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Abstract: In this study, urban growth of the Atakum District in Samsun, Turkey, was 

simulated by Cellular Automata-Markov Chain (CA-MC) and Multi-layer Perceptron-Markov 

Chain (MLP-MC) hybrid models in a geographical information system (GIS) environment. 

Historical land use/land cover (LU/LC) data were extracted from 1989, 2000 and 2013 Landsat 

TM/ETM+/OLI images. Using the LU/LC data for the years 1989 and 2000, the urban growth 

for 2013 was simulated using the CA-MC and MLP-MC models. The simulation results were 

compared with the 2013 LU/LC data to assess the validity of the simulation. The MLP-MC 

method provided the best results according to the validation based on the kappa index of 

agreement. Based on this result, the urban growth for the year 2025 was simulated using  

MLP-MC. The simulation estimated an urban growth rate of 35.2% between 2013 and 2025, 

an increase in the area of artificial surfaces from 1681.9 ha to 2274.3 ha and the destruction of 

511.7 ha of agricultural land and 4.4 ha of forest. The results of this study demonstrate that the 

urban growth models provide a better understanding of the current patterns and temporal 

dynamics and can predict future changes according to past and current dynamics. The results 

also show that simulations are most accurate when using a model that best conforms to the 

changes in the given study area. 
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1. Introduction 

The urbanization process causes cities to rapidly grow and spread out over wide areas. Eventually, 

cities dominate the economic and social aspects of the surrounding urban and rural societies [1].  

The urbanization process, generally perceived as modernization [2–4], is a problem in terms of 

unplanned and uncontrolled growth triggered by the rapid consumption of natural resources and by the 

rapid increase in populations, particularly in developing countries [1,5–7]. Although population increase 

due to migration is the leading growth factor in urban areas, many other factors, such as expectations of 

improved living standards as the result of economic development and higher incomes, the demand for 

larger living spaces, the loss of the charm of city centers due to transit and social outings, and the demand 

for secondary lodgings/summer houses, are responsible for the expansion of urban areas [8]. 

Along with urbanization, significant pressure is placed on natural resources. Agricultural lands, 

forests and wetlands are being destroyed [9], and forests are, in turn, being destroyed and converted to 

agricultural land [10]. Today, the combination of impervious surfaces, which are a product of the 

increasing number of structures and paved surfaces, and reduced agricultural land and forests has caused 

environmental problems in cities, such as environmental pollution, floods and landslides [11–14]. Thus, 

the importance of urban analysis has gradually increased. In the broadest sense, urban analysis is 

defined as the solution to urban problems through revealing the current conditions of a city [15,16]; the 

method requires interdisciplinary research. Issues such as city ecology, socio-economics, demography, 

urban heat-island effects, assessment of land use/land cover (LU/LC), and the simulation of urban 

growth can all be addressed within the scope of urban analysis [16,17]. In particular, simulation 

models are essential in the prediction of future urban changes and in planning studies [18,19]. 

While the analyses and studies of the past to the present rely on evidence, model studies of the 

future rely on predictions. However, future predictions are also directly related to changes observed 

from the past to the present [16]. Both the analysis of current conditions and model studies are spatial 

tools due to the nature of the issues relevant to a city; thus, the solutions also require spatial studies. 

For this reason, remote sensing and geographical information systems (GIS) are widely used in the 

determination of past and present LU/LC to understand city patterns, detect changes, and monitor or 

model processes [16,20–23]. Within this scope, various urban studies on patterns, processes, causes, 

results, simulations and countermeasures have become increasingly important [16]. 

In urban studies, the phrases “urban growth”, “urban expansion” and “urban sprawl” are generally 

synonymous and are used to define the increase in urban areas. However, Bhatta (2010) specified that 

these phrases are different and that urban expansion and urban sprawl are forms of urban growth. 

Expansion is defined as the transformation of non-urban areas surrounding the urban areas to urban 

use; sprawl is defined as the transformation of areas far from the current urban area to urban use. 

According to Bhatta (2010), urban growth should be analyzed both as a land use pattern of a specific 

spatial configuration in an area at a specific time and as the processes that reflect the changes in the 

spatial structure of the city over time. Urban growth is a static phenomenon if it is considered a pattern, 

while it is a dynamic phenomenon if it is considered a process [16]. The analysis of urban growth as a 

pattern and process improves our understanding of the changes in city patterns over time by revealing 

the dynamic processes of the city and by making predictions [16,24]. In urban analysis, information 

regarding the rate of urban growth, the spatial configuration of the growth, the discrepancies between 
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observed and predicted growth, spatial or temporal disparities in the growth and uncontrolled growth 

can be determined. With this information, possible risks may be prevented by making predictions [16]. 

Within this scope, the direction of planning by identifying the limits of urbanization and by developing 

essential strategies for environmental sustainability can be ensured [22]. 

The quality of predicted changes depend on the accuracy of the analysis of the past and present 

conditions, the data quality, and the model used for the predictions [25]. In recent years, many models 

have been adapted to simulate LU/LC changes and urban growth. Markov chain (MC) models, 

regression models, cellular automata (CA) models, agent-based models, artificial neural networks 

(ANNs), and optimization models are among the widely used models [20,25–29]. Each model has 

advantages and disadvantages [27,30]. Thus, various hybrid models have also been adapted to simulate 

urban growth [19,22,25,31–36]. Determining which hybrid model provides the best results is difficult 

because each study reaches unique conclusions. Thus, in general, instead of specifying a single 

method, the method that provides the best results for the study area should be used. For this reason, 

studies based on the principle of comparing models and running simulations with the method that 

provides the best results for the study area are becoming more popular [37–41]. 

In this study, Cellular Automata-Markov Chain (CA-MC) and Multi-layer Perceptron-Markov 

Chain (MLP-MC) hybrid models were used to simulate LU/LC changes and urban growth in the 

Atakum District (Samsun, Turkey), where the population growth is rapid, despite the general stability 

of the population of Samsun Province. The objectives of this study are to: (i) understand the pattern of 

urban growth, (ii) identify the possible growth scenario via future simulations, and (iii) determine the 

method that provides the best results in the study area. For this purpose, the urban growth for the year 

2013 was simulated by the CA-MC and MLP-MC models based on the LU/LC data from 1989 and 

2000. The results of the simulations were compared with the LU/LC data from 2013. The MLP-MC 

model provided the best results in the study area. A 2025 scenario was simulated by MLP-MC.  

The simulation for 2025 was compared with the LU/LC data from 2013, and the transition directions, 

quantities and spatial distributions of possible changes in 2013–2025 were determined. 

2. Study Area: Atakum 

Atakum (Figure 1) is a district in Samsun Province, Turkey, and is located between  

35°58ʹ45ʺ–36°19ʹ00ʺE and 41°13ʹ30ʺ–41°26ʹ45ʺN. The area was referred to as Matasyon until 1994, at 

which time it became a county municipality with the name Atakum. In accordance with Law  

No. 5747, which was enforced after publication in the Official Gazette No. 26824 on 22 March 2008, 

the counties of Atakent, Kurupelit, Altinkum, Catalcam and Taflan were merged with Atakum. 

