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Abstract: Spatially explicit precipitation data is often responsible for the prediction 

accuracy of hydrological and ecological models. Several statistical downscaling approaches 

have been developed to map precipitation at a high spatial resolution, which are mainly based 

on the valid conjugations between satellite-driven precipitation data and geospatial 

predictors. Performance of the existing approaches should be first evaluated before applying 

them to larger spatial extents with a complex terrain across different climate zones. In this 

paper, we investigate the statistical downscaling algorithms to derive the high spatial 

resolution maps of precipitation over continental China using satellite datasets, including the 

Normalized Distribution Vegetation Index (NDVI) from the Moderate Resolution Imaging 
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Spectroradiometer (MODIS), the Global Digital Elevation Model (GDEM) from the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and the 

rainfall product from the Tropical Rainfall Monitoring Mission (TRMM). We compare three 

statistical techniques (multiple linear regression, exponential regression, and Random Forest 

regression trees) for modeling precipitation to better understand how the selected model 

types affect the prediction accuracy. Then, those models are implemented to downscale the 

original TRMM product (3B43; 0.25° resolution) onto the finer grids (1 × 1 km2) of 

precipitation. Finally we validate the downscaled annual precipitation (a wet year 2001 and 

a dry year 2010) against the ground rainfall observations from 596 rain gauge stations over 

continental China. The result indicates that the downscaling algorithm based on the Random 

Forest regression outperforms, when compared to the linear regression and the exponential 

regression. It also shows that the addition of the residual terms does not significantly improve 

the accuracy of results for the RF model. The analysis of the variable importance reveals the 

NDVI related predictors, latitude, and longitude, elevation are key elements for statistical 

downscaling, and their weights vary across different climate zones. In particular, the NDVI, 

which is generally considered as a powerful geospatial predictor for precipitation, correlates 

weakly with precipitation in humid regions. 

Keywords: TRMM 3B43; NDVI; spatial downscaling; precipitation 

 

1. Introduction 

Precipitation is a vital element of water cycle in the Earth System, which is closely related to 

ecological, hydrological, and meteorological processes [1,2]. Its spatial and temporal variations 

generally influence vegetation distribution, soil moisture and surface runoff [3,4]. Thus, high-quality of 

precipitation dataset is needed for the development of ecological and hydrological models at 

corresponding scales. 

Precipitation dataset used in recent ecological and hydrological researches is mainly derived from 

three sources: (a) outputs from various numerical climate/weather models; (b) rain gauge observations; 

and (c) estimates from space-based observing systems [5–7]. For example, the Global Climate Models 

(GCMs) can simulate the changes of precipitation at large scales [5]; the Regional Climate Models 

(RCMs) can be used to predict the distribution of precipitation at a regional scale [8]. Neither the GCMs 

nor the RCMs, however, can provide precipitation fields with higher spatial resolutions reflecting the 

spatio-temporal variations at small scales [9]. Since the numerical weather models normally function at 

a coarse spatial resolution, scientists alternatively use in situ rain gauge (spatially sparse) or satellite-based 

observations to build the precipitation dataset. With the help of spatial analysis technique, precipitation 

data from rain gauge stations can be interpolated and extrapolated over the regions with no data 

samplings. Daly [10] has established a statistical regression model known as the Parameter elevation 

Regressions on Independent Slopes Model (PRISM) to simulate the distribution of precipitation over the 

Olympic Peninsula, in the northwest corner of Washington State, USA. The DAYMET model uses daily 

weather observations (1980–1997) to produce climate grids of annual total precipitation and other 
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climatic variables over the continental US [11]. Still, these rain gauge-based methods are accurate only 

within the area where rain gauge stations are spatially, densely installed [12,13]. Furthermore, weather 

radars offer an enormous potential to improve the quality of rainfall at high resolution. The wider spatial 

coverage of weather radars compared to that of a dense network of rain-gauges is an obvious advantage. 

However, despite the progress in technology and methodology over past decades, radar data are still not 

used as broadly and efficiently as they should be [14,15]. 

To acquire adequate and reliable spatial representations of precipitation over a broad area, scientists 

begin to explore novel approaches implementing the recent remote sensing precipitation products [9,14–19]. 

The National Aeronautics and Space Administration (NASA) and the Japanese space agency (JAXA) 

launched the Tropical Rainfall Measuring Mission (TRMM) in 1997, which is one of the highest 

resolution products among all the current satellite precipitation datasets. TRMM has been extensively 

used for inter-disciplined investigations and applications, such as land surface modeling [17,20], climatic 

prediction [21], and hydrological simulation [22]. Nevertheless, the large pixel size (i.e., 0.25°) of the 

TRMM precipitation data is too coarse for many regional and continental models, which generally need 

higher resolution inputs [23]. The above precipitation products, thus, need to be, first, downscaled to 

meet the requirement of being in a high spatial resolution. 

Statistical downscaling is a recently-developed approach in obtaining high spatial resolution of 

variables, based on conjugations between the variable at a coarse scale and geospatial predictors at a 

finer resolution [24,25]. This technique has been widely used for downscaling variables, such as land 

surface temperature [26,27], river flow [28], soil moisture [29,30], and vegetation fraction cover [31]. 

