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Abstract: Quantifying roughness effects on ground surface emissivity is an important step in 

obtaining high-quality soil moisture products from large-scale passive microwave sensors. In 

this study, we used a semi-empirical method to evaluate roughness effects (parameterized here 

by the ݎܪ  parameter) on a global scale from AMSR-E (Advanced Microwave Scanning 

Radiometer for EOS) observations. AMSR-E brightness temperatures at 6.9 GHz obtained 

from January 2009 to September 2011, together with estimations of soil moisture from the 

SMOS (Soil Moisture and Ocean Salinity) L3 products and of soil temperature from 

ECMWF’s (European Centre for Medium-range Weather Forecasting) were used as inputs in 

a retrieval process. In the first step, we retrieved a parameter (referred to as the ܽ∗ parameter) 

accounting for the combined effects of roughness and vegetation. Then, global MODIS NDVI 
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data were used to decouple the effects of vegetation from those of surface roughness. Finally, 

global maps of the Hr parameters were produced and discussed. Initial results showed that 

some spatial patterns in the Hr values could be associated with the main vegetation types 

(higher values of ݎܪ were retrieved generally in forested regions, intermediate values were 

obtained over crops and grasslands, and lower values were obtained over shrubs and desert) 

and topography. For instance, over the USA, lower values of ݎܪ were retrieved in relatively 

flat regions while relatively higher values were retrieved in hilly regions. 

Keywords: soil moisture; soil surface roughness; AMSR-E 

 

1. Introduction 

Soil moisture (SM), which plays an essential role in energy transfer between the soil and the 

atmosphere, is a major variable in hydrological processes [1]. At the global scale, soil moisture is a key 

variable for weather forecasting [2] and climate predictions [3]. At a regional scale, SM is also important 

for agriculture and water resources. 

The passive microwave remote sensing technique, which has a large spatial coverage and high temporal 

resolution and is sensitive to surface water content, has been shown to be an efficient approach for large scale 

soil moisture monitoring [4–6]. The measured signal results from the microwave emission of a variety of 
land cover types in the large (25 km × 25 km) observed pixels. The characteristics of the vegetation (such 

as vegetation structure and vegetation water content) and the soil (such as soil moisture content, surface 

roughness and texture) have a significant impact on the surface microwave emissivity [7–11]. Hence, the 

parameterization of these two effects is the key to obtaining high quality estimates of soil moisture. 

The Advanced Microwave Scanning Radiometer (AMSR-E) is a dual-polarized radiometer operating 

at frequencies of 6.9, 10.7, 18.7, 23.8, 36.5, and 89 GHz. Observations in the C-band range (4–8 GHz) 

have been used extensively to retrieve soil moisture in regions of low vegetation [4,6,12,13]. However, 

AMSR-E observations at C-band (6.9 GHz) are strongly affected by man-made radio-frequency 

interference (RFI)—particularly near large urban areas, requiring filtering these perturbations using RFI 

indices [4]. AMSR-E has become one of the most important passive microwave sensors for soil moisture 

monitoring at a global scale due to its long temporal coverage. NASA (National Aeronautics and Space 

Administration) adopted the algorithm developed by Njoku et al. [4] to retrieve the surface soil moisture 

based on the AMSR-E data. However, the surface roughness effects are assumed to be constant globally 

in the algorithm [14,15], which is not consistent with the actual surface conditions, especially in 

agricultural areas (due to agricultural practices) or deserted regions (due to wind effects) and may cause 

errors in the SM inversion process [16,17]. Increasing surface roughness effects generally lead to an 

increase in the measured brightness temperature and to a decrease in the sensitivity of the brightness 

temperatures to soil moisture [18,19]. Shi et al. [20] found that roughness effects are more significant at 

high incidence angles and high soil moisture content. 

Generally, surface roughness effects are evaluated using physical variables which can be estimated from 

field measurements, such as the correlation length ܮ஼ and the root-mean-square (RMS) height ߪ௦ [21–23]. 

However, traditional measurements of the physical roughness characteristics at the AMSR-E scales are 
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highly uncertain and time consuming [24]. Simplified semi-empirical modelling approaches have also 

been developed to simulate surface roughness effects. Many studies are based on the use of three main 

effective parameters to model soil roughness effects: ݎܪ  (adimensional and frequency dependant, 

accounting for roughness intensity), ܳ (adimensional, accounting for polarization mixing effects) and ܰݎ 

(adimensional, accounting for angular dependency) [25,26]. Montpetit et al. [27], recently showed that the 

latter modeling approach was very effective in modeling the signatures of rough soils at AMSR-E 

frequencies. Several studies estimated the values of the model parameters (ݎܪ , ܳ , and ܰݎ ) from 

microwave observations over bare fields [21,22] and computed relationships to link these parameters to 

the physical parameters measured in the fields (mainly ߪ௦ and ܮ஼) [23,24]. However, it is difficult to use 

these relationships derived from field measurements or modeling approaches calibrated over very small 

and homogeneous surfaces to model the signatures of rough soils as measured by space-borne systems. At 

the scale of the footprint of the passive microwave sensors, the pixel includes a variety of land uses and 

soil and vegetation types, so that it is very difficult to estimate s effective values of ߪ௦ and ܮ஼  from ground 

measurement that can be used to compute the model roughness parameters. 

In this paper, we focused on the estimation of the soil roughness parameter ݎܪ. Considering the coarse 

spatial resolution of the AMSR-E observations, over a given pixel, the time changes in the effects of surface 

roughness are mixed over a variety of land cover types. Therefore, compared to the time variability, we 

assumed in this study that the spatial variability of the ݎܪ parameter is more critical. Based on AMSR-E 

6.9 GHz TB (brightness temperature) observations, SMOS soil moisture products and ECMWF’s soil 

temperature, we developed a simple approach to globally estimate the spatial variations in the parameter 

 The method was first applied over a few sites from the SCAN network in the USA to illustrate the .ݎܪ

proposed method. In the second step, global maps of the ݎܪ parameter were produced. 