Atakum gained the status of a district on 1 July 2008. The total surface area of Atakum is approximately 

354 km2. Atakum is bordered by the Ilkadim District to the east, the Ondokuz Mayis District to the west, 

the Black Sea to the north, and the Kavak and Bafra Districts to the south. Atakum extends 20 km 

westward along the sea coast from the Kurtun River [42]. The district comprises four morphological 

units: coastal plains, sloping lands, low plateaus and mountainous areas. The coastal plains are fertile 

lands that formed by the alluvium in the Kurtun River to the east and by the Kizilirmak River to the 

west, but nearly all of the coastal plains have been used for settlements. In Atakum, most settlements 

are constructed on the coastal plains. Intense settlement is also observed on the sloping areas between 
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the coastal plains and low plateaus. The annual average temperature of Atakum, which experiences a 

temperate climate, is 14.4 °C, according to 2011 data. The average temperature in February, the coldest 

month in the district, is 6.9 °C. The average temperature in August, the hottest month, is 23.5 °C.  

The annual total precipitation is 691 kg/m2. The precipitation in Atakum is among the lowest in the 

Black Sea region [43]. 

 

Figure 1. Location of the study area. The 29 sectors of the study area are shown on a  

true-color composite of Landsat-8 OLI 2013 imagery. 

The economy of Atakum, which has generally relied on agriculture and stockbreeding since the 

1980s, is now dominated by the service sector. The sea is generally clean and suitable for swimming, 

and numerous summer houses, accommodation facilities for tourism purposes, entertainment venues 

and restaurants have been constructed along the coastline. Atakum features the highest population 

increase within Samsun Province [42]. Because the borders of the district were finalized in 2008 and 

because the population data prior to that year did not conform to the borders, the population 

information prior to 2008 is misleading. The population of the district was 107,953 in 2008 and 

158,031 in 2014 [44]. The district has an annual average growth rate of approximately 63.5‰, and it 

experiences significant migrant populations from other districts in Samsun and other provinces. 
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Although the annual natural population increase in the district is approximately 1500, the total 

population increase including migration is approximately 8500. The average annual population 

increase over 2008–2014 was 4.8‰ in Samsun Province and 13.8‰ in Turkey; thus, Atakum 

experienced a population increase rate much higher than the averages for Turkey and Samsun. 

Moreover, although the total population of Samsun decreased by 0.7‰ over 2010–2011 and no change 

in the population was observed over 2011–2012, increases of 58.4‰ and 61.8‰ were observed in 

Atakum in 2010–2011 and 2011–2012, respectively. In the literature, this high rate of migration to Atakum 

is attributed to the presence of one of the largest and most important universities in the Black Sea region, 

the available transportation, the appeal of the coast and beaches, and the low crime rates [43]. 

This study focuses on the portion of Atakum with the greatest population increase, a high 

urbanization potential and urban development. The 91 km2 area consists of 29 sectors and contains 

94.7% of Atakum’s population (Figure 1). 

3. Data and Methodology 

To model the urban growth of Atakum, this study was conducted in three phases. The first phase 

involved the collection of data that covered the study area and the preparation of the LU/LC layers for 

several years. Because the topographic data of the study area was limited, and because of the 

difficulties in obtaining past data, it was decided to use satellite images. Landsat images were selected 

from among the various levels of spatial, spectral, radiometric and temporal resolution satellite images 

because of their long-term availability [45], cost-effectiveness, and timeliness [46]. The LU/LC layers 

were generated by using Landsat-4 TM satellite image from 2 August 1989, Landsat-7 ETM+ satellite 

image from 13 June 2000, and Landsat-8 OLI satellite image from 13 September 2013 (path/row: 

175/31). All images were obtained from the U.S. Geological Survey [47,48]. In the second phase, the 

LU/LC changes were analyzed. In the final phase, the factors that affect urban growth were 

determined, and the urban growth based on past changes and the factors was simulated. As auxiliary 

data, 1/25,000-, 1/5000- and 1/1000-scale maps that cover various areas in various years were used for 

processing and classifying the images and for preparing the factor layers. To process the satellite 

images and to simulate the urban growth, the IDRISI 17.0 Selva software package (Clark Labs, Clark 

University, Worcester, MA, USA) was used. ARIS Grid Editor (ARIS B.V., Utrecht, The Netherlands), 

operating in ArcGIS 10.0 software (Esri, Redlands, CA, USA), was used to enhance the classified 

images. To develop a model of urban growth, the IDRISI CA_Markov and The Land Change Modeler 

(LCM) modules were used. The primary operations of the methodology are shown in Figure 2. 

3.1. Preprocessing of Satellite Images and Classification 

The Landsat data were geometrically corrected and registered to a common UTM projection.  

For this purpose, a 2013 Landsat OLI image was first geo-referenced using 1/25,000-scale topographic 

maps and 1/5000- and 1/1000-scale base maps. Then, the images from 1989 and 2000 were image-to-image 

registered using the 2013 images. The root mean square error (RMSE) was carefully kept below 0.5 pixels. 

Following the geo-referencing operation, the images were classified with the maximum likelihood 

method (all bands were used except for the thermal bands due to the spatial resolution). The maximum 

likelihood procedure is the most widely used classifier of remotely sensed imagery and is based on 
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Bayesian probability theory. Using the information from a set of training sites, the method uses the 

mean and variance/covariance data of the signatures to predict the probability that a pixel belongs to 

each class [49]. In the classification, the categories of the Coordination of Information on the 

Environment (CORINE) classification system [50] were used (Table 1). For each class, 100 training 

samples were selected from the maps of the classification area. 

 

Figure 2. Workflow showing the main operations in the study. In the first phase, the 

Landsat images were classified, and the LU/LC layers were prepared. In the second phase, 

the changes that occurred in 1989–2000 and 2000–2013 were identified. In the third phase, 

the urban growth was simulated for 2013 with the CA-MC and MLP-MC methods.  

The simulation for 2025 was obtained by determining the method that provided the best 

results in the study area through a comparison of the results with the LU/LC data from 2013. 

Table 1. LU/LC classes used in the study. 

Class Content (Features in the Study Area) 

Artificial surfaces  
Residential areas, commercial and industrial areas, roads and other 

construction sites 

Agricultural areas  Active farmland 

Forest and semi-natural areas Forest, grove, active/passive green spaces 

Open spaces with little or no vegetation Bare soil, beach, sparsely vegetated areas, sand, gravel and stone quarries 

Water bodies Sea, dam reservoir, river 

Because the pixel size of the images used in the analyses is 30 m, the classified LU/LC layers have 

a 30 m pixel size. The classified image was visually examined using the various band combinations 
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and maps of the area, and the results were improved through editing with ARIS Grid Editor.  

The accuracy assessment of the obtained results is an estimate of the quality and usability of the 

products, and it is based on the principle of comparing each class in the classified image with the 

ground-truth test data. Therefore, a confusion matrix was developed. The accuracy assessment was 

composed of the producer accuracy, user accuracy, overall accuracy and kappa value [51]. If the kappa 

value is greater than 0.8, then strong to perfect agreement exists; if the value is between 0.6 and 0.8, 

then strong to substantial agreement exists; if the value is between 0.4 and 0.6, then moderate 

agreement exists; and if the value is less than 0.4, then weak agreement exists [52]. In this study, the 

confusion matrix was composed of 250 test points obtained for each class based on maps of the area. 

The accuracy of the LU/LC layers were analyzed for 1989, 2000 and 2013. 

3.2. Change Analysis 

In urban areas, the LU/LC system is subjected to intense pressure by humans; thus, urban areas 

have complex spatio-temporal change dynamics [39]. These changes significantly affect natural 

resources, the environment, socio-economic factors, etc. Identifying the changes and their causes 

would help determine possible future changes, decision-support phases and the composition of various 

LU/LC change scenarios [16]. Change analysis is based on the historical changes from time t1 to t2 [49]. 