Specifically, studies of downscaling TRMM precipitation data have been conducted on at a regional 

scale in arid and humid regions. Fang et al. [32] assumed that the spatial variability of precipitation could 

be well explained by local topography and prestorm meteorological factors, and developed a statistical 

spatial downscaling scheme to disaggregate the TRMM 3B42 products into a 1 km gridded rainfall field 

in a mountainous area. An exponential statistical regression model between the Normalized Differential 

Vegetation Index (NDVI) and precipitation is useful to downscale precipitation from the TRMM 

monthly product in the Iberian Peninsula [33]. Based on this downscaling method, Jia et al. [34] have 

developed a statistical regression model by introducing NDVI and elevation, which are seen as the main 

factors affecting precipitation, and have improved the resolution of the TRMM precipitation from 0.25° 

to 1 km in the Qaidam Basin. Similar to the examples above, two previous examples of downscaling 

research, Duan and Bastiaanssen [24] used an integrated downscaling-calibration procedure of the 

TRMM 3B43 product with the limited rain gauge data sets to map monthly precipitation data at a higher 

spatial resolution (1 km) in humid and semi-arid regions. 

Those previous approaches in recent literature can effectively downscale precipitation data at a local 

scale, but we need to explore the applicability of the existing algorithms for a larger spatial extent with 

complex terrain and different climate zones. Lovejoy et al.’s [35,36] suggested global scaling of TRMM 

satellite radar data is quite remarkable, and extends from kilometers to the size of the Earth. Kang et al. [37] 

analyzed Next Generation Weather Radar rainfall data and found that rainfall fluctuations at spatial 

scales smaller than a reference scale exhibit self-similarity and that at scales larger than the reference 

scale, rainfall fluctuations are scale dependent. A coupled stochastic space-time intermittent random 

cascade model was then proposed to downscale summer daily rainfall for the Central United States from 

a scale of 256 km to a scale of 2 km. Chen et al. [38] assumed that the rainfall-geospatial factors 
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relationship varies spatially but is similar in a region and constructed geographically weighted regression 

model for rainfall downscaling in North China. In addition, it is worth testing the validity of the 

suggested geospatial predictors (e.g., NDVI and elevation) because of certain contradictions in the 

literature: for instance, one analysis shows there is no clear relationship between precipitation and 

elevation in the Pangani Basin in Tanzania [39], while another finds a clear relationship between them 

in the Qaidam Basin in China [34]. Moreover, a number of geospatial predictors are still not explicitly 

examined in current research, and such predictors include geo-locations and topography (slope and 

aspect) that are associated with solar radiation and moisture conditions, in turn, granting significant 

impacts on precipitation [40–42]. The analysis of the importance of predictors would be useful to 

investigate the potential of geospatial predictors with regard to downscaling precipitation over complex 

terrain and climate zones. 

The Random Forest (RF) approach is an ensemble, purely statistically-based modeling, which 

constructs numerous small regression trees that vote on predictions using the random samplings of data 

and model layers [43]. Amongst many non-parametric regression approaches, RF is receiving 

a considerable attention of ecological and other applications [44–46]. This is because: (1) the robustness 

of RF may avoid over-fitting; (2) many different types of input variables can be implemented without 

variable deletion and regularization; and (3) it has tremendous analytical and operational flexibility. 

Thus, RF would be useful to build regression models for precipitation in relation to a number of  

geospatial predictors across different spatial scales, and to downscale the original TRMM 3B43 data  

to 1 km resolution. 

In this study, our main goal is to investigate several downscaling approaches generating annual 

precipitation with a high spatial resolution over a variety of arid-humid regions in China Mainland. In 

this ultimate goal, three sub-objectives are: (1) to compare three statistical techniques (multiple linear 

regression, exponential regression, and RF regression trees) of modeling precipitation for better 

understanding how the model selection affects the performance of downscaling; (2) to explore the 

importance of input geospatial predictors in the regression models across different climatic zones; and 

(3) to generate the annual precipitation map of China mainland at a 1 km resolution, based on the  

best-performed downscaling approach. We fill the gap between the observation and estimates, and 

validate the final results with an independent precipitation dataset from 596 meteorological stations in 

China mainland. This research, in particular, demonstrates a unique application of machine learning 

technique (i.e., RF) to downscale the coarse TRMM 3B43 product, and, in turn, to provide a contextual 

framework for interpreting the fine spatial distribution of precipitation at a sub-continental scale. This 

study can have practical implications, particularly for biological researchers who require annual 

precipitation estimates at finer resolution as an input of tree height or biomass models over complex 

terrain, where they are characterized by the sparseness of in situ networks for precipitation measurement. 

2. Study Area 

China is located in the eastern part of Asia, on the west coast of the Pacific Ocean. It extends from 

73°40ʹE to 135°2ʹE and from 3°52ʹN to 53°33ʹN. Mainland China (except the island of Taiwan, Hainan 

Island, and other small islands) encompasses complex terrain and a distinct temperate monsoon climate: 

areas of mountains, hills, and plateaus take up the two thirds of the entire mainland (Figure 1); 
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the direction of the seasonal wind changes significantly within a year. These geographical and climatic 

traits lead to a strong spatial pattern of precipitation and, thus, form arid and humid conditions [47]. The 

arid areas (annual precipitation less than 200 mm/yr), semi-arid areas (annual precipitation between 

approximately 200 and 400 mm/yr), semi-humid areas (annual precipitation between approximately 400 

and 800 mm/yr), and humid areas (annual precipitation between than approximately 800 and 2000 mm/yr) 

are distributed from the northwest inner part of the land to the southeast coast. Similar to this pattern, 

vegetation coverage in the continental area of China reflects the distribution of annual precipitation. 

Combined with other evidence [48,49], it naturally indicates the strong positive correlations between 

precipitation and topography/vegetation cover. This assumption consists of the fundamental of the 

algorithm for downscaling spatial precipitation. It should be noted that the region greater than latitude 

50°N is not included in our study due to the fact that TRMM does not cover this area of China. 

 

Figure 1. Elevation over Mainland China and location of 596 meteorological stations. 

