILo: Clay loam 
SiClLo: Silty clay loam 
SaClLo: Sandy clay loam 
Lo: loam 
SiLo: Silty loam 
SaLo: sandy loam 
Si: Silt 
LoSa: Loamy sand 
Sa: Sand 
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conversion of digital numbers to radiance, radiance to top-of-atmosphere reflectance and top of atmosphere 

reflectance to surface reflectance. The detailed method for correcting these images is illustrated in [35,36]. 

From the time series of Landsat TM data, we selected images during the seasons that minimize the 

influence of green vegetation (cereals mainly) and soil moisture due to rain. The latter is observed at the 

meteorological station. Calibration data were located on Landsat TM data. A polygon with 3 × 3 pixels 

was digitized to extract statistical data from Landsat TM images around each measurement. Polygons were 

represented within the sample plots in order to avoid selecting pixels at the edge. 

2.2.3. Legacy Data 

The 1:50,000 previous soil map used in our study was produced in 1975 by the Ministry of 

Agriculture, whose extent is shown in Figure 1. This map covers an area of about 13 km2. It includes 

four soil type units: Fluvisols, Vertisols or Vertic soils, Calcisols and Isohumic soils.  

We also used an existing topsoil clay content map derived from two TerraSAR-X radar images 

acquired over the Kairouan plain with a ground pixel spacing of 1 m [12]. The first TerraSAR-X radar 

image was acquired on 8 March 2010, just after a period of a heavy rain. The second one was acquired 

on 30 March 2010, when the soil was dry. The method used to produce clay content map from radar data 

was based on analyzing the difference in soil moisture content between the two images. The largest 

decrease in topsoil moisture is statistically related to the coarsest soil material based on a soil sample 

dataset of 15 samples [12,37]. 

3. Methods 

3.1. Bare Soil Detection  

Estimation of soil properties such as clay content is hampered if the pixels have a vegetation cover 

over 20% and also if the pixels are covered by crop residues [38]. We need rapid, accurate, and objective 

methods to detect residue cover and green vegetation in individual fields. Crop residue and soil are often 

spectrally similar and differ only by the magnitude of the reflectance in visible and near infrared 

wavelengths [39–42]. In fact, to extract bare soil extent over the Kairouan plain, we have to select 

Landsat TM data, which minimize the influence of soil moisture due to rain or irrigation. We also need 

to avoid crop residue after crop harvesting. To do so, we selected, in a first step, nine Landsat TM images 

with little influence of soil moisture due to rain on the basis of rainfall observations at meteorological 

stations. High soil moisture content decreases soil reflectance. In the second step, we retained only four 

images (17 July 2009, 1 August 2009, 2 September 2009 and 18 September 2009) in the summer season 

to avoid soil moisture due to local rain and irrigation. These images contain three types of pixels: bare 

soil pixels, plowed bare soil pixels and bare soil with crop residue. To extract only bare soil and to 

identify the agricultural practices, we analyzed simultaneously the TM3 profile, the NDVI profile and 

MID-infrared profile over all test fields as illustrated in Figure 3. In fact, using TM3 band, we can detect, 

approximately, the date of some agricultural practices such as crop harvesting and plowing. The plowing 

date can be identified by the decrease in red band reflectance values. 

For each selected image, we masked urban areas, using a GIS shape file. The Normalized Difference 

Vegetation Index (NDVI) was used to mask green vegetation from each image by applying a sill of 0.2. 
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The image acquired on 18 September 2009 is contaminated by clouds. In this case, we used the provided 

cloud mask, generated during the image pre-processing, to mask them. The next step consists in surface 

changes detection (crop residues). We selected two MID-infrared images. One acquired at the beginning 

of the summer season, just after cereals harvesting (26 June 2009). This image contains a maximum of 

pixels affected by crop residue. The second image is acquired in 18 September 2009, when farmers are 

starting to plow their lands. The image of difference between these two MID-infrared dates was 

computed and analyzed. We observe that the highest values on the difference image correspond to fields 

with laying straw (crop residues) and not yet plowed. A value ranging from −0.08 to −0.04 extracted 

from the difference image was selected as a criterion for masking crop residues areas. Once we have no 

more crop residue, the MID-Infrared index becomes more stable. The image acquired on 2 September 

2009 allows the best prediction of topsoil clay content. However, for the illustrated example in  

Figure 3, on this date the field was still covered by crop residues. Based on the MID-Infrared index 

profile extracted within the studied field, it becomes stable from the date of 18 September 2009. This 

date can be considered the best date for topsoil clay prediction within this field. 

