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Abstract: Providing accurate maps of mangroves, where the spatial scales of the mapped 

features correspond to the ecological structures and processes, as opposed to pixel sizes and 

mapping approaches, is a major challenge for remote sensing. This study developed and 

evaluated an object-based approach to understand what types of mangrove information can 

be mapped using different image datasets (Landsat TM, ALOS AVNIR-2, WorldView-2, 

and LiDAR). We compared and contrasted the ability of these images to map five levels of 

mangrove features, including vegetation boundary, mangrove stands, mangrove zonations, 

individual tree crowns, and species communities. We used the Moreton Bay site in Australia 

as the primary site to develop the classification rule sets and Karimunjawa Island in 

Indonesia to test the applicability of the rule sets. The results demonstrated the effectiveness 

of a conceptual hierarchical model for mapping specific mangrove features at discrete spatial 

scales. However, the rule sets developed in this study require modification to map similar 

mangrove features at different locations or when using image data acquired by different 

sensors. Across the hierarchical levels, smaller object sizes (i.e., tree crowns) required more 

complex classification rule sets. Incorporation of contextual information (e.g., distance and 

elevation) increased the overall mapping accuracy at the mangrove stand level (from 85% to 

94%) and mangrove zonation level (from 53% to 59%). We found that higher image spatial 

resolution, larger object size, and fewer land-cover classes result in higher mapping 
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accuracies. This study highlights the potential of selected images and mapping techniques to 

map mangrove features, and provides guidance for how to do this effectively through  

multi-scale mangrove composition mapping. 

Keywords: multi-scale; mangroves; hierarchy; mapping; object-based; spatial resolution. 

  

1. Introduction 

Spatial information on the distribution, composition and condition of mangroves at appropriate spatial 

scales is essential to support the understanding and management of mangrove ecosystems and their 

biodiversity. Remote sensing with the correct selection of sensors and image processing methods 

provides an efficient, rapid, accurate and often cost-effective source of mangrove information [1–3]. In 

mangrove mapping, remote sensing approaches have some advantages compared to the conventional 

terrestrial surveys, including provision of indirect access to remote or inaccessible mangrove sites [4], the 

ability to extrapolate measurements from specific sampling points to larger areas [5], provision of synoptic 

and repeated coverage of sites [1], and the ability to deliver data at multiple spatial scales or levels of 

ecological detail [6]. In the last two decades, remote sensing has been exploited to map various types of 

mangrove information from global mangrove status [7], regional mangrove extent and dynamics [1,8], 

local mangrove species composition [9–12], and biophysical applications (reviews in Heumann [13] and 

Kuenzer [14]). However, most mangrove studies using remote sensing techniques produced single  

scale-specific information, depending on the spatial resolution of the dataset(s) used. Remote sensing 

studies using a diversity of information within mangrove forests are still uncommon [15]. In this article, 

we present a multi-scale mapping approach to produce mangrove maps at multiple spatial scales by 

integrating existing knowledge on the spatial hierarchical structure of mangrove ecosystems, field data, 

multi-spatial resolution images, and geographic object-based image analysis (GEOBIA) techniques. 

Providing multi-scale information of mangroves, where each scale corresponds to an ecological 

organization of structure or process, is necessary to properly address issues related to management and 

conservation at relevant scales in this environment, and it remains the major challenge in remote sensing 

of all environments [16]. To produce meaningful, multi-scale mangrove information from remote 

sensing data, we need to understand how mangrove composition, structure and processes are organized 

over different spatial scales. From an ecological perspective, environmental inferences are  

scale-dependent [17], and conclusions reached at one scale of analysis may not be easily applied to other 

scales [18,19]. In theory, mangrove ecosystems are perceived as having spatial and temporal hierarchical 

organizations; from landscape setting down to individual tree and leaf structure, and changing at 

timescales from centuries to hours [20–22]. This hierarchical approach has been used to understand 

mangrove ecosystems for more than three decades [23]. The central concept of this theory focuses on 

the differences in structure and process rate between levels. Based on these differences, mangrove 

ecosystems are viewed as being stratified into discrete levels of interacting subsystems, with attributes 

occurring at specific spatial and temporal scales.  

Remote sensing data and correct application of image processing techniques can provide data at 

multiple spatial scales or levels based on single or multiple images [24–26]. In this case, the spatial 
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resolution of the imaging sensor and scale(s) of features in the environment imaged dictates the level of 

detailed information that can be produced [18,27,28]. Hence, remote sensing can provide information 

on mangroves at multiple scale levels depending on the user’s need. By synthesizing the knowledge of 

the hierarchical structures of mangroves [20,21,23,29] with the empirical study of the optimum pixel 

size to extract mangrove features from remotely-sensed images [30], we can establish explicit 

relationships between spatial and temporal scales of mangrove features and the corresponding image 

spatial resolution at which to map these features (Figure 1). This relationship guides the image analysts 

or interpreters to select the optimal image spatial resolution in order to accurately map a specific 

mangrove feature.  

 

Figure 1. Conceptual temporal and spatial hierarchical organization of mangroves features 

identifiable from remotely-sensed images, and the required image pixel resolution for 

mapping the features. (Symbols are courtesy of the Integration and Application Network, 

University of Maryland Center for Environmental Science—ian.umces.edu/symbols/). 

A geographic object-based image analysis approach (GEOBIA) facilitates multi-scale object 

recognition from a single image or across several images [25,26]. It enables an image to be segmented 

into a hierarchical network of image objects, which address the limitation of specific pixel-level 

information in the pixel-based mapping approach [31]. In GEOBIA the image data can be divided into 

homogenous image objects at a number of discrete spatial scales, which are organized in an interrelated 

hierarchy, where larger objects consist of several smaller objects [24,32]. These image objects can 

represent meaningful multi-scale features of different sizes, shapes and spatial distribution within an 

image scene, such as individual trees, tree patches, and forest [33] (Figure 1). Image classification based 

on image objects provides more relevant information than per-pixel classification, as it provides a more 

appropriate scale to map environmental features at multiple spatial scales [34].  
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Numerous studies in GEOBIA have reported that the application of the multi-scale hierarchical concept 

in the mapping process provides more accurate and useful information [35,36]. However, one of the main 

issues in GEOBIA is the selection of an appropriate spatial scale for image segmentation to ensure the 

image object classes are mapped consistently at one scale (i.e., individual trees), and do not overlap, but 

fit hierarchically with classes that apply to other scales (e.g., tree patches) In this case, high-spatial 

resolution imagery (<5 m) is generally suitable for multi-scale object-based segmentation and 

classification [35,37]. This paper developed and evaluated the GEOBIA approach for mapping 

mangrove composition at multiple scales using multi-spatial resolution image data. Three objectives 

were addressed in this study: (1) to map targeted mangrove features at multiple spatial-scales (vegetation 

boundary, mangrove stands, mangrove zonation, individual tree crown, and species community) using a 