3. Dataset and Methodology 

3.1. Dataset 

3.1.1. Tropical Rainfall Measuring Mission 

NASA and JAXA launched a joint project called the Tropical Rainfall Measuring Mission (TRMM) 

on 27 November 1997. TRMM aims to measure the intensity and area coverage of rainfall around the 

tropical and semi-tropical area where two thirds of the world’s rainfall happens [50,51]. TRMM can provide 

accurate precipitation data between latitude 50°N and latitude 50°S at the resolution of 0.25° × 0.25° (approx. 

28 km × 28 km), which is high compared to other satellite-based products. There are two TRMM 

precipitation products commonly used, namely TRMM 3B42 and TRMM 3B43 datasets. TRMM 3B42 

provides three-hour averaged precipitation values. It is converted into monthly TRMM 3B43 

precipitation data, which was used in this study. We aggregated the TRMM 3B43 monthly product of 

Mainland China (12 months) into annual total precipitation of 2001 or 2010 at a spatial resolution of 

0.25° (Figure A1). The equation deriving annual total precipitation is as follows (Equation (1)):  
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where PTRMM, i is the i-th annual precipitation of Mainland China from 2001 or 2010, PTRMM_monthly, j is 

the monthly TRMM 3B43 precipitation product for j-th month (m = 12). The TRMM 3B43 dataset used 

in this study was provided by the International Scientific and Technical Data Mirror Site, Computer 

Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn). The annual total 

precipitation in China from 2001 to 2010 is illustrated below (Figure A1). We compared the scatterplots 

between annual rain gauge precipitation from rain gauge stations and the products from original annual 

TRMM 3B43 precipitation for 2001 and 2010 over Mainland China. We found original TRMM 

precipitation is in agreement with measured rain gauge data (R2 = 0.92, RMSE = 176 mm,  

MAE = 108 mm, Bias = 0.05 for the year 2001, and R2 = 0.94, RMSE = 157 mm, MAE = 52 mm,  

Bias = 0.06 for the year 2010). 

3.1.2. Normalized Difference Vegetation Index 

Based on differences in pigment absorption features in the red (~0.660 µm) and near-infrared  

(~0.860 µm) band, Rous et al. (1974) proposed an vegetation index, called Normalized Distribution 

Vegetation Index (NDVI) [52] (Equation (2)). 

Re

Re

NIR d

NIR d

NDVI
 

 





 (2) 

NDVI can be effective in responding to changes in the amount of green biomass, chlorophyll content, 

and canopy water stress, and have been widely used in various applications since it was proposed. 

Several investigations have indicated that there exists a strong positive correlation between precipitation 

and NDVI [53–55]. In this study we chose the MODIS NDVI products as a geospatial predictor for the 

downscaling of TRMM precipitation. The characters of the MODIS NDVI products, MOD13A3, are 

listed in the Table 1. We aggregated the MODIS monthly products, MOD13A3 (12 months), into the 

annual average NDVI of Mainland China for 2001 and 2010 at a spatial resolution of 250 m. We also 

generated the annual maximum, minimum, and range NDVI (maximum NDVI minus minimum NDVI) of 

Mainland China. Then, we resampled those products at a spatial resolution of 1 km by applying the nearest 

neighbor resize method. The equation deriving the annual average NDVI is as follows (Equation (3)): 
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NDVI

n
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 (3) 

where NDVIavg.,i is the i-th annual average NDVI of Mainland China for 2001 to 2010, NDVImonthly, j is 

the monthly maximum NDVI product for j-th month (n = 12). We analyzed the NDVI trends during the 

research period and found the NDVI trends for all growing seasons increased moderately, except for 

NDVI values during the period of research years. This is consistent with the research conducted by  

Li et al. [56]. The MOD13A3 dataset used in this study is provided by the International Scientific  

and Technical Data Mirror Site, Computer Network Information Center, Chinese Academy of  

Sciences (http://globalchange.nsdc.cn). 
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3.1.3. ASTER Global Digital Elevation Model 

ASTER GDEM was released by the Ministry of Economy, Trade, and Industry (METI) of Japan and 

the United States National Aeronautics and Space Administration (NASA). ASTER GDEM covers land 

surface between latitude 83°N and 83°S of the Earth, which includes the entire area of Mainland China. 

GDEM version 2, with a resolution of one arc-second (roughly 30 m), was used in this study to analyze 

the influence of topography on precipitation (Figure 1). In addition to the elevation data, two terrain 

attributions, slope and aspect, were derived from ASTER GDEM. The ASTER GDEM data was 

downloaded from the website, http://gdem.ersdac.jspacesystems.or.jp/. 

3.1.4. Rain Gauge Data 

Monthly total precipitation datasets for 2001 and 2010 were used in this study to independently 

validate the final downscaled precipitation product. Those data were downloaded from the website, 

http://cdc.cma.gov.cn. The precipitation values have been measured from 596 rain gauges of the national 

weather stations of Mainland China, which are distributed in a relatively sparse network. Most of the 

meteorological stations are mainly located in Eastern China, and few cover Western and Northwestern 

China (Figure 1). Those monthly data were used to calculate the annual total precipitation of China over 

ten years. Our analysis indicates that the annual total precipitation for the period of 2001 and 2010 varied 

from 0 to 2672 mm/yr. Table 1 lists datasets that were used in this study to build the statistical regression 

models and to downscale the precipitation. 

Table 1. Variables used in this study to construct the statistical regression models and to 

downscale the TRMM 3B43 precipitation product. 