2. Data 

2.1. AMSR-E 

The microwave observations used in this study were measured using the AMSR-E sensor onboard 

the Aqua satellite. The sensor is a passive microwave radiometer system measuring the horizontally and 

vertically polarized brightness temperatures at 6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 

89.0 GHz. The antenna scanned conically with an incidence angle fixed at 55°, providing near-global 

coverage in two days or less. The Aqua’s orbit is sun-synchronous, with equator crossings at 13:30 and 

01:30 local solar time. These traits enabled Aqua to observe atmospheric, land, and oceanic parameters. 

The AMSR-E surface soil moisture product used in this study was the gridded level 3 land surface 

product at 6.9 GHz [28], which included products on surface soil moisture, vegetation water content and 

brightness temperatures. This product is projected on the global cylindrical 25 km Equal-Area Scalable 

Earth Grid (EASE-Grid). Due to a problem with the rotation of its antenna, the AMSR-E instrument on 

board the Aqua satellite stopped producing data on 4 October 2011. The replacement sensor, AMSR2, 

which will continue the AMSR-E observation time series, was launched on 18 May 2012. In this study, 

we selected AMSR-E observations made at the lowest frequency of AMSR-E (6.9 GHz), as it is best 

suited for SM monitoring [11]. Moreover, this frequency is the closest to the frequency of SMOS 

(1.4 GHz) which was used for the soil moisture estimations. 
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It was found that ascending orbit data have larger uncertainties due to surface temperature 

variations [29,30]. Therefore, the descending orbit brightness temperature observations at C-band were 

used from January 2010 to September 2011 in this study. 

2.2. SMOS 

The SMOS satellite is a European Space Agency (ESA) led mission and was launched in November 

2009. It is the first satellite specifically dedicated to soil moisture retrievals with an L-band passive 

radiometer at 1.4 GHz. SMOS provides global coverage in less than three days with a 35–50 km spatial 

resolution [31,32]. The satellite is polar orbiting with equator crossing times of 6:00 am local solar time 

(LST) (ascending) and 6:00 pm LST (descending) [33]. 

SM and vegetation optical depth at nadir (߬௡௔ௗ) values over land are now available in level 3 products. 

We used retrieved SM data from the SMOS observations as these data have been shown to be 

accurate [16,31,34]. Moreover, it is expected that the impact of SM on both the SMOS and AMSRE 

observations is similar, as these observations are acquired from the same passive microwave technique, 

even though frequencies are different [16,34]. The level 3 SM projection is also EASE-GRID with a 

spatial resolution of 25 km × 25 km [35]. 

For the purpose of using observations with reduced temperature differences between the vegetation 

canopy and topsoil, the SMOS level 3 ascending daily products were used in this paper [16]. They 

contain the retrieved parameters (SM, ߬௡௔ௗ), complementary parameters (such as the number of used TB 

records, surface level modeled TB at 42.5° incidence angle, etc.) and flags. A Data Quality Index (DQX) 

is associated with each retrieved parameter and could be used to assist assessing the uncertainty of the 

retrieved parameter. In the SMOS level 3 products, SM is not retrieved in mountainous regions where 

topography effects are strong (a topographic index is used to filter out these data [36,37]). Similarly, SM 

is not retrieved in regions covered by dense forests, where the sensitivity to SM is very low, or in pixels 

where the forest fraction exceeds 60% [10]. 

2.3. MODIS NDVI 

The MODIS/Terra Normalized Difference Vegetation Index (NDVI) product (MOD13C1) is used for 

monitoring vegetation conditions globally [38]. NDVI is calculated as: 

ܫܸܦܰ ൌ
ேூோߩ െ ோ௘ௗߩ
ேூோߩ ൅ ோ௘ௗߩ

 (1)

where ߩேூோ is the reflectance in the near Infra-Red band, taken from band 2 of MODIS (841–876 nm) 

and ߩோ௘ௗ the reflectance in the red band, taken from band 1 of MODIS (620–670 nm). ߩோ௘ௗ is mainly 

sensitive to the amount of chlorophyll and ߩேூோ depends on the amount of leaf area. Thus, NDVI is a 

good indicator of green leaf area [39]. The MODIS NDVI product contains atmospherically corrected 

bi-directional surface reflectance masked for water, clouds, and cloud shadows. Global MOD13C1 data 

are cloud-free spatial composites of the gridded 16-day product and are provided as a level-3 product 

projected on a 0.05 degree (5600-m) geographic Climate Modeling Grid (CMG). The quality assurance 

(QA) data, provided in the NDVI dataset, include cloud and snow cover percentages, aerosol information 

and other factors. 
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2.4. The SCAN Network 

In this study, we selected four stations from the Soil Climate Analysis Network (SCAN, 

http://www.wcc.nrcs.usda.gov) in the USA [40] to carry out a preliminary evaluation of the method. We 

selected stations where the nominal (bare soil and low vegetation) fraction is above 90% (Figure 1) and 

where the vegetation covers (crops or grassland) are relatively homogeneous at the scale of the  

AMSR-E and SMOS pixels. 

 

Figure 1. General map of the SCAN Soil Moisture network (blue labels) and the four SCAN 

stations selected in this study (red labels). 

The selected four stations for this study are located in Utah (SCAN 2016), Wyoming (SCAN 2018), 

and Kansas (SCAN 2093 and SCAN 2092). 