 

Figure 3. Example of Normalized Difference Vegetation index (NDVI), Landsat Red band 

(TM3) and MID-Infrared index profiles extracted from selected Landsat TM images, over a 

cereal test plot of 8 hectares (clayey soil texture) during the period ranging from  

21 February 2009 until 21 November 2009.  

3.2. Prediction of Clay Content 

3.2.1. Calibrating MID Infrared Index and Topsoil Clay Content 

The MID-infrared index is defined in Equation (1) and represents a normalized index between TM 

band 5 and TM band 7. Applying this index over the driest bare soils allows separating sandy soils from 

clayey ones.  
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This index was applied over bare soil for each selected image in order to produce mid-infrared index 

maps at 30 m spatial resolution. 
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One out of two samples from the 100 samples was selected in order to build the calibration dataset. 

We applied green vegetation and crop residue mask for each selected image: 20 samples corresponding 

to fields with either green vegetation or crop residue were thus masked and not available for calibration. 

The remaining 30 samples were used for calibration with topsoil clay content values ranging from  

50 g/kg to 684 g/kg with a mean value of about 323 g/kg. These values span the whole range of observed 

topsoil clay content with a satisfying distribution amongst dominant texture classes. The use of these 30 

samples seems therefore sufficient to represent topsoil clay content variability within the study area. 

They were distributed in the different textural classes in our study area. A mean value of MID-infrared 

index was extracted from each test field and used with clay content. This step allowed establishing a 

statistical relationship (one for each selected image) between the mid-infrared index and the soil clay 

content using a simple linear regression model. These relationships were used to produce clay content 

maps at 30 m spatial resolution over our study area and for each selected image. The resulting maps 

contain two types of pixels: pixels with clay content estimates and others with no data over the masked 

areas that differ from one image to another, except for orchards. To get an exhaustive coverage of clay 

content at 100 m spatial resolution over the masked area, we combined the four clay content images 

using ordinary cokriging (OCK).  

3.2.2. Ordinary Cokriging 

Ordinary cokriging is a multivariate variant of ordinary kriging and computes the best linear unbiased 

estimator with minimum error variance [43,44]. Ordinary cokriging takes advantages of the correlation 

between variables and allows for local variability of the means by restricting the stationarity of both 

primary and secondary variables to a local neighborhood W(u) centered on the location u being 

estimated. Ordinary cokriging examines the spatial relations among two or more variables by 

determining their coregionalization. If coregionalization exists, then it is feasible to use the spatial 

information of co-variables to improve the predictions of the target variable through cokriging. For each 

variable a variogram describing spatial dependence of a spatial random field or a stochastic process can 

be estimated by Equation (2): 
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In order to describe the experimental variograms and cross variograms for use in cokriging, a model 

of coregionalization has to be fitted to these variograms, which consider the spatial dependence of two 

or more sets of variables and their interdependence simultaneously. By incorporating related secondary 

information, cokriging takes into consideration spatial cross correlation between primary and secondary 

variables to improve interpolation accuracy.  

For the case of two or more secondary variables, the ordinary cokriging estimator is given by  

Equation (4):  
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where Nv is the number of variables Zi and ߣఈ೔
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The cokriging variance can be estimated from the covariance C11 and the cross-covariances Ci1 

through Equation (7): 
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where μଵ
ை஼௄ is the Lagrange multiplier of the cokriging system and (uαi–u) denotes the distance between 

uαi and u. 

From each clay content image, a point vector layer at 100 m with clay content estimates was extracted 

and used for interpolating clay content over masked areas. For each date, an experimental semi-varioram 

was calculated. The Geostatistical operations were performed with ArcMap Software (version 10.1) 

using the Geostatistical wizard. 

3.3. Validation Method 

Clay content predicted by cokriging at each point of the validation data was extracted and compared 

to the measured clay content at the same location. The performance of the prediction models was 

evaluated with the following statistical criteria: the coefficient of determination (R2) (Equation (8)), and 

the Root Mean Square Error (RMSE) (Equation (9)). The coefficient R2 measures the effectiveness of a 

variable to predict another variable, whereas RMSE measures the average error of prediction. The 

indices were calculated according to [45]. To perform the calibration model estimation, we used only 

the R2 and the RMSE. In addition, to independent soil samples, validation was performed using existing 

soil maps. The validation consists on comparing topsoil clay content and the soil typology extracted 

from existing soil maps.  
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where point observations were denoted by n, measured and predicted clay content at ith location as z(xi) 

and z* (xi), the horizontal bar represents the mean of the observed values.  