Variables Dataset Year Resolution 

Precipitation (mm) TRMM3B43 2001, 2010 Monthly, 0.25° 

NDVI MOD13A3 2001, 2010 Monthly, 1000 m 

Max_NDVI MOD13A3 2001, 2010 Annual, 1000 m 

Min_NDVI MOD13A3 2001, 2010 Annual, 1000 m 

Range_NDVI MOD13A3 2001, 2010 Annual, 1000 m 

Elevation (m) GDEM 2010 -, 30 m 

Slope GDEM 2010 -, 30 m 

Aspect GDEM 2010 -, 30 m 

Latitude - - -, - 

Longitude - - -, - 

3.2. Methodology 

Statistical downscaling methods recently developed at regional scales were employed to downscale 

the TRMM dataset of Mainland China. The algorithms have successfully predicted variables at finer 

scales mainly based on the relationships between variables (such as land surface temperature and 

precipitation) and geospatial predictors (such as NDVI and elevation) [24,26,34]. Commonly used 

regression models are the multiple linear and exponential models. The two models have generally 

performed well, using several combinations of different predictors at a regional scale in humid and arid 
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areas. In addition to the above two regression models, RF may be also useful to construct the 

relationships between precipitation and geospatial predictors. In this study, we compared these three 

statistical techniques for modeling precipitation, and examined how the model selection affects the 

prediction accuracy (Figures A2–A4). Pre-processing has been used to model precipitation. The 

predictors have been centered and scaled, and transformed to a smaller sub-space with principal 

component analysis (PCA), where the new predictors are uncorrelated with one another. PCA 

transforming, centering and scaling of predictors were performed using in-house routines developed for 

R statistical software [57,58] and its caret package [59]. Finally, the pre-processing progress changes the 

column names to PC1, PC2, etc. 

Similar to the processes proposed by Immerzeel [33] and by Jia et al. [34], we designed the 

aggregation procedure in which several pre-processing steps also had to be carried out, as explained in 

the following section (Figure 2). 

 

Figure 2. Flow chart of the downscaling algorithm used in the study. 

(1) Pre-processing of the DEM and NDVI related datasets 

Elevation, slope, and aspect at the 30 m resolution were extracted from the DEM of Mainland China 

and resized into a 1 km resolution by applying the pixel averaging technique. NDVI and NDVI related 

variables also are resized to a 1 km resolution by applying pixel averaging. Additionally, we extracted 

the annual average NDVI, annual maximum NDVI, annual minimum NDVI, and annual range of NDVI, 

TRMM 3B43-derived annual precipitation, elevation, slope, aspect, and latitude and longitude at 0.25° 

resolution by pixel averaging, respectively. 
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Regression modeling and prediction 

Three statistical regression models (multiple linear, exponential, and RF) were then respectively 

constructed and tested at 0.25° scales. Here, independent predictors of the three models were annual 

average NDVI, annual maximum NDVI, annual minimum NDVI, annual range of NDVI, elevation, 

slope, aspect, latitude, and longitude. We then predicted the annual precipitation fields at a 1 km 

resolution by implementing the optimal coefficients of three statistical models to the geospatial 

predictors at a 1 km resolution (Pprt.). 

(2) Generating final precipitation estimates 

Part of the precipitation variability cannot be explained by the regression models. Those parts were 

generated by computing the difference between the predicted values at the 0.25° scale and the original 

TRMM 3B43, and then spatially interpolated into the residual (Pres.) maps at a 1 km resolution using a 

simple spline tense technique. Because of that, the residual data are regular-spaced and the spline 

technology is usually used for this type of data [33], and the initial testing analysis shown that this kind 

interpolator performed better than other interpolators. The final precipitation estimates (P) of Mainland 

China at a 1 km resolution was obtained by adding the residual terms to the predicted terms (Equation (4)). 

. .prt resP P P   (4) 

It should be noted that we excluded the precipitation values over water bodies and urban areas in the 

downscaling processes, because the three regression models generally produced no significant 

relationships between precipitation and geospatial predictors over water bodies and urban areas. 

The gaps between final precipitation estimates (P) and measured precipitation at each rain gauge were 

filled by calculating the difference between them. The difference was summarized as follows [24,25,60,61]: 

stationerror P P   (5) 

3.2.1. Linear Regression Model 

Jia et al. [34] investigated valid relationships of precipitation with NDVI and elevation in a semi-arid area 

of Qilian Mountain, China, in the process of downscaling the TRMM 3B43 product. Similar to their work, 

we constructed multiple linear regression models at different scales and applied them to the downscaling 

process over the continental area of China. The regression linear model is written as follows (Equation (6)): 

1 1 2 2 n ny a x a x a x    (6) 

where a1, a2, …, an are the linear regression coefficients. 

3.2.2. Exponential Regression Model 

Immerzeel [33] shows a strong coefficient of the correlation between NDVI and TRMM precipitation 

in Iberian Peninsula. Based on the Immerzeel’s method, we built an exponential regression model to 

downscale the TRMM 3B43 data of Mainland China (Equation (7)). 
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bxy a e c   (7) 

where a, b, c are the fitting coefficients of the regression model. 

3.2.3. Random Forest Model 

We employed RF to downscale the TRMM 3B43 precipitation at six different scales using geospatial 

predictors, including DEM, NDVI related variables, latitude, longitude, aspect, and slope at a  

1 km resolution. 

Random Forest (RF) is developed by Breiman [43], based on the classification and regression trees 

(CART) algorithm. For regression in CART, vector Y represents the response values for each 

observation in variable matrix X [19]. The matrix X and vector Y can be split into different subsets to 

regress a tree with a certain number of nodes. In each of the terminal nodes of the tree, a simple and 

accurate model is built to explain the relationship of X and Y. If the regression tree is built with sampled 

data, the tree then is able to predict another Y. 

Splitting in regression trees is made in accordance with squared residuals minimization algorithm, 

which implies that expected sum variances for two resulting nodes should be minimized [19]  

(Equation (8)). 

   
a

 
rg in

,

m

1, ,R l l r r

j j

PVar Y PVar Y
x x j M

    
 (8) 

where Pl , Pr  are probabilities of left and right nodes; Var(Yl) , Var(Yr)  are response vectors for 

corresponding left and right child nodes; xj ≤ xj
R, j = 1, … , M is optimal splitting satisfying the condition. 