Based on the analysis of LU/LC changes, the transition from one class to another within a specific 

period is determined, thereby revealing the interactions between the classes [39]. In this study,  

cross-tabulation analysis [49,53] was applied to determine the LU/LC changes over 1989–2000 and 

2000–2013. Based on this analysis, the areas that changed from one class to another at specific periods 

can be determined spatially and quantitatively [25]. The cross-tabulation table shows the frequencies 

of changed or unchanged classes [49]. 

3.3. Simulation 

In the study, the CA-MC and MLP-MC hybrid models were used to simulate the LU/LC changes 

and urban growth. The simulation results obtained for 2013 were compared with the LU/LC data for 

2013. The MLP-MC model provided the best results in the study area; thus, the simulation for 2025 

was performed using MLP-MC, and possible changes were determined. The workflow of the 

simulation is shown in Figure 3. 

3.3.1. CA-MC 

The CA method is a system used to divide facts or issues by cell and to determine the future status 

of each cell based on neighboring cells [54,55]. CA has four elements: X, S, N and f. X is the group of 

cells composing the space of the study area; S is the non-empty finite group of automata statuses, 

where each cell can have only one status at a specific time; N defines the contiguity for a specific cell; 

and f (transition function) consists of a set of rules that determines the future status of a cell based on 

the current status of the cell and its neighboring cells [20]. 
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Figure 3. Workflow of the simulation of urban growth. In the first phase, the urban growth 

simulation was performed by the CA-MC and MLP-MC methods for the year 2013.  

The same data were used in both simulations, and the areas with changes were calculated 

with the MC. Based on the validity assessment of the simulation results, the simulation for 

2025 was run using MLP-MC, which provided the best results in the study area. 
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An MC is a stochastic process that defines the probability that one status will transform into another 

status. The key identifier in the MC is the “transition probability matrix”, and a future status is 

predicted through the analysis of past statuses. The MC model is defined as the group of statuses, and a 

process starts at one status and moves consecutively from one status to another [19,53]. 

One of the main spatial elements that underlies the numerous dynamics is contiguity. When an area 

is close to areas in another class, the area exhibits a high tendency to transform into that class.  

This tendency is referred to as the expansion phenomenon [49]. Although the MC is a practical method 

for modeling changes and determining future trends, it cannot be used alone in spatial simulation 

studies because it does not consider the effects of neighboring cells and does not provide the 

opportunity to spatially model the predicted change. In other words, the MC method lacks a spatial 

component [19,56]. In the CA method, only the cells surrounding a cell of interest are considered in 

the estimation of the future status of the cell. By integrating these two approaches, one can assess both 

the spatial relations and past statuses in the simulation of future statuses. In a hybrid CA-MC model, 

the transition probabilities are calculated using LU/LC layers that belong to different periods (t1: Earlier 

date and t2: Later date). The temporal dynamics between LU/LC classes are determined using transition 

probabilities. Spatial dynamics are determined with local rules, in which CA assesses the contiguity 

configuration and transition probabilities [56]. In the CA-MC method, the base LU/LC layer 

(belonging to t2), the transition areas for future projection dates produced by the MC (using LU/LC 

layers of t1 and t2), and the transition-potential layers for each LU/LC class are used. The  

transition-potential layers specify the degree to which each cell is suitable for each of the LU/LC types. 

In the CA-MC method, the allocation of pixels (spatially projected) for each LU/LC continues 

iteratively until the areas predicted by the MC analysis (transition areas) are met [49]. The number of 

iterations is equal to the number of years from the base date to the projection date. A contiguity filter is 

used to change the status of each cell based on the previous statuses of the cells and on the statuses of 

contiguous cells. In this study, the following 5 × 5 contiguity filter (Equation (1)) was applied to 

transition-potential layers composed of LU/LC types. The filter used in the study has been used 

extensively to simulate settlements; however, the filter is able to change, depending on the purpose of 

the study and on the selection of the analyst [53,56,57]. 
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3.3.2. MLP-MC 

In this approach, transitions are modeled using a MLP neural network. The MLP method is the most 

common type of neural network [58], and it is often called a “back-propagation” network because of 

its training rules. The MLP consists of an input layer, one or more hidden layers and an output  

layer [59,60] as shown in Figure 4. Multi-layer perceptrons are often fully connected, i.e., every 

neuron in each layer is connected to other neurons in neighboring layers [61]. 
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Figure 4. The MLP architecture with the organization of layers (Reused from Ref. [60], 

Figure 8.2 with permission of Springer Science+Business Media). 

Sub-models are developed to determine the transition potential in the MLP-MC method. Each sub-model 

is defined for relevant variables. Static and dynamic variables can be added to the model. Static variables do 

not change with time. Dynamic variables can change during the simulation, and they are also 

computed while performing a prediction. After calculating the potential transition layers with MLP, a 

prediction is made. The MC analysis is used in the simulation phase [49,62]. 

Only major transitions are included in the sub-models to obtain superior results in the MLP-MC 

method [53]. Because determining urban growth is the main purpose, the transition to artificial 

surfaces from other classes [39] is addressed as a sub-model. 

3.3.3. Determination of Transition Potential 

A transition potential image-layer indicates the relative likelihood of transition of one LU/LC class 

to another for each pixel [63]. The transition potentials must be determined to model the changes in 

both the CA-MC and MLP-MC simulations. These layers are generally produced through the 

calibration step of the simulation. CA-MC generally uses suitability layers which are produced by 

multi-criteria evaluation (MCE) as transition potential [63] and in MLP-MC, a collection of transition 

potential layers is organized within an empirically evaluated transition sub-model that has the same 

underlying driver variables [49]. 

In this study, the artificial surfaces-suitability layer was prepared using the analytical hierarchy 

process (AHP), which is one of the most extensively used MCE methods, to determine the transition 

potential of the artificial surfaces class. Conditional probability layers obtained by the MC process for 

the agricultural areas, forests, semi-natural areas, open spaces with little or no vegetation and water 

bodies were used as transition potential layers in the CA-MC method. 

Additionally, in the MLP-MC method, the variables of the sub-model were determined as an 

artificial surfaces-suitability layer and evidence-likelihood layer as in the study by Baysal (2013) [39]. 

The evidence-likelihood layer is created by determining the relative frequency with which different 

LU/LC categories occurred within the areas that transitioned between times t1 and t2 [53]. In this study, 

the evidence-likelihood layer was based on changes from other classes to the artificial surfaces class 

(“all to artificial surfaces”). 
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Artificial surfaces-Suitability Layer 

In the preparation of the suitability layer for artificial surfaces, the factors that cause urban growth 

in the study area were determined. Urban growth is generally the result of complex interactions 

between many factors. Thus, a factor set that is universally defined in all studies for all areas is 

difficult to generate [25,64]. However, based on literature surveys, similar factors were used in other 

studies and it was decided to use the factors in Table 2 in this study [25,39,64]. In addition, unsuitable 

areas for urbanization were identified as constraints, as shown in Table 2. The existing building areas, 

water-covered areas and the locations not allowed for urban development by zoning regulations of the 

Atakum District local administration and the Turkish Zoning Law were evaluated as the areas not suitable 

for urban growth. The constraint areas were masked to exclude them from the urban growth simulation. 