GEOBIA approach applied to multiple image datasets (Landsat TM, ALOS AVNIR-2, WorldView-2, and 

LiDAR); (2) to assess the accuracy of the mapping results; and (3) evaluate the effect of image spatial 

resolutions on the produced maps. In a broader context, this study demonstrates the capability of remote 

sensing data to provide mangrove information at multiple spatial scales to fulfill the need for mangrove 

management and conservation at various spatial and ecological scales. 

2. Materials and Methods 

2.1. Study Area 

The research was conducted in two mangrove areas; the mouth of the Brisbane River, northern 

Moreton Bay, Southeast Queensland, Australia and Karimunjawa National Park, Central Java, Indonesia 

(Figure 2). The first site (between 153°3ʹ41ʺ–153°11ʹ20ʺE and 27°19ʹ41ʺ–27°25ʹ31ʺS) is a sub-tropical 

lowland area including Whyte Island, Fisherman Island and Boondall wetlands, approximately 15 km 

northeast of Brisbane city. It is one of Australia’s premier wetlands and a Ramsar Convention listed 

wetland, with extensive stands of mangroves [38]. Avicennia marina is the dominant mangrove species, 

which comprises approximately 75% of the entire mangrove community within this region [39]. Other 

species, such as Rhizophora stylosa, Ceriops australis, Bruguiera gymnorhiza, Excoecaria agallocha, and 

Aegiceras corniculatum, are occasionally present [40]. The second site (between 110°24ʹ10ʺ–110°30ʹ10ʺE 

and 4°47ʹ48ʺ–5°50ʹ12ʺS) is located in the Java Sea with a tropical climate, approximately 125 km north 

of Semarang city. Mangroves in Karimunjawa National Park exist mainly in the fringing area on the 

western side of the two main islands, Karimunjawa and Kemujan. For simplicity we refer this site as 

Karimunjawa Island. According to a Karimunjawa National Park Office report [41], there are 45 mangrove 

species in this area (27 true mangroves and 18 mangrove associates), and Rhizophora stylosa is the 

dominant mangrove species. The Moreton Bay site was the primary site used to develop the methods and 

rule sets to map mangrove information at multiple levels and the Karimunjawa site was used to test the 

applicability of the method at a different mangrove location. 
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Figure 2. Study sites showing the major land-cover types and the field transects across the 

mangrove zonations. 

2.2. Image Datasets 

This study used Landsat TM (TM), ALOS AVNIR-2 (AVNIR-2) and WorldView-2 (WV-2) 

multispectral images of the mouth of the Brisbane River and Karimunjawa Island to cover the variation 

of image spatial resolutions investigated, with the addition of LiDAR data and aerial photos for the 

Moreton Bay sites (Table 1). The WorldView-2 images were obtained at a high level of geometric 

correction (LV3X). The TM and AVNIR-2 images were geo-referenced based on the WV-2 image. The 

image pixel values (in digital numbers) were converted to top-of-atmosphere (TOA) spectral radiance 

using ENVI 4.8 (ITT Systems, ITT Exelis, Herndon, VA, USA). Further atmospheric correction was 

then performed to convert TOA spectral radiance to at surface reflectance using the Fast Line-of-sight 

Atmospheric Analysis of Hypercubes (FLAASH) atmospheric correction model for TM and WV-2 

images, with the atmospheric visibility parameter estimated from the moderate-resolution imaging 

spectroradiometer (MODIS) aerosol product [42]. We applied a relative dark-pixel subtraction 

atmospheric correction method for AVNIR-2 images due to the lack of the satellite scanning position 

information. The Gram-Schmidt spectral sharpening image fusion technique [43] was applied to produce 

a pan-sharpened WorldView-2 image with a 0.5 m pixel size. This pan-sharpening technique was 
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selected because it preserves the original spectral information of the image, and can be simultaneously 

applied to multispectral bands. A Canopy Height Model (CHM), Digital Terrain Model (DTM), and 

fractional canopy cover (FCC) were derived from the LiDAR data using lasheight, lasgrid, and lascanopy 

modules from LAStools (rapidlasso Gmbh., Germany). The CHM and DTM were used in combination 

with the multispectral images to define the boundary of mangroves and produce a mangrove structural 

composition map for the Moreton Bay site. Finally, a very high-spatial resolution aerial photograph (7.5 cm 

pixel size) with true color layers (www.nearmap.com) of Moreton Bay was used as a reference to analyze 

the classification accuracy of the produced maps. 

Table 1. Image datasets used in this study. 

Image Type 
Moreton Bay Image 

Acquisition Date 

Karimunjawa 

Island Image 

Acquisition Date 

Pixel Size Spectral Attributes (nm) 
Geometric 

Attributes 

Landsat TM 14 April 2011 31 July 2009 30 m 

Blue (452–518), green  

(528–609), red (626–693), NIR 

(776–904), MIR1 (1567–1784), 

MIR2 (2097–2349) 

Level 1T 

ALOS 

AVNIR-2 
10 April 2011 19 February 2009 10 m 

Blue (420–500), green  

(520–600), red (610–690), NIR 

(760–890) 

Level 1B2G 

WorldView-2 14 April 2011 24 May 2012 
2 m (multi), 

0.5 m (pan) 

Coastal blue (400–450), blue 

(450–510), green (510–580), 

yellow (585–625), red  

(630–690), red edge (705–745), 

NIR1 (770-895), NIR2  

(860–1040), panchromatic 

(450–800) 

Level 3X 

LiDAR April 2009 - 2.8 pts/m2 - Geo-referenced 

Aerial photo 14 January 2011 - 7.5 cm RGB image Geo-referenced 

2.3. Field Datasets 

Fieldwork was conducted during April 2012 (for Moreton Bay sites) and July 2012 (for Karimunjawa 