Averaging estimates is one way to reduce the variance of an estimate [62] (Equation (9)). 

 
1

1
  ( )

M

m

m

f x f x
M

  (9) 

where fm is the mth tree. This is called bagging [43], which stands for the procedure of bootstrap aggregating. 

However, simply re-running the same learning algorithm on different subsets of the data can result in 

highly correlated predictors. This may limit the amount of variance reduction that is possible. Thus, 

Breiman [43] proposed a new technique called Random Forest (RF) to decorrelate the base predictors 

by learning trees on a randomly chosen subset of input variables. 

The RF regression algorithm performs as follows [63]: firstly, ntree bootstrap samples Xi (i is 

bootstrap iteration) were randomly draw with replacement from the training dataset. The elements not 

included in Xi are referred to as out-of-bag data (OOB) for that bootstrap sample; then, for each bootstrap 

sample, an un-pruned regression tree was grown with the modification that at each node, mtry of the 

predictors, were randomly sampled and the best split from among those variables chosen.  

Finally, new data (out-of-bag elements) were predicted by averaging predictions of the ntree trees. The 

out-of-bag (OOB) samples in the training data were used to estimate prediction error, in which, the OOB 

samples were predicted by the respective trees and by aggregating the predictions. The out-of-bag (OOB) 

estimate of the error rate (ERROOB), were calculated as [64]: 
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where 𝑓̂𝑜𝑜𝑏(𝑥𝑖) is the out-of-bag prediction observation i. 

The orderings of the variable importance is an important issue in problems selecting variable by 

interpretation issues. The RF algorithm can also provide a measurement of variable importance by 

looking at how much the prediction error increases when left-out OOB data for that specific predictor 

variable is permuted while keeping the values of other predictors unchanged. These variable importance 

values are then used to rank orderings of those independent variables in term of their contributions to 

the regression model. 

Here we used the R package of RF to model precipitation with geospatial predictors [58]. Since 

precipitation is the continuous value, the RF regression tree approach was implemented in the study. We 

established “RF models” with the original TRMM 3B43 and other predictor data at six different scales 

in order to choose the best-performed RF model. In each RF model construction, the tree number of each 

“RF forest” was set as 500, and we conducted an iterative sampling process where each observation in 

the input dataset has an equal chance to be selected. A total of six geospatial predictors (NDVI, elevation, 

slope, aspect, latitude, and longitude) were used to grow “RF trees”. 

In this study, the RF regression models were developed for both sub-regions and the entire study area. 

Annual precipitation at a 1 km resolution for the period 2001–2010, for the entire study area, was 

obtained by implementing the nation-wide RF model. On the other hand, we divided the whole study 

area into four zones: arid, semi-arid, semi-humid, and humid zones, depending on annual precipitation 

in the past regionalization studies of Mainland China [65,66]. The reasons for developing the sub-regional 

regression models were two-fold. First was to eliminate, as far as possible, the uncertainty caused by the 

nation-wide RF model when applied to each sub-region. The second reason was to analyze the 

importance of input predictor variables in the downscaling procedures across different regions. 

3.3. Validation 

Evaluations of the models and downscaling algorithms were divided into two parts: (a) the two-fold 

cross validation approach was implemented to investigate the performance of the three statistical models, 

respectively, and (b) the final downscaled precipitation products were validated by an independent 

precipitation dataset. The dataset provides the monthly precipitation measures from 596 meteorological 

stations over Mainland China in the period 2001–2010. 

3.3.1. Two-Fold cross Validation 

In the two-fold cross validation, we randomly divided the original input data into two sample sets at 

different scales. The first half data was used to train the models at each scale, while exploring the stability 

of model performances using the independent test sets (the second half data). For the purpose of model 

evaluations, we used the R2 and RMSE. The R2 between the modeled and TRMM estimates and RMSE 

at six different scales were calculated using Equations (11) and (12). 
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where Oi is the TRMM precipitation and Pi is the modeled precipitation of the i-th pixel, n is the total 

number of the TRMM precipitation pixel at each scale, and are the value of the TRMM precipitation and 

the modeled precipitation, respectively. 

3.3.2. Validation with Ground Observations 

The two-fold cross validation was only used to select the best-performed model at a certain scale to 

downscale the TRMM 3B43 precipitation. The accuracy of the final downscaled products should be 

further validated against the in situ measurements from the rain gauge stations, based on the R2, RMSE, 

mean absolute error (MAE), and bias. Here, we assume that the ground-measured precipitation could 

well represent the regional precipitation at a scale of 1 km. The MAE and bias were defined as follows 

(Equations (13) and (14)): 
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where Oi indicates the observed annual precipitation from the i-th rain gauge stations and Pi is the 

downscaled annual precipitation extracted at the location of the ith meteorological stations, n is the total 

number of the meteorological stations (n = 596), and are the value of the observed and the downscaled 

precipitation, respectively. Several studies [2,3] demonstrated that the R2 value is not enough to evaluate 

the prediction accuracy. Thus, in this study, we gave more weight to the MAE and bias in the evaluations. 