Table 2. Definition of driving factors of LU/LC changes and constraints. 

Factors Constraint (Areas not Suitable for Urban Growth) 

Distance to main urban centers Areas not geologically suitable for settlement 

Distance to tram system 20 m from riverside (flood risk boundaries of rivers) 

Distance to major roads 50 m from sea coastline 

Distance to existing built-up surfaces Areas covered with water 

Distance to sea coast Current artificial surfaces 

Slopes (percent)  

Distance to rivers  

Because major roads and existing built-up surfaces vary by year, the distance to existing built-up surfaces 

and the distance to major roads were calculated in both the 2013 simulation and 2025 simulation. The 

constraints layer (due to artificial surface changes) for the 2013 and 2025 simulations were also 

arranged. The situation in 2000 was taken into account for the 2013 simulation, and the situation in 

2013 was taken into account for the 2025 simulation. 

The AHP method was used to create the artificial surfaces-suitability layer for 2013 and 2025.  

The AHP method was developed by Saaty (1980) [65]. The AHP is a theory of measurement that uses 

pairwise comparisons and that relies on the judgments of experts to derive priority scales [66–68]. 

Pairwise comparisons are determined by a scale with values from 1 to 9 [65,69]. In the AHP, the factor 

(criterion) weights are determined using pairwise comparison. The AHP also allows decision alternatives to 

be prioritized using pairwise comparison [70]. However, it is difficult to perform pairwise comparison for 

raster data because of large number of alternatives [70,71]. In this study, pairwise comparison was used to 

determine the weights of the factors. A very important aspect of this method is that a measure of 

inconsistency follows from the calculations performed on the pairwise judgment [72]. An index of 

consistency, known as the consistency ratio (CR), is used to indicate the likelihood that the matrix judgments 

are consistent. Generally, a CR on the order of 0.10 or less is a reasonable level of consistency [65,69]. 

The criterion layers for the determined factors were prepared by using 1/25,000-, 1/5000- and 

1/1000-scale maps and LU/LC layers. The slope layer was derived from the digital elevation model 

using 10 m contours on the 1/25,000-scale maps. Because current artificial surfaces and roads have 

dynamic specifications and change over time, the “distance to existing built-up surfaces” and “distance 

to major roads” criterion layers were prepared individually for the 2013 and 2025 simulations. 
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Table 3. Standardization of factors to a continuous scale. 

Factors Function Explanation of Control Points 

Distance to main urban centers Linear 

0 m highest suitability 

0–3 km decreasing suitability 

>3 km no suitability 

Distance to tram system J-shaped 

0–100 m highest suitability 

100 m–1.5 km decreasing suitability 

>1.5 km no suitability 

Distance to major roads J-shaped 

0–100 m highest suitability 

100 m–1.5 km decreasing suitability 

>1.5 km no suitability 

Distance to existing built-up surfaces Linear 

0 m highest suitability 

0–1 km decreasing suitability 

>1 km no suitability 

Distance to sea coast J-shaped 

0–50 m no suitability 

50 m–2 km decreasing suitability 

>2 km no suitability 

Slopes (percent) Sigmoid 

0% highest suitability 

0%–15% decreasing suitability 

>15% no suitability 

Distance to rivers Sigmoid 

0–20 m no suitability 

20 m–0.5 km increasing suitability 

>0.5 km highest suitability 

Standardization is necessary to transform the disparate measurement units of the factor images into 

comparable suitability values [53]. The fuzzy method was used in the standardization of the criterion 

layers. Thus, the results represent fuzzy membership in the decision set. A fuzzy set is characterized by 

a fuzzy membership grade (also called a possibility) that ranges from 0.0 to 1.0, indicating a continuous 

increase from non-membership to complete membership [49]. In this study, the criteria were standardized 

by using sigmoidal (s-shaped), j-shaped, and linear membership functions. In the standardized layers,  

0 represents the least suitable sites, and 1 represents the most suitable sites. The fuzzy membership 

functions and control points used in the standardization of the criterion layers are summarized in Table 3. 

The simplest rescaling function for continuous data is simple linear stretch. This function measures the 

relative distance and creates a range of suitability (the lowest and highest suitability score is 0 and 1, 

respectively). The sigmoidal membership function is the most commonly used function in fuzzy set 

theory. It is produced using a cosine function. The J-shaped function approaches 0 but only reaches it 

at infinity [49]. Selection of the type of fuzzy membership function and control points is prone to 

subjectivity and can change according to the knowledge of decision makers [73]. In this study 

functions and control points were selected according to literature survey [53,73,74] and regional 

trends. To rescale the distance to main urban centers, monotonically decreasing linear function was 

selected; 0 m (highest) and 3 km (lowest) were used as the control points. Similar to the distance to 

main urban centers, to rescale the distance to existing built-up surfaces monotonically decreasing 

linear function with the control points 0 m and 1 km was used. In this study, it was evaluated that the 

other factors do not have a constant decrease or increase. To rescale the slopes (percent) monotonically 
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decreasing sigmoid function was used. A slope of 0% was accepted as the highest suitable, and a slope 

above 15% was considered unsuitable. A monotonically increasing sigmoid function with the control 

points 20 m and 0.5 km was used to rescale the distance to rivers. The distance up to 20 m was 

evaluated as unsuitable because of building approach limit. Suitability was considered as very low at 

20 m and increases between 20 m and 0.5 km. Beyond 0.5 km, suitability was accepted as stable. To 

rescale the distance to tram system, distance to major roads, and distance to sea coast a monotonically 

decreasing J-shaped membership function was used. For the factor of distance to tram system and 

distance to major roads, distance up to 100 m was considered most suitable. After this point, suitability 

decreases up to 1.5 km depending on the J-shaped membership function, but never reaches 0. 

Similarly, a monotonically decreasing J-shaped function was used to rescale the distance to sea coast. 

The distance up to 50 m was evaluated as unsuitable because of the building approach limit. From this 

control point to 2 km, suitability decreased. 

The suitability layers were prepared for the 2013 and 2025 simulations by using standardized 

criterion layers, constraint layers, and weights using the AHP decision rule given by Equation (2). 


n

j
jijAHP waA  (2)

where aij is the normalized layer value of the ith alternative (pixel) with respect to jth factor and wj is 

the weight of the jth factor using the pairwise comparison [75]. 

Testing the Selected Driving Factors 

The effect of a spatial variable on a LU/LC transition can be measured by several methods; the most 

popular are Cramer’s V, Contingency Coefficient and the Joint Information Uncertainty [76].  

Cramer’s V and Contingency tests are chi-square-based measures, while Joint Information Uncertainty 

is based on Joint Entropy measure [77]. Cramer’s V is the most popular of the Chi-square-based 

measures of nominal association [78] and was indicated as one of the most suitable measure of 

association between two categorical maps [79]. In the MLP-MC simulation using LCM, to quantify the 

association between each LU/LC with the driving variables, a Cramer’s V analysis was conducted. 

Cramer’s V analysis is a way of calculating correlation in tables that have more than 2 × 2 rows and 

columns [80]. Cramer’s V value ranges from 0 to 1.0 regardless of table size [78]. This makes it 

possible to use Cramer’s V to compare the strength of association between any two cross classification 

tables [81]. Cramer’s V values higher than 0.15 can be considered useful and values higher than 0.4 

are considered good to evaluate the driving variables [49]. 