SCAN site 2092 is located in Cowley in a relatively flat area at an altitude of 364 m (above sea level, 

a.s.l.). Land use is mainly cropping and the forest cover fraction in this area is about 1%. Soil is 

dominated by sand (soil texture is 72.4% sand and 7.5% clay). 

Table 1. Description of the DGG nodes representative of the selected SCAN sites from [41] 

(FNO: Nominal fraction, FFO: Forest fraction, FWO: Water fraction). 

Node Station Name Site 
Fractions 

Cover Type 
Texture 

State 
FNO FFO FWO Other Sand (%) Clay (%) 

172276 Grouse Creek SCAN 2160 100 0 0 0 Grassland (mountain) -- -- Utah 

186675 Torrington SCAN 2018 100 0 0 0 Grassland 80.3 5.5 Wyoming 

203609 Phillipsburg SCAN 2093 98 0 0 2 Crops 5.8 22.4 Kansas 

218480 Abrams SCAN 2092 97 1 0 2 Crops 72.4 7.5 Kansas 

The SCAN 2093 site, located in Phillips, is mainly covered by crops. The altitude of this site is 

605 m (a.s.l.). SCAN 2018 site is located in Wyoming at an altitude of 1300 m (a.s.l.) and the surface 

fraction is 100% nominal (i.e., bare soil and low vegetation surfaces). The land cover is mainly grassland 

with 80.3% sand and 5.5% clay. The last SCAN 2016 site is located in Utah at an altitude of 1781 m 
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(a.s.l.) in a mountainous region. The surface is totally covered by grassland. The details concerning the 

soil and vegetation characteristics are summarized in Table 1 for the four selected sites. 

2.5. Ancillary Products 

This study used a custom made climate data product (AUX_ECMWF) from the European Centre for 

Medium-range Weather Forecasting (ECMWF) as SMOS ancillary data. The ECMWF provides medium 

range global forecasts of environmental variables such as SM, evaporation, skin temperature, root zone 

soil temperature, precipitation, etc. The top 7 cm layer soil temperature selected in this study was 

obtained via the SMOS L3 pre-processor that computes spatio-temporal averaging of the ECMWF 

forecast products on the EASE grid used for the SMOS Level 3 products [42]. 

The global land cover map was obtained from the Second Global Soil Wetness Program (GSWP2). 

The data set is based on the International Geosphere-Biosphere Programm (IGBP) classification system 

and contains 12 land cover types. The spatial resolution is 1 degree [43]. 

The global soil clay map was estimated from the Food Agriculture Organization (FAO) [44], and we 

used a global digital elevation model (DEM) resulting from Global 30 Arc-Second Elevation 

(GTOPO30) computed at the U.S. Geological Survey’s EROS Data Center (USGS) (available 

at https://lta.cr.usgs.gov/GTOPO30). The elevations we used in GTOPO30 were spaced at 30-arc 

seconds (approximately 1 kilometer) [45]. 

2.6. Remote Sensing Data Pre-Processing 

RFI originating from man-made emissions in the protected/shared bands (e.g., satellite transmissions, 

aircraft communications, radar, TV radio-links, FM broadcast, and wireless camera monitoring systems) 

perturbs the natural microwave emission emitted by the Earth’s surface and measured by passive 

microwave systems [16,46,47]. Some studies have shown that RFI has a significant impact on the 

brightness temperatures at the C-band and L-band [46,48,49]. RFI contamination at the C-band were found 

to be highly prevalent in the U.S., Southwest Asia, and the Middle East, with occurrences in Europe 

seemingly associated with some urban locations [46,48,49]. In this study, C-band AMSR-E observations 

affected by strong and moderate RFI effects were removed by calculating the RFI Index derived from the 

difference between the brightness temperatures at 6.9 and 10.7 GHz [46,48]. Quality control was applied 

to the SMOS L3 SM products. The RFI flag provided in the SMOS L3 data set was used to filter out the 

RFI effects. Moreover, the Level 3 DQX flag was used to evaluate the uncertainty associated with the SM 

retrievals; SMOSL3 data were rejected if one of the following conditions was fulfilled: (i) DQX > 0.06, 

(ii) DQX is equal to fill value, and (iii) probability of RFI (RFI_Prob) > 30% [16]. 

As the performances of C-band sensors to sense SM through dense forests is low, the AMSR-E pixels 

in densely forested regions were masked based on the GSWP-2 global land cover maps [43]. In this 

study, the regions classified as broadleaf evergreen forest were masked. 

In order to have enough NDVI data to match with the data from the other datasets, we linearly 

interpolated the 16-day NDVI products into a 4-day product in this study. In the NDVI time series over 

each pixel, all values lower than 0 (influenced by ice, snow and frost effects) were removed. All the datasets 

were re-projected to the cylindrical EASE-Grid projections using a nearest neighbor approach [50]. 
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3. Method 

This study was based on the ߬ െ ߱ [22] model with the assumption of a low influence from atmospheric 
effects and neglecting the multiple scattering effects in the vegetation. The brightness temperature ܶܤ௣ 

can be expressed as a three-component model (Equation (2)). The first part is the upward radiation from 

vegetation, the second part is the downward vegetation emission reflected by the soil and then attenuated 

by the canopy, and the last part is the soil emission attenuated by the vegetation canopy. 

ሻߠ,݌ሺܤܶ ൌ ൫1 െ߱݌൯ ቀ1 െ ሻቁߠ,݌ሺߛ ሻ൅൫1ߠ,݌ሺܩݎሻߠ,݌ሺߛܥܶ െ߱݌൯ ቀ1 െ ሻቁߠ,݌ሺߛ ܥܶ
൅ ൫1 െ  ܩሻܶߠ,ሺܲߛሻ൯ߠ,ሺܲܩݎ

(2)

where ܶீ  and ௖ܶ  are the effective soil and vegetation temperature, ீݎ  is the soil reflectivity, ߛ is the 

vegetation attenuation factor and ߱ is the single scattering albedo of the canopy; ߠ is the incidence angle 

of the observations. The parameter ߱  accounts for the effects of canopy volume scattering [22]. 