4. Results and Validation 

Figure 3 demonstrates the scatter diagrams for the annual precipitation derived from TRMM 3B43 

and the predicted precipitation with the multiple linear, exponential, and RF models at 0.25° scale for 

2001 and 2010. All the models qualified the significance test (all the p values < 0.007 and all the  

R2 > 0.66). However, for the linear model the underestimations were found where the TRMM 

precipitation was over 1200 mm/year in 2001 and 2010. For the remaining two models, the 

underestimations were also observed where the TRMM precipitation was over 2000 mm/yr in 2001 and 

2010. All the models seem to dampen potential extremes; a possible reason is that the predictors used in 

the models, such as NDVI, elevation, are not so sensitive to the extreme rainfall. Extreme rainfall 

normally occurs in humid area; in this case, the NDVI value will not greatly change with increasing 

amounts of precipitation as vegetation can only absorb a certain amount of rain water. As shown in 
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Figure 3, the RF model performed best in terms of the R2, RMSE, and MAE in 2001 and 2010, when 

compared to the two previous models. 

 

 

Figure 3. Scatter plots of the agreements between the annual precipitations of China 

mainland for the year of 2001 and 2010 derived from the TRMM 3B43 and (a) the multiple 

linear regression model, (b) exponential regression model, and (c) random Forest model at 

spatial resolutions of 0.25°, respectively. 

The residual of the regression model was generated by subtracting the predictive value from the original 

TRMM 3B43, which represented the amount of precipitation that could not be explained by the regression 

model. The performance of the regress models, thus, would impact on the residual value. We calculated 

the relative weight of the predicted and residual rainfall fields in terms of the following equation: 
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The results for the three techniques are listed in the following table (Table 2). Table 2 implies the 

predicted rainfall derived with the RF method is very close to the final results. The addition of the 

residual term seems not to greatly improve the prediction accuracy of the results of the RF downscaling 

approach for the RF method. However, substantial residuals are found for the linear and exponential 

models, the ignorance of those residual values would finally reduce the accuracy of downscaling. 
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Table 2. The relative weight of the predicted and residual annual rainfall fields for the 

three techniques for the year of 2001 and 2010 over Mainland China. 

  Linear Regression Exponential Regression RF Regression 

2001 
RW_prd. 2.16 3.44 1.14 

RW_res. −1.17 −2.44 −0.14 

2010 
RW_prd. 2.14 2.01 1.07 

RW_res. −1.14 −1.01 −0.07 

The three models’ coefficients were then employed to produce annual precipitation of Mainland 

China at a 1 km resolution. Here, we also produced the residual map at a 1 km resolution by interpolating 

residuals using a simple spline tension interpolator, which is the difference between the original TRMM 

3B43 and the predicted precipitation at the resolution of 0.25°. The final downscaled product was 

obtained by combining the predicted values of annual precipitation and the residuals of precipitation at 

a 1 km resolution (Figure 4). From the final map of downscaled precipitation derived from the three 

models, we noticed that the distribution of annual precipitation for the period of 2001 and 2010 over 

Mainland China reflects a strong gradient from the northwest to southeast. Figure 4 reveals that in the 

wet year and dry year, the exponential method generates more extremes of high precipitation in humid 

areas, with a significantly larger standard deviation. The probable explanation for this is that the 

exponential method is markedly more sensitive to predictors of high value in humid areas. The RF 

method produces the least extremes of high precipitation. Furthermore, the RF downscaling product 

shows a smoothed pattern and did not present heterogeneous patches when compared to the final 

products derived from the other two models. The likely explanation is that many more decision trees 

built in the RF algorithm minimize changes in gradients, giving rise to smoother transitions in surface 

values across the research area. 

 

Figure 4. Cont. 
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Figure 4. The final predicted annual precipitation of Mainland China at a 1 km resolution 

for the years of 2001 and 2010, using (a) the multiple linear; (b) exponential; (c) Random 

Forest and regression model, respectively. 

When the downscaled precipitation estimates were compared with the observed station precipitation, 

the R2 values are 0.74 in 2001 and 0.75 in 2010 for all the three methods. The efficacy of the three 

methods was finally validated using the ground observations, collected from 596 meteorological stations 

of Mainland China for the years of 2001 and 2010 (Figure 5). As seen from Figure 5, the RF downscaling 

approach slightly outperformed among the three regression models in this study in terms of the statistics 

of R2, RMSE, MAE, and bias. The results of all years from 2001 to 2010 are shown in Figure A5. 
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Figure 5. Scatter plot of the measured annual precipitation from 596 meteorology stations 

versus the predicted precipitation derived from (a) the multiple linear; (b) exponential; 

(c) Random Forest regression model, and (d) original TRMM 3B43 for the years of 2001 

and 2010 over Mainland China, respectively. 
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Figure 6. Importance of geospatial predictors for precipitation downscaling in (a) arid;  

(b) semi-arid; (c) semi-humid; and (d) humid regions for the years of 2001 and 2010, 

illustrated by the MDG of attributes as assigned by RF. 

The importance of input predictors for the RF model is illustrated in Figure 6. It shows that all nine 

geospatial predictors play corresponding roles across four climate zones over Mainland China.  

NDVI-related predictors, such as NDVI, Max_NDVI, and Min_NDVI, represents more importance in 

arid, semi-arid, and semi-humid areas than in humid areas. Two input predictors, latitude and longitude, 

make steady contributions to the model simulations unlike the other factors, including altitude, aspect, 

and slope in four climate zones. The topography-related predictors (altitude, aspect, and slope) were also 

significant factors for the precipitation downscaling in some areas. 

5. Discussion 

In this study, three statistical regression approaches were investigated to downscale the TRMM 3B43 

precipitation data, and to derive annual precipitation at a 1 km resolution over continental China. We 

compared the multiple linear, exponential, and RF regression models to better understand how the choice 

of model type affected the prediction accuracy. We found that (a) the RF regression outperformed, with 

better R2, RMSE, MAE, and bias values, when compared to the other two statistical regressions; (b) the 

RF downscaling can well predict annual precipitation of continental China at a 1 km resolution; and 

(c) NDVI-related variables, latitude and longitude, and elevation are key elements of downscaling 

method on estimation of annual precipitation from the analyses of variable importance. 