Island) to collect information on vegetation structure and composition in the study areas. Twenty-one 

(200 to 300 m long) field transects were established perpendicular to the shoreline to record the variation 

of mangrove vegetation structure and species composition at different zones (Figure 2). These field 

transects were purposively selected to represent the variation of local mangrove zonation and at an 

accessible location. Plots of 10 m × 10 m consecutive quadrats were sampled along the transect lines to 

record mangrove biophysical properties in the field including canopy height, vegetation formation type, 

canopy cover, and dominant species. Positions of the start and the end of each sampling plot along the 

transect line were measured using a 12 channels Global Positioning System (GPS) receiver; using an 

average reading time for each point between 400 and 600 seconds (with a positional accuracy of 4–6 m) 

to maximize the GPS signal reception underneath the mangrove canopy. Additional control points 

identifiable both in the field and image were used to ensure the precise overlay of the transects and the 
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image data. Canopy height was measured every 5 m along the transect using a TruPulse 360 laser 

rangefinder. Any canopy gaps found at the point of measurement were recorded, and the closest canopy 

was measured as additional data. The mangrove structural formation for each plot was determined using 

an Australian vegetation structural formation table [44]. Canopy cover was recorded using a digital 

camera at the center of four quarters of the plots (four 5 m quadrats), at a height of 1 m above ground 

and looking straight up. The photos were subsequently analyzed using CAN-EYE imaging software 

(http://www6.paca.inra.fr/can-eye) to determine the percentage of canopy cover. The dominant species 

within each 10 m x 10 m plot were identified using mangrove species identification books [40,45]. 

Four distinct mangrove zonations were identified from the high-spatial resolution images for both 

study sites and verified by field visits (Table 2). For Moreton Bay mangroves, Avicennia marina is the 

dominant mangrove species throughout each zonation, but different mangrove structural formation 

occurred within each zone. From the shoreline towards land, these zones represent mature closed forest, 

low-closed forest with single stems (some individual Rhizophora stylosa or Ceriops tagal were found in 

this zone), low-closed forest with single/multi stems, and open scrub. For Karimunjawa Islands, the 

dominant mangrove structural formation is closed forest, with more variety of mangrove species 

throughout the zonations. Tall trees of Rhizophora apiculata dominate the fringing shoreline area, 

followed by zones of highly-mixed Bruguiera gymnorhiza, Bruguiera cylindrical, Xylocarpus granatum 

and Excoecaria agallocha. The third and fourth zonations were mixes of Ceriops tagal and Lumnitzera 

racemosa with different vegetation structural formation. 

Table 2. Mangrove canopy height, formation type, canopy cover and dominant species 

derived from field data sampled across the vegetation zones at four study sites. 

Mangrove 

Zones*  
Whyte Island Fisherman Island Boondall Wetlands Karimunjawa Islands 

Zone 1 

10–12 m, closed forest 

(M4) with single- or 

multi-stems,  

high-density canopy 

cover, Avicennia 

marina trees. 

8–11 m, closed forest 

(M4) with single- or 

multi-stems, high-density 

canopy cover, Avicennia 

marina trees. 

8–10.5 m, closed forest (M4) 

with single- or  

multi-stems, very  

high-density canopy cover, 

Avicennia marina trees with 

some patches of Ceriops 

tagal. 

11–15 m, closed forest (M4) 

with single- or multi-stems, 

very high-density canopy 

cover, Rhizophora apiculata 

trees with some individual 

Bruguiera gymnorhiza. 

Zone 2  

6–8 m, low-closed 

forest (I4) with  

single-stem, very  

high-density canopy 

cover, Avicennia 

marina trees with 

some individual 

Rhizophora stylosa. 

8–10 m, low-closed forest 

(I4) with single-stem, 

high-density canopy 

cover, Avicennia marina 

with some individual 

Rhizophora stylosa and 

patches of Ceriops tagal. 

7–9 m, low-closed forest (I4) 

with single-stem, very  

high-density canopy cover, 

Avicennia marina with some 

individual Rhizophora 

stylosa.  

10–13 m, closed forest (M4) 

with single-stems, very  

high-density canopy cover, 

Bruguiera gymnorhiza, 

Bruguiera cylindrical, 

Xylocarpus granatum and 

Excoecaria agallocha. 
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Table 2. Cont. 

Mangrove 

Zones*  
Whyte Island Fisherman Island Boondall Wetlands Karimunjawa Islands 

Zone 3  

4–7 m, low-closed 

forest (I4) with  

single- or multi-stems, 

medium-density 

canopy cover, 

Avicennia marina. 

4–9 m, low-closed forest 

(I4) with single-stem, 

high-density canopy 

cover, Avicennia marina.  

5–7.5 m, low-closed forest 

(I4) with single-stem, very 

high-density canopy cover, 

Avicennia marina.  

7–10 m, low-closed forest 

(I4) with single- or  

multi-stems, high-density 

canopy cover, Ceriops tagal 

and Lumnitzera racemosa. 

Zone 4 

1–3 m, open scrub (S3) 

with multi-stems,  

low-density canopy 

cover, Avicennia 

marina. 

2.5–4 m, open scrub (S3) 

with single- or  

multi-stems, low-density 

canopy cover, Avicennia 

marina. 

1.5–5 m, open scrub (S3) with 

single- or multi-stems, 

medium-density canopy 

cover, Avicennia marina. 

4–9 m, low multi-stem forest 

(VL4) with multi-stems, 

medium-density canopy 

cover, Ceriops tagal and 

Lumnitzera racemosa. 

Note: Zone 1, 2, 3, and 4 for the Moreton Bay sites are centered at about 25, 75, 125, and 175 m, respectively, from the 

coastline; and 25, 150, 250, and 350 m from the coastline for the Karimunjawa site. 

2.4. Mangrove Vegetation Structure Characterization 

Prior to the mapping process, it is essential to perform an exploratory analysis to understand the 

spatial variability of the vegetation structure at different targeted locations and environment settings. 