However, there is limited information on the temporal or canopy type variability of this parameter, and 

most of the SM retrieval algorithms considered the use of a constant global value [51]. Van de Griend 

and Owe [52] showed that ߱ had a low effects on the range of the emitted radiation from vegetated 

surfaces at microwave wavelengths [7,51]. For simplicity, as in several other studies at C-band, it is 

assumed in this study that ߱, considered here as an effective parameter [53], is equal to zero [1,7,52]. 

Furthermore, ஼ܶ and ܶீ  are assumed to be equal at 6 am and represented as ܶ [54]. These assumptions 

lead to the following simplified equation [55]: 

ሺ௉,ఏሻܤܶ ൌ ൫1 െ ሺ௣,ఏሻߛ
ଶ ሺ௣,ఏሻ൯ܶ (3)ீݎ

The soil reflectivity ீݎ  can be written as a function of the reflectivity of a flat surface ீݎ ሺ௣,ఏሻ
∗ , a set of 

four soil roughness parameters (,ܳ ,ݎܪ 	,݌ݎܰ 	݌ ൌ ܸ or ݌ ൌ  ,݌ and polarization ߠ incidence angle ,(ܪ

as [19]: 

ሺ௉,ఏሻீݎ ൌ ൣሺ1 െ ܳሻீݎ ሺ௣,ఏሻ
∗ ൅ ݎீܳ ሺ௤,ఏሻ

∗ ൧ ൈ ݎܪ൫െ݌ݔ݁ ሻ൯ (4)ߠே௥೛ሺݏ݋ܿ

where ܳ  is the polarization mixing parameter [7], ݎܪ  is a parameter related to the intensity of the 
roughness effects and ܰݎ௣ expresses the angular dependency of the roughness effects [56]. An increase in 

the value of the ܳ parameter generally leads to a decrease in the difference between ܶܤு and ܶܤ௏ (ܶܤு 

increases and ܶܤ௏ decreases). Wang et al. [57] have found that the frequency dependence of ܳ is strong 

and relatively small values for ܳ were obtained, ranging from 0 to 0.12 at L-band and from 0 to 0.3 at  

C-band. More recently, Montpetit et al. [27] have found that the value Q = 0.075 can be used over a large 

frequency range (1.4–90 GHz). In this study, we considered the value of ܳ is equal to zero, but a sensitivity 

analysis is made for Q varying from 0 to 0.3. Following the result obtained by [23], the values of Nrp for 

the H and V polarizations were set equal, and we assumed that ܰݎு ൌ ௏ݎܰ ൌ 0	[23]. According to the 
Fresnel equations, ீݎ ሺ௣,ఏሻ

∗  at a specific incidence angle is only related to the soil dielectric properties (ߝ௣). 

In the present study, ߝ௣ was estimated using the Mironov model [57]. The inputs of the Mironov model in 

this study were (i) SM estimated from the SMOS observations, (ii) the soil effective temperature provided 

by the ECMWF products and (iii) the clay fraction (%) estimated from the FAO maps. 
The vegetation attenuation factor (ߛ) was expressed as the function of the optical depth ߬௣ as: 

ሺ௣,ఏሻߛ ൌ ൫െ߬௣݌ݔ݁ ⁄ሻߠሺݏ݋ܿ ൯ (5)
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and the vegetation optical depth ߬௣ can be calculated from the optical depth at nadir (at ߠ ൌ 0) as [26]: 

߬௣ ൌ ߬௡௔ௗ ቀܿݏ݋ଶሺߠሻ ൅ ሻቁ (6)ߠଶሺ݊݅ݏ௣ݐݐ

where ݐݐ௣  is a specific vegetation parameter accounting for the effects of the vegetation structure. 

The	ݐݐ௣ parameters allow accounting for the dependence of ߬௡௔ௗ on incidence angle. A value of ݐݐ௣ ൐ 1 

or ݐݐ௣ ൏ 1 will correspond, respectively, to an increasing or decreasing trend of ߬௡௔ௗ as a function of ߠ, 

and the case ݐݐு ൌ ௏ݐݐ ൌ 1 corresponds to isotropic conditions, when the optical depth of the standing 

canopy is assumed to be independent of both polarizations and incidence angles. Some experimental 

evidence has shown that there is a difference in vegetation attenuation properties between the H and V 

polarizations over agricultural fields, mainly for vertical stem-dominated vegetation (such as wheat or 

corn) [14]. However, the canopy and stem structure for most crops and naturally occurring vegetation 

are randomly oriented. Moreover, considering that at coarse spatial resolution the pixel includes a variety 

of vegetation types, so that the specific effects related to the structure of a variety of vegetation canopies 

are mixed together, it is reasonable to assume that the optical depth is polarization-independent  

ுݐݐ) ൌ ௏ݐݐ ൌ 1) [51,52,58]. 