We compared the performance of three statistic models in the process of downscaling TRMM 3B43 

precipitation and found that RF regression achieved the best results in modeling annual total precipitation 

in a broad area. It was supported by cross validation of the three models. The RF regression model 
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consistently performed best (Figure 3) both for the wet year and dry year in term of R2 (0.97 for two years) 

and RMSE (94 mm for 2001, and 106 mm for 2010), when compared to the multiple linear regression 

model (R2 is 0.77 for 2001 and 0.70 for 2010, RMSE is 258 mm, 314 mm), and exponential regression 

model (R2 is 0.68 and 0.66, RMSE is 307 mm and 338 mm). Unlike previous studies [24,34,39], which 

only used one or two independent variables (NDVI and elevation), the three methods used nine different 

predictors in this study to establish the regression models. Those newly introduced predictors seem to 

be necessary for well-fitting regression models in a broad spatial extent since there are relatively weak 

empirical relationships between precipitation and the saturated NDVI in humid regions. Despite being 

the most accurate among three statistical models for predicting precipitation and it exhibited considerable 

improvement from fitting, there are still certain limitations in the RF algorithm. For example, other 

uncontrolled variables, such as hydrological conditions and human activities, might influence the 

distribution of NDVI and, hence, cause some errors in the final results; the processing of variables 

aggregation (e.g., NDVI, elevation, slope, aspect of the terrain) had not taken into account the 

uncertainties derived from resampling and re-projection of maps and data. In addition, other unknown 

predictor variables may also contribute to the efficacy of the RF model, thus further investigation would 

be needed to confirm which and how many factors are related to the total annual precipitation in 

Mainland China. 

From Figure 3, we can see that all the models seemingly perform better for the areas characterized by 

low amounts of rainfall. A possible reason may be that NDVI-related predictors are better indicators of 

precipitation in arid and semi-arid areas. The NDVI values would not increase with the increased rainfall 

amount in humid areas, which makes a relatively weak empirical relationship between precipitation and 

saturated NDVI. This could also be seen from the analysis of variable importance (Figure 6). However, 

substantial difference of the precipitation maps is found in some regions of Mainland China. The area 

with extreme precipitation predicted by the RF model is smaller than that predicted by multiple linear, 

and much smaller than that by the exponential model. The differences among these maps are possibly 

caused by the added residual terms, or by the performance of the models. Normally, the model’s 

performance in the validation period is the best indicator as to its ability to predict the future. If a 

regression model, such as the RF model, can make accurate predictions of precipitation (R2 > 0.97), the 

predicted values will be very close to the original TRMM precipitation, and the residual values will be 

small. The relative weights of the residuals will also become small (Table 2). Especially in South 

Mainland China, where a large amount of precipitation (annual precipitation greater than 1200 mm/yr) 

is received, the relative weight of the residual calculated from the RF model will be significantly smaller 

than that from the other two models. 

The downscaling algorithm with three regression models can well predict annual precipitation of 

continental China at a 1 km resolution. In terms of RMSE, MAE, and bias, the downscaling approach 

with the RF model produced the lowest amount of errors compared to the other two statistic regression 

models when validated using precipitation dataset collected from the meteorological stations for both 

the wet year and dry year (Figure 5). The general precipitation patterns are well captured in this estimate 

by all three regression models. The northwestern part of the Chinese mainland is drier, and the 

southeastern part and the southern coast are clearly wetter. Those patterns satisfactorily resemble the 

general spatial distribution patterns of annual precipitation of Mainland Chain [67,68]. 
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Through importance analysis, we found that latitude and longitude are very important factors in 

simulating the annual precipitation over Mainland China. Rainfall in the study area mainly results from 

the moisture-laden air masses from the Western Pacific and the Indian Ocean. Latitude and longitude 

may represent the relative distance from the Pacific and Indian Oceans, and, thus, significantly affect 

precipitation and its spatial distribution. NDVI is generally considered as a powerful predictor for 

precipitation [24,34,39], but our study resulted in correlations only in arid, semi-arid, and semi-humid 

zones (annual precipitation less than 800 mm/yr). The higher NDVI does not always represent more 

precipitation in humid zones because of the saturated NDVI. This leads to a declined importance of 

NDVI-related predictors in humid areas. 

The elevation, another geospatial predictor in downscaling approaches [24,34,39], was used as an 

indispensable predictor in four climate zones over continental China. Interestingly, the elevation was 

even more important than the NDVI in humid, semi-arid, and arid areas due to the uplift precipitation 

effects of mountains and/or the saturated NDVI. Moreover, the importance of the aspect and slope 

steadily ranked elevation, and these two predictors certainly contributed to the prediction accuracy of 

precipitation. This is because aspect is linked to the prevalent wind orientation, and, thus, determines the 

potential relative water excess or deficit; a gradient in the speed of vertical air movements may control 

the intensity and area of precipitation [69,70]. 

Since the RF technique only pursues the valid regressions between precipitation and geospatial 

predictors, the geo-physical mechanism is actually not well represented in this approach. Thus, we are 

still not able to give the explicit mechanistic understanding of precipitation and related predictors. More 

investigations about the geo-physical mechanism in relation to precipitation would be needed to 

understand the feedbacks between precipitation and those predictors. This would be also helpful to 

explore additional geospatial predictors that may improve the RF algorithm. Furthermore, our 

downscaling framework is currently not applicable to shorter temporal periods (e.g., monthly or 

seasonal). In the future, monthly or seasonal precipitation can be estimated using, for instance, the 

fraction method proposed by Duan and Bastiaanssen [24]. It should be also noted that there is still a scale 

gap between rain-gauge data and final rainfall product in this study because a rain gauge typically 

collects rainfall at ground level with a sample area of roughly 50 cm2 [71]. It is, therefore, suggested that 

gap be taken into account in future studies, especially at finer time scales. 