Validation of Simulation Results 

If the evaluation of the simulation provides valid results, then the calibrated model can be applied 

for the prediction of future patterns [73]. In this study, the validation was realized by comparing the 

predicted 2013 layers (simulation layers with CA-MC and MLP-MC) with the reference layer (LU/LC 

for 2013) based on kappa variations and Cramer’s V analysis. The accuracy assessment of the 

simulation results differs slightly from that of the image classification results (accuracy assessment for 

image classification rely on ground-truth points for each class) [39]. A LU/LC dynamics model is 

usually validated by comparing the predicted result to the reference layer to determine the prediction 
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quality of the model [82]. To assess the validity of the models in this study, different components of 

the kappa index of agreement (KIA), including the kappa for no information (Kno), kappa for grid-cell 

level location (Klocation), and kappa for stratum-level location (KlocationStrata), as introduced by 

Pontius et al. (2000) [83], were used in addition to Cohen’s (1960) [84] kappa standard (Kstandard) 

(equivalent to kappa, i.e., the proportion assigned correctly versus the proportion that is correct by 

chance) [66]. Kstandard is usually not appropriate for evaluating the accuracy of both quantity and 

location [80,83]. Kno indicates the proportion classified correctly relative to the expected proportion 

classified correctly by a simulation without the ability to accurately specify the quantity or location. 

Klocation is defined as the success of a simulation to specify the location divided by the maximum 

possible success of a simulation to specify the location perfectly [83]. In other words, Klocation is a 

measure of the spatial accuracy associated with the correct assignment of values, and KlocationStrata 

is a measure of the accuracy associated with the correct assignment within predefined strata.  

Using Kno, Klocation and Kstrata together allows us to determine the overall success rate by 

determining the strengths or weaknesses of the results based on both location and quantity [85].  

All components of the KIA and Cramer’s V analysis vary between 0 and 1, in which values close to 0 

denote a weak association and values close to 1 indicate a strong association [52,80]. 

4. Results 

To better understand the LU/LC changes and urban growth dynamics, the results were divided into four 

parts: i. composition of the LU/LC layers for the years 1989, 2000 and 2013 and an accuracy assessment;  

ii. change analysis of the periods 1989–2000 and 2000–2013; iii. simulation for the year 2013 by the  

CA-MC and MLP-MC methods, comparison of the simulation results with the LU/LC data for 2013, and 

identification of the method that provides the highest accuracy in the study area; and iv. simulation of urban 

growth for the year 2025 using the method that produced the best results in the 2013 simulation. 

Table 4. Accuracy assessment of the LU/LC layers for the years 1989, 2000 and 2013. 

 1989 2000 2013 

Class Producer User Producer User Producer User 

Artificial surfaces 87.6% 84.4% 86.5% 84.8% 88.7% 88.0% 

Agricultural areas 85.3% 86.0% 88.7% 88.0% 87.9% 86.8% 

Forest and semi-natural areas 88.5% 89.6% 85.9% 87.6% 89.8% 92.0% 

Open spaces with little or no vegetation 85.5% 85.2% 86.1% 86.4% 89.5% 88.4% 

Water bodies 96.9% 98.8% 98.4% 98.8% 98.4% 99.2% 

Overall accuracy 88.8% 89.1% 90.9% 

Kappa 0.86 0.86 0.89 

4.1. LU/LC Layers and Accuracy Assessment 

The LU/LC layers for the years 1989, 2000 and 2013 were classified by the maximum likelihood 

method and were enhanced via editing based on auxiliary data (Figures 5 and 6). The producer and 

user accuracies obtained by the confusion matrix, the total accuracy values and the kappa values are 

listed in Table 4. The kappa values of the LU/LC layers are 0.86, 0.86 and 0.89 for the years 1989, 

2000 and 2013, respectively. The kappa values of all LU/LC layers are greater than 0.80, and the 
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accuracy indicates strong to perfect agreement [52]. Because the LU/LC layers were sufficiently 

accurate, the layers were used in the simulation studies. 

 

Figure 5. LU/LC classes for the years 1989 and 2000, and the spatial distribution of the 

changed areas for the period of 1989–2000. 

4.2. Change Analysis 

The surface areas of each class and the change that occurred during 1989–2000 and 2000–2013 are 

provided in Table 5. The artificial surfaces, which covered 507.4 ha in 1989, reached 979.1 ha in 2000 

(an increase of 471.7 ha) and 1681.9 ha in 2013 (a further increase of 702.8 ha). Artificial surfaces 

covered 5.01% of the entire area in 1989, 9.67% in 2000 and 16.61% in 2013 (the total area, including 

water bodies, is 10,129.0 ha). According to these values, the annual urban growth rate was 59.8‰ and 

41.6‰ during 1989–2000 and 2000–2013, respectively (the growth rates were calculated using a 

logarithmic formula). When the urban growth rate was compared with the population growth, the 

annual urban growth rate for 2000–2013 was consistent with the annual population increase (63.5‰ 

for the 2008–2014 period). 

Table 5 shows that 388.4 ha of agricultural land and 5.0 ha of forests were destroyed in 1989–2000, 

and 608.3 ha of agricultural land and 5.2 ha of forests were destroyed in 2000–2013 due to 

urbanization. Because the study area is coastal, the region was mainly developed as a beach and a 

secondary house/summer house area of Samsun until the 1980s. Since then, the pressure of urban 
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growth has increased because of the establishment of municipalities and the population increase driven 

by the university [86]. Significant increases in the number of lodgings intended as primary houses, as 

well as secondary lodgings, have occurred. A total area of 31.9 ha was added by filling in portions of 

the coast over 1989–2013 with yacht ports, parks and recreational areas. Although the total surface 

area of forests seems partially stable, forests are added by forestation operations and destroyed by 

urbanization. Figures 5 and 6 reveal the spatial distribution of all the changes that occurred during 

1989–2000 and 2000–2013, respectively. These figures show that urban growth systematically occurs 

around the current artificial surfaces and along the roads and that agricultural land generally transitions 

to urban areas. 

 

Figure 6. LU/LC classes for the years 2000 and 2013, and the spatial distribution of the 

changed areas for the period of 2000–2013. 

4.3. Simulation 

4.3.1. LU/LC Transition Analysis 

In the study area, the transition probability matrix and transition areas matrix were developed for 

the years 2013 (using LU/LC layers for 1989 and 2000) and 2025 (using LU/LC layers for 2000 and 

2013) (Table 6). The transition probability matrix indicates the possibility of a transition to other 

classes for each LU/LC class within the determined time. The transition areas matrix is the area 

predicted to transition from each LU/LC class to another class within the period. The matrix is 
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obtained by multiplying the transition possibility matrix with the areas of the LU/LC classes on a 

specific date (t2). 

Table 5. Comparison of LU/LC data for 1989–2000 and 2000–2013. The table makes it 

possible to determine the area transferred from one LU/LC to another between the dates. 

The changes are shown in ha with respect to area and are also shown as percentages of the 

total area (in the parentheses). 