4. Results 

4.1. Relationships between MID-Infrared Index and Soil Clay Content  

To predict clay content over our study area, a linear regression model was built to establish the 

relationship between mid-infrared index and clay content corresponding to the 30 selected sites for each 

of the four selected dates: 16 July 2009, 1 August 2009, 2 September 2009 and 18 September 2009. 

Resulting relationships indicated that MID infrared index and clay content are significantly correlated 

(Figure 4). The coefficients of determination R2 were, respectively, 0.48, 0.53, 0.73 and 0.63, while 

RMSE was, respectively, estimated at 13%, 12%, 10% and 11% of the mean clay content, which 

corresponds to about 130 g/kg.  

 

 

Figure 4. Linear relationship between MID-infrared index and observed clay content:  

(a) 16 July 2009; (b) 1 August 2009; (c) 2 September 2009; and (d) 18 September 2009. 

(Blue dots) observed clay content values. The red dotted line is the confidence interval of 

the mean. The blue line is the confidence interval for clay content observation. The 

continuous black line is the y-axis data versus x-axis data regression line. 
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The clay content maps at 30 m spatial resolution generated by the relationships between the  

mid-infrared index and the clay content are illustrated in Figure 5. We can distinguish between two types 

of pixels: white ones correspond to the masked areas and grey ones correspond to clay content values. 

The predicted clay content is ranging from 15.3 to 684 g/kg. The vegetation and crop residues masks 

differ from one image to another and the coverage of the remaining area is incomplete. The percentage 

of information contained in each image is 49%, 47%, 52% and 49%, respectively, for 16 July 2009 

image, 1 August 2009, 2 September 2009 and 18 September 2009. The decrease in the percentage of 

information that the image contains for the 18 September 2009 image is due to cloud mask applied to 

mask cloud coverage.  

From these maps, we extracted the clay content value of each 100 m grid and regular lattices at  

100 m spatial resolution were prepared in order to interpolate the clay content over masked areas. 

 

 

Figure 5. Clay content maps at 30 m spatial resolution obtained using relationships between 

observed clay content and mid-infrared index for each selected date: (a) 16 July 2009;  

(b) 1 August 2009; (c) 2 September 2009; and (d) 18 September 2009. 

4.2. Ordinary Cokriging Parameters 

The image acquired on 2 September 2009 was used as the primary variable for cokriging. Images 

acquired on 16 July 2009 and 1 August 2009 and 18 September 2009 were used as secondary variables. 

To fit the experimental variogram and the cross variogram of the four selected images, we used a stable 

model. Parameters of established variograms are listed in Table 1. The same range and lag size values 

were used in the fitting procedure, which are 3681 m and 102 m, respectively. The resulting variograms 
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show a nugget effect. It represents random variance often caused by measurement error or micro 

variability of topsoil clay content, which cannot be detected at the scale of sampling. 

Table 1. Stable model variogram parameters for the image acquired on 16 July 2009,  

1 August 2009, 2 September 2009 and 18 September 2009. 

Variables C0 (Nugget) C (Partial Sill) Total sill (C0 + C) Range (m) C0/(C0+C) (%) 

16 July 2009 23.84 68.01 91.85 3681 25.9 

1 August 2009 29.62 69.65 99.27 3681 29.8 

2 September 2009 55.38 86.17 141.55 3681 39.1 

18 September 2009 54.57 122.81 177.38 3681 30.7 

The resulting variogam for topsoil clay content extracted from the image acquired on  

2 September 2009 and cross-variograms between the primary variable and the secondary variable are 

illustrated in Figure 6. 

 

 

 

Figure 6. (a) Experimental semi-variograms (red dots) and model fits (black line)  

for topsoil clay content extracted from Landsat TM5 image acquired on 2 September 2009; 

(b) Cross-variogram between clay content from 2 September 2009 and 18 September 2009; 

(c) Cross-variogram between clay content from 2 September 2009 and 1 August 2009;  

(d) Cross-variogram between clay content from 2 September 2009 and 16 July 2009. 
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4.3. Topsoil Clay Content Map Produced by Ordinary Cokriging 

Cokriging was used to combine the 4 images and to produce a clay content map at 100 m spatial 

resolution, which is illustrated in Figure 7. The obtained clay content map is classified into six classes 

of clay content according to the USDA texture. Defined textural classes boundaries allow mapping 

homogeneous areas. The two first classes include areas with clay content values ranging from 10 to  

150 g/kg. These areas correspond to the Merguellil wadi bed represented by a linear structure in the 

north of the western half of the plain. A medium texture class includes clay content values between 200 

and 280 g/kg. Within the red areas, the clay content values are higher than 280 g/kg. These areas are 

cultivated essentially by irrigated cereals and winter and summer vegetables. In the north of Kairouan 

city, we obtained a fine topsoil texture with clay content ranging from 280 g/kg to more than 350 g/kg. 