Previous studies, such as Schmugge et al. [59] and Jackson et al. [6] combined the vegetation optical 

depth and roughness effects within a single parameter (referred to as the α parameter) to retrieve soil 

moisture. Similarly, Njoku & Chan [7] and Saleh et al. [60] used this α parameter to approximate the 

combined effects of vegetation and roughness. Consequently, in this study, substituting Equations (5) 

and (6) in Equation (3), we can obtain: 

ሺ௉,ఏሻܤܶ ൌ ܶൣ1 െ ݎீ ሺ௣,ఏሻ
ᇱ ܽ൧ (7)

with  

aሺθሻ ൌ exp ൬െ
2τ୬ୟୢ
cosሺθሻ

െ Hr൰ (8)

Considering the H and V polarizations, the a parameter can be derived as [61]: 

aሺθሻ ൌ
TBሺ୚,஘ሻ െ TBሺୌ,஘ሻ

TBሺ୚,஘ሻrୋሺୌ,஘ሻ
′ െ TBሺୌ,஘ሻrୋሺ୚,஘ሻ

′
 (9)

In the following of this study we considered the parameter ܽ∗ defined as follows: 

ܽ∗ሺߠሻ ൌ െ݈݃݋൫ܽሺߠሻ൯ ൌ
2߬௡௔ௗ
ሻߠሺݏ݋ܿ

൅ (10) ݎܪ

From this equation, ܽ∗ሺߠሻ	can be seen as a parameter accounting for the combined effects of 

vegetation (through the ߬௡௔ௗ parameter) and surface roughness (through the ݎܪ parameter) [26]. The 

parameter ܽ∗ሺߠሻ at a given incidence angle can be directly calculated from the horizontal and vertical 

polarization brightness temperatures using Equation (9). In this study, the ܽ∗ሺߠሻ  parameter was 

calculated with only one angle and for ease of reading it is noted ܽ∗ in the following of the text. 

We used the NDVI index in an attempt to decouple the vegetation and surface roughness effects in 

Equation (10). To this aim, we assumed that optical depth can be linearly related to the vegetation index 

NDVI [39,62,63]. Note that errors may arise from this assumption, as a linear relationship between 

optical depth and NDVI is only suitable for vegetation canopies with a rather low biomass [63]. In 

particular, NDVI is likely to saturate more rapidly than optical depth (due primarily to the deeper 
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penetration capabilities of the microwave radiations) over dense canopies in forested regions. We 

assumed too that the attenuation effects of vegetation are very low for low values of NDVI, so that 

roughness effects are dominant (ܽ∗ ൎ ܫܸ when (ݎܪ ൎ 0. 

Using these assumptions, at a given incidence angle, the parameter ܽ∗ can be expressed as a function 

of NDVI over each pixel as: 

ܽ∗ ൌ ܣ ൈ ܫܸܦܰ ൅ (11) ݎܪ

where ܣ is a slope parameter which has to be calibrated over each pixel. 

Equation (11) was used to compute the value of ݎܪ over each pixel. For this purpose, a standard 

statistical procedure was applied to compute the slope and intercept of regression Equation (11) using 

values of the NDVI index estimated from MODIS and values of ܽ∗  computed from the AMSR-E 

observations (using Equation (9)). 

In this process, we considered two main cases: 

1. “Bare or sparsely vegetated surfaces”, corresponding here to the case when the effects of the 

vegetation layer, could be considered negligible over a sufficient period of time (this case was 

arbitrarily defined here as when 15% of the NDVI values were lower than 0.07 in the whole 

NDVI time series [64]). 

In that case, we set the surface roughness Hr as the average value of ܽ∗ under the condition of NDVI 

values lower than 0.07. This case included the case of deserts, where the NDVI values where always 

lower than 0.07. In that latter case, we set the value of Hr as the average value of ܽ∗. 

2. “Vegetated surfaces” corresponding here to the case when the effects of the vegetation layer 

are significant over most of the dates of the considered dataset (case defined as: more than 

85% of the NDVI values exceed the threshold value of 0.07). 

In that case, we set the surface roughness Hr as the intercept of the regression Equation (11), linking 

ܽ∗ to NDVI. Note that the values of ݎܪ were computed only over nodes where (i) the correlation was 

significant (p-value < 0.05) and where (ii) the coefficient of determination ܴଶ  was higher than a 

threshold value set arbitrarily here to 0.2 (ܴଶ ൐ 0.2). This filtering was conducted in order to compute 

values of ݎܪ from the value of the intercept of the regression line only when there was a well-defined 

correlation between ܽ∗ and NDVI. 

Following that procedure over all pixels, we could compute a global map of the parameter ݎܪ, except 

over regions of dense forests, which were masked out. 

4. Results and Discussion 

4.1. Results Obtained Over the Selected SCAN Sites 

To illustrate the use of the method developed in this study, Figure 2a–d show a comparison between 

the retrieved values of ܽ∗, using the equations described above, and the MODIS NDVI values over the 

four selected SCAN sites, from January 2010 to September 2011. Gaps in the time series of ܽ∗ and NDVI 

values in Figure 2 were due to filtering, particularly for the effects of snow and frozen soil. It can be seen 

that the retrieved values of ܽ∗ showed an overall increase from April to August, then started to decrease 

and reached a minimum around the end of January, for both years (2010 and 2011). This temporal change 
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pattern was similar with that of NDVI (Figure 2), indicating that the general trend of ܽ∗  is mainly 

determined by the growth and senescence of vegetation. The values of ܽ∗ and NDVI appeared to start 

increasing at the same time, but ܽ∗ reached a peak slightly later than NDVI. The difference in peak time 

may be explained by the fact that microwave observations are sensitive the changes in the vegetation water 

content of the whole plant (including stem and fruit growth) while the NDVI index is mainly related to the 

development of green leaves [26,36,39]. These effects have been observed from experimental in-situ data 

over soybean and wheat [26,65] and from the SMOS observations [39]. 

    

    

Figure 2. Time series of the ܽ∗  parameter and of the MODIS NDVI over SCAN sites,  

(a) 2092, (b) 2093, (c) 2018, and (d) 2160 (January 2010–September 2011). 