 Year: 2000 ha (%) 

Year: 1989 ha (%) 
Artificial 

Surfaces 

Agricultural 

Areas 

Forest and  

Semi-Natural Areas 

Open Spaces with Little 

or No Vegetation 

Water 

Bodies 
Total 

Artificial surfaces 
507.4 

(5.01%) 
0 (0%) 0 (0%) 0 (0%) 0 (0%) 

507.4 

(5.01%) 

Agricultural areas 
388.4 

(3.83%) 

6361.3 

(62.80%) 
97.9 (0.97%) 2.7 (0.03%) 

0.1 

(0.001%) 

6850.4 

(67.63%) 

Forest and semi-natural areas 
5.0 

(0.05%) 
0.1 (0.001%) 958.8 (9.47%) 89.9 (0.89%) 0 (0%) 

1053.8 

(10.40%) 

Open spaces with little or no vegetation 
78.3 

(0.77%) 
0.3 (0.003%) 14.0 (0.14%) 605.9 (5.98%) 

0.5 

(0.005%) 

699.0 

(6.90%) 

Water bodies 0 (0%) 0 (0%) 0 (0%)  3.8 (0.04%) 
1014.6 

(10.02%) 

1018.4 

(10.05%) 

Total 
979.1 

(9.67%) 

6361.7 

(62.81%) 
1070.7 (10.57%) 702.3 (6.93%) 

1015.2 

(10.02%) 

10,129.00 

(100%) 

 Year: 2013 ha (%) 

Year: 2000 ha (%) 
Artificial 

surfaces 

Agricultural 

areas 

Forest and  

semi-natural areas 

Open spaces with little 

or no vegetation 

Water 

bodies 
Total 

Artificial surfaces 
979.1 

(9.67%) 
0 (0%) 0 (0%) 0 (0%) 0 (0%) 

979.1 

(9.67%) 

Agricultural areas 
608.3 

(6.01%) 

5724.5 

(56.52%) 
28.8 (0.28%) 0 (0%) 0 (0%) 

6361.6 

(62.81%) 

Forest and semi-natural areas 
5.2 

(0.05%) 
32.3 (0.32%) 1011.8 (9.99%) 21.4 (0.21%) 0 (0%) 

1070.7 

(10.57%) 

Open spaces with little or no vegetation 
89.3 

(0.88%) 

16.1  

(0.16%) 
0 (0%) 596.9 (5.89%) 0 (0%) 

702.3 

(6.93%) 

Water bodies 0 (0%) 0 (0%) 0 (0%) 28.1 (0.28%) 
987.2 

(9.74%) 

1015.3 

(10.02%) 

Total 
1681.9 

(16.61%) 

5772.9 

(56.99%) 
1040.6 (10.27%) 646.4 (6.38%) 

987.2 

(9.74%) 

10,129.00 

(100%) 

4.3.2. Composition of Transition Potential Layers 

Pairwise comparisons were performed to determine the criterion weights required for the 

preparation of the artificial surfaces-transition potential layer for the 2013 and 2025 simulations.  

The calculated criterion weights are provided in Table 7. CR was 0.02; because this value is less than 

0.10, the pairwise comparisons are consistent. 
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Table 6. Transition probability matrix and transition areas matrix for the years 2013 and 

2025. The amount of change (ha) that occurred between the two dates can be determined 

for each LU/LC class. 

 Transition Probability Matrix (2013)  Transition Areas Matrix (2013) 

 LU/LC1 LU/LC2 LU/LC3 LU/LC4 LU/LC5 Total  LU/LC1 LU/LC2 LU/LC3 LU/LC4 LU/LC5 Total 

LU/LC1 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000  979.1 0.0 0.00 0.0 0.0 979.1 

LU/LC2 0.0668 0.9160 0.0168 0.0004 0.0000 1.0000  425.0 5827.0 107.0 2.6 0.1 6361.7 

LU/LC3 0.0055 0.0001 0.8938 0.1006 0.0000 1.0000  5.9 0.1 957.0 107.7 0.0 1070.7 

LU/LC4 0.1320 0.0005 0.0237 0.8431 0.0008 1.0000  92.7 0.4 16.7 592.0 0.5 702.3 

LU/LC5 0.0000 0.0000 0.0000 0.0044 0.9956 1.0000  0.00 0.00 0.0 4.4 1010.8 1015.2 

       Total 1502.7 5827.5 1080.7 706.7 1011.4 10,129.0

 Transition Probability Matrix (2025)  Transition Areas Matrix (2025) 

LU/LC1 1.0000 0.0000 0.0000 0.0000 0.0000 Total  1681.9 0.0 0.0 0.0 0.0 1681.9 

LU/LC2 0.0886 0.9072 0.0042 0.0000 0.0000 1.0000  511.7 5236.9 24.3 0.0 0.0 5772.9 

LU/LC3 0.0043 0.0280 0.9491 0.0186 0.0000 1.0000  4.4 29.2 987.6 19.4 0.0 1040.6 

LU/LC4 0.1180 0.0214 0.0000 0.8605 0.0000 1.0000  76.3 13.9 0.0 556.2 0.0 646.4 

LU/LC5 0.0000 0.0000 0.0000 0.0256 0.9744 1.0000  0.0 0.0 0.0 25.2 962.0 987.2 

       Total 2274.3 5280.0 1011.9 600.8 962.0 10,129.0

LU/LC1: artificial surfaces; LU/LC2: agricultural areas; LU/LC3: forest and semi-natural areas; LU/LC4: 

open spaces with little or no vegetation; LU/LC5: water bodies. 

The artificial surfaces-transition potential layers for the 2013 and 2025 simulations were generated 

via the AHP method using standardized criterion layers, constraints and criterion weights, which are 

shown in Figure 7. The evidence-likelihood layers for the MLP method in the 2013 and 2025 

simulations are shown in Figure 8. 

To determine the associations between the changes and variables for the MLP method, Cramer’s V 

values were calculated (Table 8). All of Cramer’s V values for the artificial surfaces-suitability layer 

and evidence-likelihood layer were greater than 0.15, and most values were greater than 0.40, meaning 

that the two variables could be used in the simulations. 

Table 7. Determination of criterion weights by the AHP method. 

Criteria C1 C2 C3 C4 C5 C6 C7 Weights 

C1 1 1 2 2 3 4 5 0.255 
C2 1 1 2 2 3 4 5 0.255 
C3 0.50 0.5 1 1 2 3 4 0.150 
C4 0.50 0.5 1 1 2 3 4 0.150 
C5 0.33 0.33 0.50 0.50 1 2 3 0.091 
C6 0.25 0.25 0.33 0.33 0.50 1 3 0.062 
C7 0.20 0.20 0.25 0.25 0.33 0.33 1 0.037 

CR=0.02 Σ = 1.000 

C1: distance to main urban center; C2: distance to tram system; C3: distance to major roads; C4: distance to 

existing built-up surfaces; C5: distance to sea coast; C6: slopes; C7: distance to rivers. 
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Table 8. Cramer’s V for each variable for 2013 and 2025. 

 Variable 
Artificial 

surfaces 

Agricultural 

areas 

Forest and  

semi-natural areas 

Open spaces with little 

or no vegetation 

Water 

bodies 

2013       

 
Artificial surfaces suitability 0.5740 0.5627 0.6333 0.3955 0.1572 

Evidence likelihood 0.7920 0.3444 0.8988 0.8914 0.8607 

2025       

 
Artificial surfaces suitability 0.4847 0.6582 0.6879 0.4309 0.1759 

Evidence likelihood 0.4988 0.2754 0.8659 0.4933 0.8783 

 

Figure 7. Artificial surfaces-suitability layers of Atakum. Higher values indicate higher 

probabilities of urban growth. 