It corresponds to the last soil unit with clayey salt-affected soils described in Section 2.1.  

 

Figure 7. Clay content map at 100 m spatial resolution produced by combining four Landsat 

TM images: 16 July 2009, 1 August 2009, 2 September 2009 and 18 September 2009. (Blue 

line) corresponds to hydrographic network. 

4.4. Validation of Clay Content Map from Landsat TM Data Using Independent Soil Samples and 

Existing Soil Maps 

The resulting clay content map was validated by comparison with 50 samples over the study area 

(Figure 1). RMSE is about 10%, corresponding to 100 g/kg of clay. The R2 between predicted and 

observed values is close to 0.65. Comparison between validation data set and clay content values 
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predicted by cokriging is illustrated in Figure 8. The model used to predict topsoil clay content 

overestimates low observed clay content. 

 

Figure 8. Comparison of observed topsoil clay content and cokriging predicted topsoil clay 

content at 50 independent sampling points. The dashed line is 1:1 line. 

Table 2. Area percentage of each combination between soil units and produced clay content 

map from Landsat TM data over an area of 13 km2. 

 

Clay Content Classes 

1 2 3 4 5 6 

0–75 75–150 150–200 200–280 280–350 >350 g/kg 

Soil units  

from existing  

soil map 

1 Fluvisols 0.19 3.95 9.18 15.44 9.00 8.02 

2 Vertisols 0.09 0.73 0.99 4.14 10.44 16.45 

3 Isohumic 0 0.97 4.31 6.94 2.79 1.28 

4 Calcisols 0 0.33 1.20 1.52 1.04 1.00 

Another validation of the clay content map was achieved by comparison with existing soil maps, 

produced in 1975 by the Ministry of Agriculture at 1:50,000 scale. To validate our map, we compared 

those existing soil type maps and the soil clay map derived from Landsat TM data. The percentage of 

clay content classes is calculated for each soil map unit in Table 2. The first soil unit (Fluvisols) is 

marked by a high variability in clay content values in agreement with known characteristics of these 

soils. The dominant class represents 15% of the area and the clay content value is ranging from 200 to 

280 g/kg. It corresponds to a medium topsoil texture class. The distribution of clay content classes higher 

than 350 g/kg is representative of Vertisols (16% of the area) and in agreement with clay content values 

observed by [46] (clay content value ranging from 350 to 520 g/kg). The isohumic soil is present in the 

Kairouan plain with different clay content values as identified with Landsat TM data. In addition, the 

Merguellil wadi bed is well identified as a linear structure in the map obtained from Landsat TM. The 
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results show that the distribution of clay content produced by Landsat TM data is consistent with the 

soils units. Thus, Landsat TM type data can be used to update existing soil maps, to improve complex 

soil units according to clay criterion and to produce soil texture information where not available.  

5. Discussion 

The model developed for clay content prediction was built from time series of Landsat TM data. Its 

main advantage is to provide an acceptable clay content estimation over fields with a limited number of 

samples (only 30 samples were used for calibration), which can be applied over large regions.  

5.1. Calibration Models 

For each selected image, results showed that the MID infrared index is correlated with topsoil clay 

content. Results were approximately in the range of error estimations derived from other remote sensing 

techniques to estimate clay content. With hyper-spectral Hymap images, authors obtained an R2 of  

0.73 [47]. Using TerraSAR-X radar data, authors obtained an R2 of 0.6 [12]. The relative scattering of 

the plots can be due to sites with a heterogeneous surface: incomplete plowing, mixed pixels and the 

related MID infrared sill used for bare soil mapping. The effect of the atmosphere on the signal 

attenuation decreases in the MID-infrared domain.  

5.2. Comparison between Clay Content Maps Produced from Landsat TM and TerraSAR-X Radar Data  

The accuracy of our clay content prediction model (R2 = 0.64 and a RMSE of about 10% 

corresponding to 100 g/kg) is in agreement with an existing study [12] who obtained an R2 = 0.6 and an 

RMSE about 12% (120g/kg). A comparison was therefore carried out with this study based on 

TerraSAR-X radar data on a smaller area (Figure 9a,b) where neither calibration nor validation points 

were present. Before comparing these two maps, the same mask of green vegetation is applied over the 

clay content map extracted from Landsat TM data. The clay map produced from TerraSAR-X radar data 

displays sharp contrasts over short distances compared to the smoother fields of Landsat TM. This is 

due to the effect of residual speckle. Cokriging and the rough resolution of Landsat TM lead to more 

continuous fields and therefore a smoother variation from one spatial element of similar texture to the 

other. Both maps show similar features such as the wadi bed of Merguellil with low clay content values. 