This approach identifies the expected levels of detail able to be obtained from each site. We used  

semi-variograms to analyze the spatial structure of mangroves at the Moreton Bay and Karimunjawa 

Island sites. Semi-variograms are used for measuring the degree of dissimilarity between observations 

as a function of distance [46], and a review of its application in remote sensing was provided by Curran 

and Atkinson [47]. As demonstrated by Cohen [48], Johansen and Phinn [49], and Kamal et al. [30], the 

semi-variogram can be used to explore and describe the spatial variation of objects of interest in the 

image data in various forest environments. The equation for semi-variance γ(h) is: 

γ(h) = 
1

2𝑛
∑{𝐷𝑁(𝑥) − 𝐷𝑁(𝑥 + ℎ)}2 (1)  

where γ(h) represents half of the mathematical expectation of the squared differences of pixel pair values 

at a distance h. For image spectral data, γ(h) estimates the variability of pixel digital numbers (DN), as 

a function of spatial separation. The semi-variograms in this paper were derived from 21-line transects 

positioned across the mangrove zonations on the WV-2 image, coinciding with the field transects. We 

used all bands of the WV-2 pan-sharpened data to produce semi-variograms, but only the green band is 

presented because it depicts the highest detailed level of mangrove vegetation information compared to 

the other bands [30].  

2.5. Overview of the GEOBIA Approach 

The GEOBIA mapping process started with developing a conceptual hierarchical structure of mangrove 

objects based on literature on mangrove spatial structure and the analysis described in Section 2.4, 

fieldwork data, and local knowledge (Figure 3). It shows the organization of mangrove features at 

various spatial scales and represents the objects of interest to be mapped. Inclusion of specific scales of 
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mapped features is one of the main advantages of GEOBIA, which does this in a multi-scale hierarchical 

network of image objects derived through image segmentation [50,51]. Based on the conceptual 

hierarchy, five levels of mangrove features were selected (see output section in Figure 3). To perform 

the multi-scale mangrove mapping, eCognition Developer 8.7 [52] was exploited to develop the rule set 

and for executing the object-based routine.  

 

Figure 3. Flowchart of the mapping process applied in this study. 

2.5.1. Classification Hierarchy and Rule Sets Development 

Developing conceptual hierarchical levels of the objects of interests is essential in multi-scale mapping 

using GEOBIA [24,26,53]. This hierarchy shows the spatial organization of the objects in the landscape or 

image scene from a larger landscape unit into the smaller objects or component units. We used the landscape 

scaling ladder concept [24,26,54] to break down the complexity of targeted mangrove information into 

manageable units that still linked across scales (Figure 4). In the hierarchy, the “super-level” objects act as 

containers for its “sub-levels”, and work within parent and child relationship; while objects at the same 

level have a neighborhood relationship [26,52]. There are several advantages of having this hierarchy in 

place, as it provides a logical sequential mapping process, has a clear multi-scale context of the targeted 

objects and their relationships, and provides control over the process within a certain level and  

object container.  

From the object hierarchy we developed a strategy and procedure to identify and map the targeted 

objects individually, which was documented in the form of rule sets. For example, conceptually 

mangroves can be found within vegetation features in the image, and it also serves as the container of 

several lower hierarchical levels such as mangrove zonations, tree crown and canopy gaps, and 

individual tree species. At this stage, it is also necessary to identify some potential properties commonly 

embedded in these features in the image, which could be spectral, textural, and/or contextual (i.e., the 

relative position of the targeted object in relation to other objects that provides useful information for 

classifying the targeted object, such as distance, adjacency, location, and association [25]) information 

of the targeted features. Together, the conceptual object hierarchy and mapping strategy provide a 

feasible scenario to apply in the rule set processes to address the predefined research problem. Table 3 
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Literature review of 
mangrove spatial 

structure 

Image objects 
hierarchy 

Field data and local 
knowledge 

Landsat TM, ALOS AVNIR-2, WorldView-2, LiDAR 

Multi-scale OBIA approaches: 
1. Image segmentation 
2. Rule set development of multi-scale objects 
3. Image classification 

Aerial photograph 

Mangrove composition maps: 

1. Vegetation and non-vegetation  

2. Mangroves and non-mangroves   

3. Mangrove zonation 

4. Mangrove tree canopy crowns 

5. Mangrove species community Accuracy assessment 
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shows the documented multi-scale mapping scenario, membership rules and the classification processes 

developed for the Moreton Bay mangrove site. Exploratory work was done to find the best image band 

algorithm and associated threshold for each image and this is explained in more details in the 

corresponding sections. We do not provide the detailed rule set for Karimunjawa Island due to the 

limitation of paper space. However, it is available upon request, and the results comparison is discussed 

in Section 3.5. 

 

Figure 4. Image objects hierarchy for multi-scale mangrove mapping, objects relationships, 

and the levels of information at each hierarchy level. 

Table 3. Summary of the membership rules used in the multi-scale mangrove classification 

rule sets for Moreton Bay mangroves. The numbers in the table correspond to section 

numbers in the method section of this paper. 

No. Information Landsat TM ALOS AVNIR-2 WorldView-2 
WorldView-2 and 

LiDAR 

2.5.2 

Vegetation 

 

 

Non-vegetation 

Layer arithmetic 

Multi-threshold seg. 

FDI > 100 

Layer arithmetic 

Multi-threshold seg. 

FDI > 200 

Layer arithmetic 

Multi-threshold seg. 

FDI > 0 

Layer arithmetic 

Multi-threshold seg. 

FDI > 0 

Not “Vegetation” Not “Vegetation” Not “Vegetation” Not “Vegetation” 

2.5.3 

Mangroves 

 

 

 

 

Non-mangroves 

Within “Vegetation” 

Chessboard seg: 1  

Mean 4 = 1500 − 3500 

Mean 5 = 900 − 1450 

Within “Vegetation” 

Chessboard seg: 1  

Mean 3 = 300 − 550 

Mean 4 = 1000 − 3000 

Within “Vegetation” 

Chessboard seg: 1  

(7 − 5)/(3 − 5) = 8 − 22 

Mean 5 < 720 

Within “Vegetation” 

Chessboard seg: 1  

(7 − 5)/(3 − 5) = 8 − 22 

Mean 5 < 720 

Mean DTM < 1.5 

Not “Mangroves” Not “Mangroves” Not “Mangroves” Not “Mangroves” 

  

Image scene 

Vegetation 

Mangroves 

Non-vegetation 

Non-mangroves 

Closed-
forest 

Low 
closed-
forest 

Open 
scrub 

Tree crowns Tree gaps 

Species 1 Species 2 

Levels of 

information 

Local vegetation 
cover 

Local vegetation 
community 

Local vegetation 
formation/zonation 

Tree canopy 
structure 

Tree species 
community 

Parent/child relationships 

Neighborhood relationships 

Hierarchy level 

(1) 

(2) 

(3) 

(4) 

(5) (1) Species … 
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Table 3. Cont. 