4.3.3. 2013 Simulations Using the CA-MC and MLP-MC Methods and Validation of the Models  

Figure 9 shows the simulation layers of CA-MC and MLP-MC for 2013 performed using the 

LU/LC layers for the years 1989 and 2000 and the transition areas, transition potentials, and 

compatible and non-compatible areas obtained by superimposing the simulation results with the 

LU/LC data for 2013 as reference layers. Based on the composition of the transition potential in the 

MLP-MC method, the MLP neural network was applied with 98.21% accuracy. 

The KIA for all of the classes and for each class is given in Tables 9 and 10, respectively. Based on 

Table 9, both CA-MC and MLP-MC show a strong to perfect agreement [52] because all kappa values 

are greater than 0.80. However, as seen from Table 9, Kno, Klocation, Klocationstrata, Kstandard, and 

Cramer’s V values of the projected 2013 LU/LC data were higher for the MLP-MC method. Similarly, 

when the kappa values for each class were examined (Table 10), all of the classes exhibited higher 

accuracies with the MLP-MC method. Although artificial surfaces have kappa values lower than the 
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other classes, a kappa value of 0.70 is sufficiently accurate, as specified in Sub-Section 3.1. Thus, it 

was decided to perform the 2025 simulation with the MLP-MC model. 

 

Figure 8. Evidence-likelihood layers. 

Table 9. Kappa Components and Cramer’s V for the CA-MC and MLP-MC simulations. 

Agreement CA-MC MLP-MC 

Kno 0.86 0.89 

Klocation 0.85 0.88 

KlocationStrata 0.85 0.88 

Kstandard (Overall kappa) 0.83 0.85 

Cramer’s V 0.84 0.86 

Table 10. KIA on a per class basis for CA-MC and MLP-MC. 

 KIA 

Class CA-MC MLP-MC 

Artificial surfaces 0.68 0.70 

Agricultural areas 0.85 0.87 

Forest and semi-natural areas 0.86 0.90 

Open spaces with little or no vegetation 0.80 0.82 

Water bodies 1.00 1.00 

4.4. 2025 Simulation Using the MLP-MC Method 

The urban growth for 2025 was simulated with the MLP-MC model, the LU/LC data for 2000 and 2013, 

the artificial surfaces-suitability layer, and the likelihood layer. The MLP neural network, with an accuracy 
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of 96.62%, was applied to create transition potential layers. The urban growth scenario between 2013 and 

2025 based on the MLP-MC model is shown in Figure 10. 

 

 

Figure 9. Simulation results from the CA-MC and MLP-MC models and comparison of 

the CA-MC and MLP-MC results with the reference LU/LC 2013 layer. 

The simulation for 2025 showed that artificial surfaces, which covered 1681.9 ha in 2013, will 

likely cover 2274.3 ha in 2025 (an increase of 592.4 ha associated with an urban growth at a rate of 

35.2%). The simulation also indicated that 511.7 ha of agricultural land and 4.4 ha of forests may be 

destroyed (Table 11). The possible artificial surfaces in 2025 indicate that expansion might be realized 

in the form of greater densification and congestion in already dense settlements and along the 

transportation network. 
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Figure 10. Simulation results from MLP-MC and comparison with the LU/LC 2013 layer. 

The figure presents a comparison between the present and probable future situations.  

The transition to artificial surfaces will likely destroy agricultural and forests. 
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Table 11. Areas expected to transition to artificial surfaces during 2013–2025. The changes 

are listed as the area in ha and also as the percentages of the total area (in parentheses). 

Class Transition Area (ha (%)) 

Artificial surfaces to artificial surfaces 1681.9 (16.61%) 

Agricultural areas to artificial surfaces 511.7 (5.05%) 

Forest and semi-natural areas to artificial surfaces 4.4 (0.04%) 

Open spaces with little or no vegetation to artificial surfaces 76.3 (0.75%) 

Water bodies to artificial surfaces - 

Total artificial surfaces expected in 2025 2274.3 (22.45%) 

Total study area 10,129.0 (100%)  

5. Discussion 

Because of the environmental problems caused by rapid and uncontrolled urbanization, studies that 

aim to understand urban patterns and to estimate possible changes in the future are rapidly increasing. 

Remote sensing datasets, which are rapidly acquired, economical, and both current and archival, and 

GIS for spatial modeling have become the primary components of the systems used to determine 

LU/LC changes and urban growth and to model possible future changes. In this study, the urban 

growth for 2025 in the Atakum District of Samsun, Turkey, was simulated in a GIS environment using 

remote sensing data. First, urban growth for 2013 was simulated using the CA-MC and MLP-MC 

models. The results were compared with the actual LU/LC data for 2013. Based on this comparison, 

the MLP-MC model provided the best results in the study area; thus, the 2025 scenario was simulated 

using the MLP-MC model. By assessing the performances of the different models in the same area and 

identifying the best results, the success of the target simulation was enhanced. When the 2013 

simulations were compared with the LU/LC data for the same year, all of the kappa values and 

Cramer’s V values (for the overall class) of both methods were greater than 80%. The kappa values for 

the artificial surfaces class were 0.68 and 0.70 for CA-MC and MLP-MC, respectively. When the 

accuracy of the study is compared with the studies in which CA-MC and MLP-MC models and 

Landsat images are used, it was found that results of the study are compatible and provides a sufficient 

accuracy, per the literature. Ahmed (2011) [37], Ahmed and Ahmed (2012) [38], Baysal (2013) [39], 

Ongsomwang and Pimjai (2014) [41] reported simulation accuracies in the range of 0.70–0.90.  

In these studies, based on the comparison of the CA-MC and MLP-MC, only Ongsomwang and Pimjai 

(2014) [41] achieved higher accuracy with the CA-MC method, other studies have obtained higher 

accuracy with the MLP method as in this study. 

As a general assessment, the simulation results provide significant insights into the future, even 

when the results are not 100% identical to the actual land use. However, as specified by [54], the 

purpose of predicting land use in urban areas is to obtain data that will contribute to a better 

understanding of the land use and trends in the synthesis phase of the planning process rather than an 

accurate determination of the changes and growth of the city. The inability to obtain accurate results is 

explained by the effects of past changes on the models. Moreover, the increase in the simulation period 

negatively affects the simulation. For instance, changes in land use and transportation systems are the 

two most important sub-systems that control the form of a city in the long-term. The transportation 
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network and land use mutually affect each other over time [87]. For instance, the construction of new 

roads or expansion of current roads directly affects the placement and density of settlements. 

Additionally, changes in land use affect the demands for travel and access. Thus, assuming that the 

transportation network is static or the inability to completely model the network creates a significant 

disadvantage for long-term urban growth simulations. In this respect, models have deficiencies with 

respect to temporal dynamics [28,32]. However, long-term simulations can serve as a guide for urban 

planning studies by providing predictions of possible future changes that may occur under current 

conditions and existing trends [32]. 

 

Figure 11. The distribution of artificial surfaces in absolute agricultural areas by year and 

the effects of urbanization. The figure shows that a continuous increase in the artificial 

surfaces has occurred in absolute agricultural areas. These new artificial surfaces may 

cause even more destruction of absolute agricultural areas. 
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Although both methods have sufficient and acceptable accuracies in the study area, the purpose of the 

study is to determine the method that provides the highest accuracy by comparing the two methods. 

Then, future conditions are simulated using the best method. Based on this assessment, the MLP-MC 

model provided better results than CA-MC. In other words, the MLP-MC simulation better characterizes 

the urban growth in Atakum. Because the success of the method can change depending on the study area 

and data, using more than one method in modeling studies, comparing the methods, and running the 

simulation using the model that provides the best results for the study area produce accurate results. 