6. Conclusions 

This study explored three spatial downscaling methods implementing satellite-based TRMM 3B43 

precipitation and a number of geospatial predictors over a complex territory. The ultimate goal was to 

generate the annual precipitation over continental China at a 1 km resolution, from 2001 to 2010. The 

results of this investigation show that, (1) the regression model based on Random Forest performs best 

among all three models investigated when modeling TRMM precipitation at coarse resolution;  

(2) all the downscaled results seemingly captured the spatial patterns of annual precipitation of Mainland 

China, and the validations against the in situ measurements from rain gauge stations showed that the RF 

approach is better than the other two approaches in terms of RMSE, MAE, and bias; (3) NDVI (and 

NDVI-related variables) is not an important predictor in the humid areas. We believe that our framework 

may be useful to produce fields of annual precipitation at fine spatial resolutions, which is one of the 
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key input parameters of some biological models [51–53]. Our precipitation production can make 

contributions to the estimation of tree height and biomass in a study area. However, the mechanistic 

understanding and temporal resolution is still limited in our framework. Future studies, thus, should 

account for the geo-physical mechanisms of precipitation and its monthly/seasonal variations for a better 

understanding of the process of water and energy balances. 
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Figure A1. Cont. 
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Figure A1. Annual precipitation of China mainland at spatial resolution 0.25° × 0.25°for the 

period years from 2001 to 2010, aggregated from the original monthly TRMM 3B43 V7 

precipitation product. 

(A) 

 

Figure A2. Cont. 
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(B) 

 

(C) 

 

Figure A2. Scatter plots of the agreements between the annual precipitations of China 

mainland in 2001 derived from the TRMM 3B43 and (A) the multiple linear regression 

models, (B) exponential models, and (C) random forest models at spatial resolutions of (a) 

0.25°, (b) 0.50°, (c) 0.75°, (d) 1.0°, (e) 1.25°, and (f) 1.50°, respectively. Principal component 

analysis has been used in the multiple linear and exponential regression modeling. 
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Figure A3. Cont. 
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Figure A3. The final predicted annual precipitation of China mainland at the 1 km resolution 

for the year 2001 using the multiple linear regression models (A); exponential models (B); 

and random forest models (C) built at spatial resolutions of (a) 0.25°, (b) 0.50°, (c) 0.75°, 

(d) 1.0°, (e) 1.25°, and (f) 1.50°, respectively. 
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Figure A4. Scatter plot of the measured annual precipitation from 596 meteorology stations 

versus the predicted precipitation extracted from the final downscaled using the multiple 

linear regression models, exponential models, and random forest models built at spatial 

resolutions of 0.25°, 0.50°, 0.75°, 1.0°, 1.25°, and 1.50°, respectively, for the year 2001 over 

China mainland without gap-filling processing. 

 

Figure A5. Cont. 

0 1000 2000 3000 4000
0

1000

2000

3000

4000  linear 0.25°

E
s
ti
m

a
te

d
 

observed

0 1000 2000 3000 4000
0

1000

2000

3000

4000  linear 0.50°

E
s
ti
m

a
te

d
 

observed

0 1000 2000 3000 4000
0

1000

2000

3000

4000  linear 0.75°

E
s
ti
m

a
te

d
 

observed

0 1000 2000 3000 4000
0

1000

2000

3000

4000  linear 1.00°

E
s
ti
m

a
te

d
 

observed

0 1000 2000 3000 4000
0

1000

2000

3000

4000  linear 1.25°

E
s
ti
m

a
te

d
 

observed

0 1000 2000 3000 4000
0

1000

2000

3000

4000  linear 1.50°

E
s
ti
m

a
te

d
 

observed

0 1000 2000 3000 4000
0

1000

2000

3000

4000  exponential 0.25°

E
s
ti
m

a
te

d
 

observed

0 1000 2000 3000 4000
0

1000

2000

3000

4000  exponential 0.50°

E
s
ti
m

a
te

d
 

observed

0 1000 2000 3000 4000
0

1000

2000

3000

4000  exponential 0.75°

E
s
ti
m

a
te

d
 

observed

0 1000 2000 3000 4000
0

1000

2000

3000

4000  exponential 1.00°

E
s
ti
m

a
te

d
 

observed

0 1000 2000 3000 4000
0

1000

2000

3000

4000
 exponential 1.25°

E
s
ti
m

a
te

d
 

observed

0 1000 2000 3000 4000
0

1000

2000

3000

4000
 exponential 1.50°

E
s
ti
m

a
te

d
 

observed

0 1000 2000 3000 4000
0

1000

2000

3000

4000  randomForest 0.25°

E
s
ti
m

a
te

d
 

observed

0 1000 2000 3000 4000
0

1000

2000

3000

4000  randomForest 0.50°

E
s
ti
m

a
te

d
 

observed

0 1000 2000 3000 4000
0

1000

2000

3000

4000  randomForest 0.75°

E
s
ti
m

a
te

d
 

observed

0 1000 2000 3000 4000
0

1000

2000

3000

4000  randomForest 1.00°

E
s
ti
m

a
te

d
 

observed

0 1000 2000 3000 4000
0

1000

2000

3000

4000  randomForest 1.25°

E
s
ti
m

a
te

d
 

observed

0 1000 2000 3000 4000
0

1000

2000

3000

4000  randomForest 1.50°

E
s
ti
m

a
te

d
 

observed



Remote Sens. 2015, 7 5874 

 

 

 

Figure A5. The final predicted annual precipitation of China mainland at the 1 km resolution 

from 2001 to 2010 using random Forest regression model. 
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