No. Information Landsat TM ALOS AVNIR-2 WorldView-2 
WorldView-2 and 

LiDAR 

2.5.4 
Zonation 

bands 

 

 

 

 

Within “Mangroves” 

Multiresolution seg. 

(SP:10, s:0.1, c:0.5) 

Within “Mangroves” 

Multiresolution seg.  

(SP:25, s:0.1, c:0.5) 

Within “Mangroves” 

Multiresolution seg. 

(SP:25, s:0.1, c:0.5) 

Zone 1 
- 

 

1.5 < 4/(3+1) < 4 

Coast dist < 75m  

0 > 7/(5+6) < 1.36 

Coast dist < 75m 

Mean CHM > 10 

FCC < 1 

Zone 2 
- 

 

2.5 < 4/(3+1) < 6 

25>Coast dist<100m 

7/(5+6) > 0 

25>Coast dist<100m 

7 < CHM < 10 

0.95 > FCC < 1 

Zone 3 
- 

 

1.5 < 4/(3+1) < 4 

Coast dist > 100m 

0 > 7/(5+6) < 1.36 

Coast dist > 100m 

3 < CHM < 7  

FCC < 0.98 

Coast dist > 75 

Zone 4 - 
1.5 < 4/(3+1) < 6 

Coast dist > 100m 

7/(5+6) > 1.36 

Coast dist > 100m 

CHM < 3 

FCC < 0.98 

2.5.5 
Tree 

canopy 

Canopy 

gaps  

- 

 

 

 

 

- 

 

 

 

 

Within “Mangroves” 

Chessboard seg: 1 Within 

“Mangroves” 

Mean PC1 > 500 

Mean PC2 < -250 

Within “Mangroves” 

Chessboard seg: 1 

Mean CHM < 3 

 

 

Tree 

crowns  
- - 

Not “Canopy gaps” 

Seed based on local 

maxima of NIR1. 

Grow seed by ratio to 

neighbor < 1.2. 

Opening the seed. 

Not “Canopy gaps” 

Seed based on local 

maxima of CHM. 

Grow seed by ratio to 

neighbor < 1.5. 

Opening the seed. 

2.5.6 Individual species - - 

Within “Tree crowns”. 

Nearest Neighbor classification with samples taken 

from the individual tree crown. 

FDI: Forest Discrimination Index, NIR: near-infrared, MIR: mid-infrared, DTM: digital terrain model, CHM: canopy height 

model, FCC: fractional canopy cover, PC: principal component, SP: scale parameter, s: shape, c: compactness, italic 

numbers represent band order for the associated images, the conditional operator used on each membership rule was  

“and (min)”. 

2.5.2. Vegetation and Non-Vegetation Separation  

The first classification level in the multi-scale mapping process generated a mask to separate 

vegetation and non-vegetation features (i.e., water bodies, soils, and other artificial surfaces) in the 

image. In this study, we modified the Forest Discrimination Index (FDI) developed by Bunting and 

Lucas [55] to separate vegetation and non-vegetation as follow: 

FDI = NIR - (Red + Green) (2)  

This equation was derived by examining the spectral reflectance pattern of targeted features from the 

WV-2 image bands that had the greatest spectral separation between vegetation and non-vegetation 

features, as indicated by the standard deviation bars in Figure 5. The near infra-red1 (NIR1) band, as 

expected, provided consistently high spectral response of all types of healthy vegetation and gave the 
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greatest spectral separation between features (Figure 5). Water and artificial surfaces (building roofs and 

asphalt) had high spectral reflectance in the green band (band 3) and lower spectral reflectance in the red 

band (band 5), but greater separation from vegetation features. In this case, the sum of the green and red 

bands could be greater, lower or equal to the value of the near infrared1 band. Therefore, for the WV-2 

image, FDI values greater than zero represent all types of vegetation features, and zero or negative values 

represent non-vegetation features (Figure 6b). Different threshold values were applied to other images 

due to variation of object spectral reflectance responses between images (Table 3). We used layer 

arithmetic and multi-threshold segmentation algorithms to implement this process in the eCognition 

Developer 8.7 software, and creating a discrete delineation between vegetation and non-vegetation based 

on image pixel values. 

 

Figure 5. Spectral reflectance profiles of the major land cover types extracted from WV-2 

image within the Moreton Bay site. 

2.5.3. Mangroves and Non-Mangroves Discrimination  

Mangroves and non-mangroves within the vegetation class were separated by combining thresholds 

of image bands or band algorithms that were sensitive to mangrove features. Chessboard segmentation 

was applied to preserve the pixel value of the image. For spectral recognition of mangroves, the  

near-infrared reflectance spectrum revealed different reflectance levels related to the internal leaf 

structure and facilitated mangrove discrimination from other objects [14]. It is also evident from the 

spectral reflectance profile in Figure 5 that mangroves has a distinguishable spectral profile from other 

vegetation objects; specifically in the green, red, and NIR bands of the WV-2 image where the spectral 

separation are optimal.  
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Figure 6. Subset of Whyte Island maps, showing (a) WV-2 standard false color composite, 

(b) vegetation (V) and non-vegetation (NV) discrimination using FDI, (c) spectral-based 

mangroves (M) and non-mangroves (NM) separation, and (d) band combination image to 

enhance the mangrove zonations. Tree crown delineation process showing (e) color 

composite of PC1, PC2, PC1 (RGB), (f) masked canopy gaps (white), (g) tree canopy seeds 

(red) on top of NIR band, and (h) tree crown polygons derived from region growing. 