The scatter plots and the linear regressions between ܽ∗ and NDVI are showed in Figure 3a–d for the 

four SCAN sites. It can be seen that there is a good general linear relationship between the values of ܽ∗ 
and NDVI over the different sites (ܴଶ ranging from 0.28 to 0.81), even though there is a slight time lag 

in the general trend of the two variables (as noted above). It can be seen that there are few data close to 

zero, i.e., for low NDVI values. It is likely this can be explained by the fact the effects of vegetation 

remained significant over the whole year, especially for sites including permanent grasslands (SCAN 

sites 2160 and 2018). This can be also explained by the fact that time periods with low vegetation 

development correspond to time periods with snow and frozen soil conditions, which were filtered out 

in the data sets. 
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Figure 3. Scatter plot illustrating the relationship between the ܽ∗ parameter and MODIS NDVI 

over SCAN sites (a) 2092, (b) 2093, (c) 2018, and (d) 2160 (January 2010–September 2011). 

As very few values of NDVI were lower than the threshold of 0.07, the value of ݎܪ over the different 

sites was computed as the intercept of the regression line between ܽ∗ and NDVI. The values of ݎܪ are 

in the range between ~ 0.5 for sites covered mainly by grassland (ݎܪ ൌ 0.51 for SCAN site 2018 and 

ݎܪ ൌ 0.57 for SCAN site 2016) and ~0.9 for sites covered mainly by cropland (ݎܪ ൌ 0.96 for SCAN 

site 2092 and ݎܪ ൌ 0.86 for SCAN site 2093). 

4.2. Global Map of the ݎܪ Values 

Using the same approach as the one illustrated above for the four selected sites of the SCAN network, 

the value of ݎܪ was estimated at a global scale. 

As described in section 3, two cases were considered to produce the value of (1) :ݎܪ “Bare or sparsely 

vegetated surfaces” and (2) “Vegetated surfaces”. In case (1), Hr was computed as an average of ܽ∗ for 

dates with low vegetation effects (parameterized here arbitrarily as ܰܫܸܦ	 ൏ 0.07). In case (2), the 

vegetation effects are always significant so that ܽ∗ includes both the effects of roughness and vegetation. 

In that latter case, ݎܪ was computed as the intercept of regression Equation (11) relating ܽ∗ and NDVI. 

It was found that at a global scale, 24% of the pixels (i.e., 25710 over 107135 pixels) correspond to 

case (1), while 76% (i.e., 81425 over 107135 pixels) correspond to case (2). 

The results of the analysis are summarized in Table 2 as a function of the different types of vegetation 

for the case ܳ ൌ 0 . We obtained an average value of ܴଶ  varying between 0.41	and	0.52 for the 
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regression equation relating ܽ∗ to NDVI for the different land cover types (except for deserts where this 

relationship could not be computed), and the average value of ݎܪ varied from 0.26 (over desert region) 

to 1.92 (over high latitude deciduous forest and woodland). It can be seen that ݎܪ was generally higher 

over forest biomes (ݎܪ	~	1.92–1.35), such as broadleaf evergreen forests, broadleaf deciduous forests, 

mixed coniferous, coniferous forests, high latitude deciduous forests and lower over the land covers as 

wooded and grasslands (ݎܪ ൌ 0.61) and cultivation (ݎܪ ൌ 0.74). The lowest values of Hr were obtained 

over shrubs & bare ground (ݎܪ	~	0.38) and deserts (ݎܪ	~	0.26). Note the mean values of Hr had almost 

no differences between grassland and cropland (only a 0.1 difference).  

Table 2. Mean values of ݎܪ and of the 	ܴଶ for the linear regression between 	ܽ∗ and NDVI 

for a variety of biomes as defined in [43]. ݎܪ and	ܴଶ values were averaged over all pixels 

corresponding to the different biomes (ܰ ൌ	number of pixels considered in the computation). 

Classification 
ࡽ ൌ ૙ 

Mean ࢘ࡴ Mean ࡾ૛ ࡺ 

broadleaf evergreen forest 1.06 0.41 2098 

broadleaf deciduous forest & woodland 1.54 0.47 2526 

mixed coniferous & broadleaf deciduous forest & woodland 1.55 0.47 2403 

coniferous forest & woodland 1.36 0.44 4688 

high latitude Deciduous forest & woodland 1.92 0.44 3674 

wooded & grassland 0.61 0.52 30,384 

shrubs & bare ground 0.38 0.44 4827 

Tundra 1.14 0.45 8362 

Cultivation 0.74 0.47 22,099 

Desert 0.26 -- 25,128 

According to the method defined above, global maps of the	ܴଶ coefficient and of the ݎܪ parameter 

are shown in, respectively, Figures 4 and 5, for the case Q ൌ 0. 

It can be seen (Figure 4) that high correlation values (R2) for regression Equation (11) were generally 

obtained over the USA, tropical regions in Africa, Eastern and Western Europe, central eastern South 

America and Mongolian plateau. As mentioned before, it should be noted that the R2 coefficient was not 

computed in desert regions and the densely forested regions were masked out. There were some other 

factors influencing R2, such as the uncertainties in the SMOS SM data and the ECMWF soil temperature 
that we used as inputs, the poor resolution of the passive microwave sensors (25 km × 25 km), the 

measured signal resulting from the microwave emission of a variety of land cover types in the observed 

pixels, and some pixels being affected by the effects of topography or by dense forests. Consistently with 

the results given in Figure 4, the global map of the ݎܪ values (Figure 5) showed that the lowest values of 

 were obtained in deserted or low vegetated regions (e.g., Australia and Sahara desert). The highest ݎܪ

values were obtained in forested areas and in the Northern regions. 
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Figure 4. Global map of the coefficient of determination (ܴଶ) of the relationship between 

	ܽ∗ and NDVI (AMSR-E observations at C-band, January 2010–September 2011), for the 

case ܳ ൌ 0. 