In addition to the model, the data resolution has a large effect on the simulation results. When the 

simulation accuracies obtained are assessed with respect to the literature surveys and the resolution of 

the satellite images used in the analyses, the accuracy can be considered sufficient, but more accurate 

LU/LC data will increase the success of a simulation. The use of Landsat images, which are of 

moderate resolution, had a negative effect on the classification due to the mixed pixel problem. 

However, Landsat images are still preferred for many studies that involve temporal changes and large areas 

because the images are freely available via the Internet and are available over a long period. Nevertheless, 

considering the complex features and heterogeneous patterns of urban areas, using high-resolution satellite 

images can enhance the accuracy of a simulation. The other factor that negatively affects the performance 

of the study is the lack of demographic, economic, social and climatic variables in the study. Thus, studies 

that include these variables will generate better urban growth simulations. 

The assessment of the MLP-MC performance for 2013 shows that the simulations for 2025 are 

sufficiently accurate. The simulation results for 2025 provide significant predictions for the future of 

Atakum. The 2025 simulation was superimposed on the 2013 LU/LC layer, and urban growth areas 

predicted for 2013–2025 were extracted, thereby determining which areas will be transformed for 

urban use (Figure 10). The result of this operation predicted that approximately 511.7 ha of agricultural 

areas, 4.4 ha of forests and semi-natural areas and 76.3 ha of open spaces with little or no vegetation 

will be converted for urban use. Based on the changes that occurred in 1989–2000 and 2000–2013 and 

on the changes predicted from the 2025 simulation results, the transformation to urban use mostly 

involves agricultural land. A large portion of the land in Atakum is extremely favorable for agriculture, 

and intense agricultural activities were present on these lands until the 1980s. Since the 1980s, 

agricultural land has been continuously lost. In fact, the transformation of agricultural land to urban 

use is a significant problem associated with urbanization in developing countries. Because the areas 

favorable for agriculture are also suitable for urban growth, the demands for agriculture and settlement 

are competitive [88]. The natural population increase, the density of the population due to immigrants 

and the demands for secondary houses/summer houses in the district has produced rapid city growth. 

However, because of the fertility of the land, all of the areas except forests are used for agriculture. 

Thus, insufficient free land is available to meet the urban growth demands. Even if the conversion of 

agricultural land to urban use seems obligatory, this growth is clearly far from environmentally 

conscious and is devoid of a search for an optimal solution. Although agricultural activities are active 

on much of the land, the area along the coast west of Ondokuz Mayis University is very fertile and is 

used as absolute agricultural lands. Although these absolute agricultural lands are expected to be 

preserved, they are rapidly being zoned for construction. The high slopes to the south of the district 

have a negative effect on urbanization, and the coastal plains are very attractive for settlement.  

Thus, many structures were illegally built in these areas until the 1990s, and a mixed pattern of 
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lodging-agriculture formed. Agricultural lands, which became mixed with urban areas over time, were 

released for construction due to political pressure, administrative mistakes and the lack of awareness at 

both the public and management levels with regard to the importance and protection of natural resources. 

The use of these areas for non-agricultural purposes has merely been legalized and tolerated. The LU/LC 

layers for 1989, 2000, and 2013 and the 2025 simulation layer were overlaid with the absolute agricultural 

area boundary. The results show that, of the total 999.6 ha of absolute agricultural land, 170.5 ha in 1989, 

272.3 ha in 2000, and 397.8 ha in 2013 were classified as urban. These values are predicted to reach 571 ha 

in 2025. According to this, 173.2 ha absolute agricultural land is at risk. Figure 11 shows the urbanization 

activities that have occurred since 1989 in absolute agricultural land areas in the region. 

 

Figure 12. The changes in Cobanli Forest by year as a result of urbanization. The figure 

shows the gradual forest destruction caused by urbanization. 

Similarly, forests are gradually being destroyed as a result of urbanization. A remarkable example 

of this process is shown in Figure 12. Cobanli Forest, which was 23.4 ha in 1989, had decreased to 

20.6 ha in 2000 and to 18.6 ha in 2013. Additionally, the 2025 simulation results predict that this value 

will decrease to 11.7 ha. The forest’s proximity to the current urban area and its transportation access 

allowed the area to be destroyed. The urbanization process in Atakum is rapidly consuming natural 
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resources and damaging the environment. Although the total surface area of forests in Atakum appears 

to be stable, afforestation is occurring in particular locations, while deforestation is occurring in other 

areas. Although afforestation appears to compensate for deforestation, the consumption of resources 

will create irreversible damage. When urbanization is addressed as a whole and when all of the 

findings are assessed, it can be concluded that all agricultural land will be transformed to urban use in 

the future, and the mixed pattern of city-agriculture may completely change. If the areas available for 

urbanization are restricted, then significant increases in the prices of land and buildings may occur [32]. 

Thus, the urbanization process is a part of the cycle that consumes natural resources, and it should be 

reviewed by the city planners and managers. Various centers of attraction should be formed to allow for the 

expansion of the city in areas that are less favorable for agriculture. In other words, expansion should be 

encouraged to the south to ensure the protection of the current absolute agricultural land and forestland. 

6. Conclusions 

Around the world, particularly in developing countries, urban growth is associated with particular 

problems that result in uncontrolled changes. For this reason, determining the current spatial use and 

urban growth dynamics of cities is among the most important analysis issue in modern urban research. 

Atakum has experienced rapid urbanization in recent years. As a result of this rapid urbanization, 

Atakum is faced with the problem of the destruction of natural resources. This study focused on the 

accurate determination of the future urban growth potential of Atakum and the natural areas that are at 

risk due to urbanization. Thus, in this study, GIS, remote sensing data and simulation models were 

combined to understand the dynamics of changes in the urban patterns of Atakum and the urban 

growth trends that may be encountered through 2025. For this purpose, the urban pattern was 

examined by using Landsat TM/ETM+/OLI satellite images from 1989, 2000 and 2013 and urban 

growth simulations were realized using CA-MC and MLP-MC models. The accuracies of the 

simulation models were assessed for 2013 in the study area, and the 2025 scenario was simulated with 

the MLP-MC model, which provided superior results. This simulation provides insight into the amount 

and location of possible changes and spatially and quantitatively identified the risks of urban sprawl. 

According to simulation results, an increase in the area of artificial surfaces from 1681.9 ha to  

2274.3 ha and the destruction of 511.7 ha of agricultural land (173.2 ha of which was absolute 

agricultural land) and 4.4 ha of forest between 2013 and 2025 was estimated. The results of this study 

will be considered by city planners, managers and all organizations involved in the decision-making 

process regarding land use and the creation of prospective land use policies for environmental 

sustainability, protection of natural resources and preparation of city plans. 

This study shows that simulation approaches integrated with remote sensing data and a GIS 

environment can be effectively used to predict future changes in LU/LC and to analyze the direction, 

rate and spatial distribution of possible changes. In this study, multiple simulation approaches were 

used to realize the urban simulation more accurately. Comparison of two different methods enabled the 

realization of simulation using the better performing method. However, the moderate resolution of the 

Landsat data negatively affected the accuracy of the LU/LC and the simulation results. To obtain 

improved results regarding spatio-temporal dynamics, the data quality should be increased and new 

simulation approaches should be developed. 
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