At the Moreton Bay site, a ratio of the spectral reflectance distance between NIR to red, and green to 

red ([NIR-red]/[green-red]) was found to be effective in separating mangrove from non-mangrove 

objects in the WV-2 imagery (Figure 6c). The NIR and red bands were also found useful for 

discriminating mangrove objects in the AVNIR-2 imagery, as were the NIR and the first mid infrared 

(MIR1) band for the TM image (Table 3). To enable comparison with the spectral-based only approach, 

the contextual information in the form of a DTM derived from LiDAR data was also used in this process 

in combination with the WV-2 image. The DTM was used to set an elevation boundary above sea level 

for mangrove habitats that commonly occur in the lower parts of tidal flats in coastal or riverine areas, 

which is frequently inundated by saline water. Limiting the delineation to the typical elevation of 

mangrove habitats will increase the accuracy of the classification and compensate for limitations of 

spectral-based recognition. 
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2.5.4. Mangrove Zonation Pattern Delineation  

Mangrove zonation boundaries at the study sites follow the topographic contours which are possibly 

indicative of tidal inundation levels [22]. From the field survey, it was established that these zonations 

represent a variation of canopy cover density, stem structure, dominant species, and tree height  

(Table 2). Optical remote sensing data can often distinguish different mangrove zones based on the 

spectral reflectance of dominant mangrove species within each zone [56]. Multi-resolution 

segmentations with the scale parameters of 10 and 25 were applied to the AVNIR-2 and WV-2 image 

data, respectively, within the mangrove class to aggregate the zonation pattern. Using the AVNIR-2 and 

WV-2 images, a combination of band ratios and the distance from the coastline (Table 3) facilitated the 

differentiation of mangrove zonation boundaries (Figure 6d). Exploratory work was carried out to find 

the best image band ratio and associated threshold for each image to enhance the difference between 

each zonation. However, due to the large pixel size and the narrow mangrove zonation bands, TM was 

unable to differentiate the zonation pattern. As a comparison, we also incorporated the CHM and 

fractional canopy cover (FCC) derived from LiDAR data to differentiate the mangrove zonations based 

on tree height and canopy cover density. 

2.5.5. Mangrove Tree Crown and Gap Delineation 

To delineate individual mangrove tree crowns and gaps we modified the “valley following” [57] and 

“region growing” [58] approaches, and applied these in the eCognition Developer software. The basic 

principle of tree crown delineation is well-described using three-dimensional “radiometric topography” 

analogy of tree crowns [58]. The valleys (local minima) which have lower spectral reflectance (i.e., in 

the NIR or panchromatic band) represent the boundary of tree crowns, while the peaks, which have local 

maxima, are treated as seeds and will be grown towards the boundary of the valleys. The polygons 

created from this region-growing approach are the tree crowns. There are two implicit assumptions in 

these approaches; (1) the tree crown should be visually recognizable as a discrete object on the image 

(i.e., the pixel size of the image must be smaller than the average size of the tree), and (2) the tree crown 

is brighter (or has a higher pixel value) than the edge of the crown [59]. Therefore, we used the  

pan-sharpened WV-2 image with a pixel size of 50 cm to delineate the tree crowns. Chessboard 

segmentation with the value of 1 was applied to the mangrove class based on the pan-sharpened WV-2 

image to obtain pixel level information for use in this process.  

There were three main steps to delineate mangrove tree crowns. The first step was to find tree canopy 

gaps between trees as the boundary of the tree crowns. It is common in mangrove forest to have irregular 

stands and canopies with groups of trees often clumped into a single wider canopy, making the delineation 

of canopy gaps through shadow (local minima) growing difficult. Therefore, we used PC1 and PC2 of the 

image, which accounted for 99.84% of the variance to emphasize the different appearance between soil 

backgrounds or canopy gaps and mangrove tree canopies (Figure 6e,f). The second step was to find the 

tree top (local maxima) from the original NIR1 band and treat them as crown seeds (Figure 6g), and then 

grow it toward the canopy gaps border. We used a ratio of NIR1 spectral values of the adjacent pixels to 

the crown seed to grow the crown region in a looped iteration until the crown seed polygons reached the 

canopy gaps border. This rule set was developed to adapt the sample sites’ mangrove pattern, where 
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there are noticeable canopy gaps between tree canopies. Modifications might be needed to apply this 

rule set to mangrove forests with limited canopy gaps. Finally the delineated tree crowns were refined 

using a pixel-based morphological opening operation to smooth the edge of the tree crown polygons 

(Figure 6h). As a comparison, we used the LiDAR data to delineate tree crowns based on the patterns of 

canopy height derived from the CHM. 

2.5.6. Mangrove Species Community Identification 

Delineated tree crowns were classified into main mangrove species found at the study sites using the 

pan-sharpened WV-2 multi-spectral image bands using a supervised nearest neighbor (NN) classifier. 

The extra textural information in the pan-sharpened imagery is important to include due to different 

vegetation structural characteristics of mangrove species. The boundary of tree species communities is also 

more apparent with smaller pixels. We applied an approach similar to the one developed by Gougeon and 

Lackie [60], where representative sample objects of each mangrove species were collected individually 

from the tree crown polygons, and used to generate signatures for each class. The nearest neighbor (NN) 

algorithm looks for the closest sample object in the feature space for each image object [52]. We used a 

standard NN algorithm based on the mean value of red, green, blue, PC2 layers, and the standard 

deviation of layer NIR1, with the selection of the object samples guided by the field species 

identification. However, due to the domination of Avicennia marina stands in Moreton Bay mangroves, 

it is difficult to identify the other species using this approach. Therefore, we applied this classifier to 

discriminate different communities of Avicennia marina in Moreton Bay mangroves. 

2.6. Mangrove Composition Mapping Validation 

The accuracy assessment of GEOBIA requires assessment of the geometric accuracy (shape, 

symmetry and location) of the created image objects [61], because the geometry of image objects is an 

inherent property resulting from image segmentation. However, only limited number of published works 

describes the area-based accuracy approach developed for GEOBIA [35]. Among the significant results 

in this field were studies done by Zhan et al. [62] and Whiteside et al. [63] who developed a framework 

for assessing the quality of geometric properties of image objects based on the error matrix idea. An 

area-based accuracy assessment (Table 4) was used to measure the degree of similarity between the 

results of the classification and reference data from different aspects, including overall quality, user’s 

accuracy, and producer’s accuracy [62]. In addition, we also calculated the overall accuracy measure, 

which is defined as the ratio between the correctly classified area and the total area of observation. To 

perform this calculation, the reference data used in this measurement should have an area dimension 

matching the classified objects [62,63]. 