 

Figure 5. Global map of the retrieved roughness parameter ݎܪ  at C-band (AMSR-E 

observations, January 2010–September 2011), for the case ܳ ൌ 0. 

4.3. Maps of Hr Over the USA 

For a more concrete illustration of the maps of the ݎܪ parameter, Figure 6 zooms in on the USA from 

Figure 5 (for the case ܳ ൌ 0). As the ݎܪ parameter is a synthetic parameter accounting for roughness 

effects at a large scale, its value may be related to topographic effects. Maps showing the main spatial 

patterns of topography over the USA are given in terms of altitudes in Figure 7a and slopes in  

Figure 7b. Even though there is not a perfect match between the spatial patterns given in Figure 6 and in 

Figure 7a,b, some agreement could be noted in some regions. For instance, it seems the Appalachian 
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Mountains (on the eastern coast), hilly regions in Arkansas and Missouri, and some mountainous regions 

in the western part of the USA correspond to higher values of the ݎܪ parameter (shown by brighter 

colors in Figure 6). Similarly, low-altitude and relatively flat regions in the Southern and Central regions 

of the USA generally correspond to relatively low values of ݎܪ (shown by dark blue colors in Figure 6). 

Tables 3 and 4 show the mean values of ݎܪ  for the different elevation and slope ranges which 

corresponded to the nature landforms [66]. It can be seen that the mean values of Hr generally increased 

with the increase in the elevation (except for the 200–500 m range) and slope. The effect is clearer for 

the latter parameter which is more directly related to relief: the mean value of Hr increased from about 

0.73 to 2.3, when the slope varied from the “nearly level” to the “strongly rolling” classification. 

 

Figure 6. Global map of the retrieved roughness parameter ݎܪ  at C-band (AMSR-E 

observations, January 2010–September 2011), for the case Q ൌ 0 over the USA. 

 
(a) 

Figure 7. Cont. 
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(b) 

Figure 7. (a) The U.S. topographic map of altitude (1 km spatial resolution) (b) the U.S. 

topographic map of the slope classification (1 km spatial resolution). 

Table 3. ݎܪ values for the different elevation ranges over the United States. 

DEM (m) Classification Count Mean Hr 

<200 Plain 1080 0.60 

200–500 Plateau 2420 0.95 

500–1000 Hill  1501 0.78 

>1000 Mountain 2730 0.82 

Table 4. ݎܪ values for the different slope ranges over the United States. 

Slope(°) Classification Count Mean Hr 

0–2 nearly level 8005 0.73 

2–10 undulating 526 1.23 

10–15 gently rolling 135 1.42 

15–20 moderately rolling 29 1.39 

20–25 strongly rolling 8 2.33 

4.4. Sensitivity Analysis 

In this section we evaluate the sensitivity of the retrieved values of ݎܪ to the main assumptions made 

in our modelling approach. 

(1) Sensitivity to the value of the ܳ parameter. 

The ܳ parameter accounts for polarization mixing effects. As noted in Section 3, Montpetit et al. [27] 

have found that the value ܳ ൌ 0.075  can be used over a large frequency range and Wang et al. [57] 

have found values of ܳ ranging from 0 to 0.3 at C-band. In this sensitivity study, in addition to the case 

ܳ ൌ 0, we set the values of the ܳ parameter to 0.1, 0.2 and 0.3 and we calculated the corresponding ݎܪ 
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values. The results are shown in Figure 8a,b. It can be seen that, for the three cases ܳ ൌ 0.1, 0.2, and 

0.3, similar results were obtained in comparison to the case ܳ ൌ 0, except that slightly lower values of 

R2 were generally obtained and lower values of the ݎܪ parameter were retrieved systematically. As 

shown in Figure 8a, the average values of Hr for all the biomes decreased with increasing values of ܳ: 

comparing to the case ܳ ൌ 0, the average values of ݎܪ decreased by values varying between 0.1 (for 

desert) and 0.8 (for broadleaf deciduous forests, mixed coniferous and high latitude deciduous forests) 

for the case ܳ ൌ 0.3. The average values of ݎܪ for the forest biomes decreased more than for the other 

biomes. Note that because an increase in the value of the ܳ parameter generally leads to a decrease in 

the difference between ܶܤு and ܶܤ௏ (ܶܤு increases and ܶܤ௏ decreases), the parameter a* may become 

negative when using Equation (3) for the case ܳ ൌ 0.3 . These negative values correspond to  

non-physical values and were discarded. Therefore, there are fewer data for the case ܳ ൌ 0.3 in the 

retrieved values of ݎܪ especially in the desert regions (such as Australia and Sahara desert). 

For each biome, there is only a slight change in R2 when modifying the values of ܳ from 0 to 0.3 

(Figure 8b). However, the values of R2 are always larger for the case ܳ ൌ 0 and they decrease with 

increasing values of ܳ . All these results confirm the fact, noted by Montpetit et al. [27] from 

experimental data sets, that rather low values of ܳ are suitable to model the effects of roughness at the 

frequencies of AMSR-E. 

(2) Sensitivity to the vegetation threshold 

In the Method section, we defined “vegetated surface” as the pixels where more than 85% of the 

NDVI values exceed the threshold value of 0.07. To investigate the sensitivity of the Hr values to the 

value of this vegetation threshold, we made two sets of changes. Firstly, we changed the thresholds of 

NDVI from 0.07 to 0.05 and 0.1, while keeping the vegetation threshold at 85%. Secondly, we kept the 

thresholds of NDVI at 0.07 and changed the vegetation threshold from 85% to 80% and 90%. 