The other regions show similarities and differences in clay content values. Additional field observations 

were made without analysis to differentiate coarse and fine textural classes over some areas. Within 

region (I), we obtained high clay content value of about 60% when using Landsat TM data and low clay 

content value of about 15% using TerraSAR-X radar data. Field observation shows that the fields were 

not cultivated and this situation corresponds to bare soil areas with fine topsoil texture. Landsat TM, 

therefore, estimates clay content better than TerraSAR-X radar data within this area.  

Within region (II), the use of TerraSAR-X data overestimates the clay content compared to Landsat 

TM data. It can be due to the presence of olive trees, which cover 5% of the soil surface. Concerning the 

third region, we predicted high clay content when using Landsat TM data. This is in agreement with our 

in-situ observations, but only in partial agreement according to radar data. In these areas, the dominant 

crops are cereals, beans, chilies and tomatoes; all of them being irrigated and over fine topsoil texture. 
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For region (IV), more consistent outputs were provided when using Landsat TM data than when using 

TerraSAR-X radar data. We predicted fine topsoil texture using TM data with clay content ranging from 

35% to 45%. The difference between both approaches can be due to soil moisture variation and to green 

vegetation at the date of image acquisition and to the erroneously non-masked crop residue areas. 

 

Figure 9. (a) Extract of the clay content map produced by Landsat TM data (2009).  

(b) Clay content map produced by TerraSAR-X data over only bare soil areas (2010). Black 

dots are the field observation in January 2015. Black frames are the compared sub sites. 

 

Figure 10. Density plot of clay content obtained from Landsat TM data and clay content 

value from TerraSAR-X radar data. The dashed line is the 1:1 line. 

The difference between both approaches is validated by the density plot of clay content values 

obtained from Landsat TM data and TerraSAR-X radar data (Figure 10). In this area, the bias is about 

5% for radar data. The central part of the scatter plot is occupied by clay content values ranging from 

10% to 25% for Landsat TM data and from 5% to 10% for TerraSAR-X radar data. The average clay 

content value from TerraSAR-X radar data is significantly lower than the average clay content estimated 
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using Landsat TM data. Disagreement between Landsat TM and TerraSAR-X products could be 

particularly explained by the presence of irrigation over some agricultural fields during experimental 

campaigns, which induce large errors for radar methodology. 

6. Conclusions  

The purpose of this paper was to develop a multi-temporal approach using Landsat TM data in order 

to map topsoil clay content at a fine spatial resolution. To predict topsoil clay content spatial interpolation 

can be performed with ordinary cokriging using more than one variable. The results show that remote 

sensing is an efficient and low-priced tool that enables generating a topsoil clay content map. We can 

predict clay content for each pixel of the image, thus avoiding sampling a large number of fields. The 

resulting topsoil clay content map is at 100 m spatial resolution and is reasonably accurate with an R2 

about 0.64 and a RMSE of 10% (100 g/kg). Cokriging made it possible to fill in the information gaps 

created by the vegetation mask and to validate model predictions. Improvement of relationships between 

MID-infrared index and clay content need more sample sites. The method needs to be tested with other 

satellites e.g., the new Landsat-8 and the future Sentinel2 (ESA, launch scheduled in April 2015). The 

ground resolution of the latter one is more accurate (20 m) to detect homogenous surface. The revisit 

frequency of this sensor is less than five days. With this type of data, we can improve mapping of bare 

soils in dry conditions. Comparisons with radar show differences. Moreover, these two approaches are 

complementary if we consider that visible and middle infrared reflectances are limited to surface 

characteristics, and radar data are limited to the drying speed of the first centimeters. Such topsoil clay 

content maps will be used to calculate soil hydrodynamic properties with pedotransfer functions. The 

surfaces, detected in the visible and MID-infrared bands, represent the agronomic horizon. This horizon 

is regularly homogenized by plowing. This makes it difficult to estimate clay content of horizons beyond 

30 cm. To do so, we need to combine remote sensing data with some auxiliary data, such as digital 

elevation model, geological and geomorphologic maps. 
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