The accuracy assessments were performed for map results of levels 1 to 4 (see Figure 4) against the 

thematic maps derived from manual interpretation of a very-high-spatial resolution aerial photograph 

(7.5 cm pixel size) of the Moreton Bay mangroves. All of these features can be accurately discriminated 

and delineated from this imagery. This approach was selected due to the lack of reference information 

for the study sites for the accuracy assessment. The image interpretation results from the very  

high-spatial resolution aerial photographs were accepted to be correct without any form of accuracy 

assessment [64]. However, we did not perform the accuracy assessment for Karimunjawa Island due to 
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the lack of the reference maps and very-high resolution aerial imagery. Following the approach by 

Whiteside et al. [63], we used a circular buffer with a 50 m radius of 30 random point samples within 

the “class domain areas” to calculate the area-based accuracy assessment. The circular buffer was used 

for practical reasons to create the area samples, and the number of points and buffer radius were chosen 

with regard to the size of the objects on the map being accuracy assessed. The resulting circular polygons 

were used to clip both the classified image objects and visually-interpreted reference map for area 

comparisons (Figure 7). A similar approach was implemented for the accuracy assessments of levels 3, 

4, and 5. However, for level 3 we only plotted 10 random points and used a buffer radius of 20 m within 

each zonation because of the smaller area of the object class being validated. Ten random points with a 

10 m radius buffer was used for levels 4 and 5. However, at the mangrove species level, we used South 

East Queensland mangrove composition maps (1:25,000) produced by the Queensland Herbarium [65] as 

reference data. This map was produced from aerial photograph interpretation combined with extensive 

fieldwork, which shows the mangrove species communities and their description of the Moreton Bay area. 

Table 4. Area-based accuracy assessment equations [62,63]. 

Measure Equations Equation Number 

Overall Quality (OQ) (|𝐶 ∩ 𝑅|)/(|𝐶 ∩ 𝑅| + |𝐶 ∩ 𝑅| + |𝐶 ∩ 𝑅|) 3 

User’s Accuracy (UA) (|𝐶 ∩ 𝑅|)/(|𝐶|)  4 

Producer’s Accuracy (PA) (|𝐶 ∩ 𝑅|)/(|𝑅|)  5 

Overall Accuracy (OA) (|𝐶 ∩ 𝑅|)/(|𝐶 ∪ 𝑅|)  6 

C is the area of the classified object and R is the area of the reference object, C∩R is the area of intersection 

between C and R, C∩R is the area of R not covered by C, C∩R is the area of C that is not covered by R, and 

C∪R is the area covered by both objects. 

 

Figure 7. Example of mangroves and non-mangroves area-based accuracy assessment;  

(a) reference map, (b) classified map from WV-2 image, and (c) classes produced from area 

intersection process. 

  



Remote Sens. 2015, 7 4769 

 

 

3. Results and Discussion 

3.1. Mangrove Spatial Structure from Semi-Variogram Analysis 

In this study, we were particularly interested in the forms of the semi-variograms, namely sill and 

periodicity. They are related to the density of objects and scene-scale level of variance [66,67], and 

provide an indication of a repetitive spatial pattern along the transect [67,68]. Figure 8 showed that 

Fisherman and Whyte Island mangroves have higher sill and periodicity than Boondall wetland and 

Karimunjawa Island mangroves. This pattern was attributed to the high variation in the degree of  

open-ness of mangrove canopy and the significant canopy gaps present in the Fisherman and Whyte 

Islands mangroves, allowing individual tree crowns to be detected. On the other hand, mangroves in the 

Boondall wetlands were dominated by low-closed Avicennia marina forest of homogeneous stems with 

very high-density canopy cover, and the mangroves in Karimunjawa Island mainly consisted of  

closed-mature mangrove trees with overlapping canopy crowns (Table 2). It was noticeable from the 

image (Figure 8c,d) that mangroves in Boondall wetlands and Karimunjawa Island have a smooth texture 

with minimum gaps between tree stands and some clumping of tree groups, preventing detection of 

individual tree crowns from the image. From the semi-variogram analysis, we hypothesized that 

mangroves on Fisherman and Whyte Islands have higher vegetation structural variability compared to 

the others, providing a higher level of information for mangrove mapping (i.e., up to the tree canopy 

crown level). 

 

Figure 8. Subsets of green band semi-variograms, with up to 50 m lag distance, showing the 

variation of vegetation structure at different sites: (a) Fisherman Island, (b) Whyte Island, 

(c) Boondall wetlands and (d) Karimunjawa Island. Coordinates represent the approximate 

center of each image. 
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3.2. Mangrove Composition Maps 

The results of our study demonstrated that the GEOBIA approach was able to produce various 

mangrove feature information details from a single and multiple images, by integrating the field data, 

operator local knowledge, and a conceptual hierarchical model of multi-scale mangrove features in the 

rule set (Figure 9). According to the semi-variogram results in Section 3.1, all the three Moreton Bay 

study sites were mapped at levels 1 to 3, but only mangroves at Whyte and Fisherman Islands were 

mapped in levels 4 and 5. The results showed that the developed rule set was able to map targeted 

mangrove composition objects from images with different spatial resolutions. Only limited studies have 

implemented the explicit hierarchical model of objects in mangrove mapping [9,12,16,69]. This study 

demonstrated the effectiveness of having a conceptual hierarchical model for mangrove mapping. It also 

described the ability and limitation of the images and the mapping approach in depicting information of 

mangrove composition. Nevertheless, membership rules/thresholds in the rule set required adjustment 

for each image (see Table 3). The results also show the required image pixel resolution aspect in the 

conceptual spatial hierarchical organization of mangroves features identifiable from remotely-sensed 

images (Figure 1). 