 
(a) 

Figure 8. Cont. 
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(b) 

Figure 8. (a) Sensitivity analysis: influence of the Q parameter (for ܳ =0, ܳ = 0.1, ܳ = 0.2 

and ܳ = 0.3) on the mean values of Hr for a variety of biomes; (b) Sensitivity analysis: 

influence of theܳ parameter (for ܳ =0, ܳ = 0.1, ܳ = 0.2 and ܳ = 0.3) on the mean ܴଶ values 

of the regression Equation (11) for a variety of biomes. 

We found that, as shown in Table 5, there was only a very low percentage of pixels (less than ~ 0.5%) 

changing categories from “vegetated surface” to “bare or sparsely vegetated surfaces” and therefore 

there was almost no change in the mean retrieved value of Hr over all the biomes. 

Table 5. Percentage of pixels belonging to the categories “Vegetated” and “Bare or Sparsely 

vegetated” surfaces depending on the NDVI and vegetation threshold. 

NDVI Thresholds Vegetation Threshold Bare or Sparsely Vegetated Surfaces Vegetated Surfaces 
0.05 85% 23.98% 76.12% 

0.07 
80% 24.03% 75.97% 
85% 24.03% 75.97% 
90% 24.03% 75.97% 

0.1 85% 24.58% 75.42% 

(3) Sensitivity to the R2 threshold 

To evaluate the sensitivity of our results to the used value of the R2 threshold for the relationship 

between ܽ∗ and NDVI, we conducted a test changing the R2 threshold from 0.2 to 0.3. As can be seen in 

Table 6, the mean values of Hr over the different biomes changed by less than ~0.1. Thus, the main 

results obtained in this study are still valid using a different value of the R2 threshold for the relationship 

between ܽ∗ and NDVI. 
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Table 6. Table 2 using a R2 threshold of 0.3, instead of 0.2. 

Classification 
૛ࡾ ൐ 0.3 

Mean ࢘ࡴ Mean ࡾ૛ ࡺ 

Broadleaf evergreen forest 0.95 0.48 1451 

Broadleaf deciduous forest & woodland 1.48 0.52 1998 

Mixed coniferous & broadleaf deciduous forest & woodland 1.57 0.52 1888 

Coniferous forest & woodland 1.33 0.49 3548 

High latitude deciduous forest & woodland 1.89 0.50 2888 

Wooded & grassland 0.57 0.56 26,043 

Shrubs & bare ground 0.37 0.56 3641 

Tundra 1.10 0.50 7950 

Cultivation 0.72 0.52 20,904 

Desert 0.25 -- 24,386 

5. Conclusions 

A first attempt to compute global maps of the Hr parameter was carried out in this study, based on 

AMSR-E observations. With the methods described, we attempted to correct for the vegetation effects, 

and regions classified as broadleaf evergreen forests were masked out. However, it is likely that a larger 

uncertainty is associated with the retrieved values of ݎܪ for pixels covered by relatively dense vegetation 

covers and in forested areas. For instance, high ݎܪ values were retrieved in many forested regions, such 

as in northern Asia and northwestern regions of America, which were mainly covered by evergreen and 

deciduous coniferous forests, and central and southern regions of China, which were mainly covered by 

deciduous broadleaf forests. This may be caused by the saturation of the NDVI values over forests, 

where the linear relationship between NDVI and vegetation optical depth may be not valid. Even though 

vegetation effects could not be perfectly corrected in densely vegetated regions, it is likely the global 

map of ݎܪ computed in this study could represent the main spatial patterns of the surface roughness 

effects in low vegetated regions. We found that clear spatial patterns could be distinguished in the global 

maps and could be associated with the main cover types (Table 2). It is important to note that the ݎܪ 

parameter is a complex synthetic parameter which accounts for many effects, such as surface roughness, 

soil moisture heterogeneities [18,67], vegetation litter in prairies and forests [41,60,67,68], 

topography [69], etc. These different effects occur over a large domain of spatial scales. This means the 

interpretation of the obtained global maps of ݎܪ remains difficult. Nevertheless, it seems that higher 

values of ݎܪ were generally obtained in forested areas. It likely that this result is related to the effects of 

vegetation, which may not be totally corrected. However, this result may be related also to the effects of 

litter which are generally taken into account through the ݎܪ parameter. For instance Grant et al. [68] 

have retrieved values of ݎܪ greater than 0.1 to account for the effects of litter over both a coniferous and 

a deciduous forest in flat experimental sites. Larger values of ݎܪ were also obtained in hilly regions, as 

found in the results illustrated for the USA in Section 4. It seems this result confirms the fact that ݎܪ is 

an effective parameter which may be used to account for the effects of topography in SM retrieval studies 

at coarse spatial resolution. 
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All the results presented in this study are sensitive to the assumptions made in our modeling approach. 

In particular, we found that the global maps of ݎܪ we obtained were sensitive to the value selected for 

the ܳ parameter. Retrieved Hr values would significantly decrease if we used a higher ܳ value such as 

ܳ ൌ 0.3. Hence, the maps presented in this study are valid for low values of the ܳ parameter, which is 

an assumption often made at C-band [18]. Moreover, a recent study [27] has confirmed the fact that a 

low value of the ܳ parameter can be used to model the effects of roughness over a large frequency range. 

Note also that the use of large values of ܳ make the decoupling between the roughness and vegetation 

effects more difficult (lower values were obtained in the R2 values of the relationship between ܽ∗ and 

NDVI over all types of biomes). 

In future studies, we will evaluate whether the global maps of ݎܪ	computed in this study have the 

potential for improving soil moisture retrieval for present and future spaceborne microwave remote 

sensing missions at the C-band. 
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