Image spectral reflectance was the main criteria used to map vegetation and mangrove stands from 

the optical images (TM, AVNIR-2, and WV-2). The FDI algorithm successfully discriminated the 

vegetation and non-vegetation class (level 1) with a high degree of overall accuracy for TM (89%), 

AVNIR-2 (93%), and WV-2 (97%) (see Table 5 in Section 3.3). This pattern was also visually evident 

in Figures 9a to c, where the vegetation class boundary was more accurately represented in WV-2 than 

in the TM and AVNIR-2 images. The strip of Sarcocornia quinqueflora grass located in the middle of 

the saltmarsh was successfully mapped by WV-2 image (Figure 9c), but not by other images. We found 

the FDI algorithm was sensitive to all typical vegetation spectral reflectance, regardless how healthy the 

vegetation is. For example, the dry Sporobulus virginicus background grass, lacking the red-edge and 

absorption feature in the red part of the spectrum, which is typical for healthy green vegetation spectral 

reflectance [55,70] (Figure 5), was classified as vegetation. However, in general, the FDI algorithm was 

transferrable from WV-2 to the other images, but it required adjustment of the vegetation threshold for 

each image (Table 3). 

We discriminated mangrove stands (level 2) within the vegetation class created in level 1. The spectral 

reflectance of mangroves is strongly influenced by tidal effects and soil background, resulting in mixed 

pixels [71,72]. As a consequence, it makes the application of a pixel-based approach in mangrove stands 

difficult. However, the combination of image bands and context information in the rule set in GEOBIA 

allows effective recognition of mangrove objects in the image [9,12,73]. For the spectral only approach, 

the green, red, NIR, and MIR bands provided a useful tool to discriminate mangrove stands from other 

vegetation objects. Exploratory work to find the best image band algorithm and associated threshold for 

each band, representing mangrove stands, suggested that each image has a unique combination of band 

algorithm and threshold to successfully separate mangroves from non-mangroves objects. However, the 

results showed some Casuarina glauca trees were misclassified as mangrove tree stands due to their 

similar spectral reflectance (see along the port highway in Figure 9e to g as examples). To refine the 

arbitrarily-defined spectral-based rule set, we included the DTM derived from LiDAR in the rule set as 

contextual information of the mangrove habitat. Based on the assessment of several DTM values, a 
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threshold of DTM lower or equal to 1.5 m above mean sea level was found to be useful in combination 

with the WV-2 spectral-based rule set to separate mangroves with other terrestrial vegetation and 

applicable to all Moreton Bay mangrove sites. This additional contextual information significantly 

improved the accuracy of the mangrove delineation (Figure 9h) by 9% (Table 5). 

Within the mangrove class, the zonation pattern in Moreton Bay was difficult to map using image spectral 

information only. The zonation pattern in Moreton Bay represents variations of Avicennia marina vegetation 

structure (i.e., canopy density, tree stem, tree height) across the mangrove stand. Hence, the mangrove 

zonation pattern differentiation based on image spectral reflectance suggested by Lucas et al. [56] was 

not applicable in this case. To address this issue, in theory, the inclusion of textural or contextual 

information might help the classification. However, we found that textural information of the image did 

not facilitate the zonation discrimination. It might be attributed to the fact that some of the mangrove zones 

have highly mixed vegetation structure stands with a number of canopy gaps (i.e., S3 and M4 in Moreton 

Bay), making it difficult to differentiate the zonation based on image texture. Instead, we used the distance 

from the coastline in combination with the spectral-based rule set to delineate each zone (Table 3), and 

this approach worked well (Figure 9i,j). We also investigated the use of the CHM and FCC derived from 

LiDAR data. The results showed that the mangrove zonation was oversimplified using the AVNIR-2 or 

WV-2 imagery, and well-represented using a combination of WV-2 and LiDAR data (Figure 9i–k, 

respectively). However, the accuracy assessment results suggested a low accuracy of the zonation maps. 

It was attributed to the inaccuracy in defining the mangrove zonation boundary, due to the mixed 

vegetation stands between zones. 

The mangrove tree crowns and species community levels were mapped using pan-sharpened WV-2 

image only (0.5 m) and a combination of pan-sharpened WV-2 with LiDAR data (2 m). Most of the 

mangrove tree canopies are very dense and have overlapping canopy arrangement. As a result, the 

definite borders of tree canopies were difficult to detect and delineate from the image. Therefore, to 

minimize the tree canopy border demarcation error, we developed a rule set that could (1) enhance the 

differentiation between canopy gaps and trees, and (2) find the tree crown seed and grow the seed 

towards the tree crown border within the tree class (Table 3). Figure 9n shows that PC band combination 

1, 2 and 1 enhanced the differentiation of tree and canopy gaps. The tree crowns produced from the  

pan-sharpened WV-2 showed more realistic polygon boundaries compared to the result from the 

combination of pan-sharpened WV-2 and LiDAR data, with an overall accuracy of 68% and 64%, 

respectively (Table 5). Although LiDAR data provided a clear tree crown pattern along with the canopy 

height information, the optimum pixel resolution resampled from the point clouds was limited to 2 m. 

According to the result evaluation, the LiDAR data worked very well on large canopies (i.e., 8 m 

diameter or larger), but were unabled to depict small individual trees crown less than 8 m in diameter 

(see the result in comparison with Figure 9q). The LiDAR result in Figure 9m showed a very dense 

canopy with fewer and smaller canopy gaps compared to the pan-sharpened WV-2 result (Figure 9l). 

Therefore, as suggested by Gougeon [57] and Culvenor 59], high-spatial resolution image data with 

pixels significantly smaller than the tree canopy size is an essential requirement for tree  

crown delineation. 
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Figure 9. Example subsets of mangrove composition maps at Whyte Island, Moreton Bay, 

showing all hierarchy levels produced from different image sources: (a) level 1 TM,  

(b) level 1 AVNIR-2, (c) level 1 WV-2, (d) WV-2 image (RGB 753), (e) level 2 TM, (f) level 2 

AVNIR-2, (g) level 2 WV-2, (h) level 2 WV-2+LiDAR, (i) level 3 AVNIR-2, (j) level 3 

WV-2, (k) level 3 WV-2+LiDAR, (l) level 4 pan-sharpened WV-2, (m) level 4  

pan-sharpened WV-2+LiDAR, (n) WV-2 PC1,2,1, (o) level 5 pan-sharpened WV-2, (p) 

level 5 pan-sharpened WV-2+LiDAR and (q) true color aerial photograph.   
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The mangrove species community maps were created based on the tree crown boundaries produced 

from the previous level. The NN algorithm successfully classified the Avicennia marina community. 

Visually, the map results follow the mangrove zonation pattern from the previous level. However, there 

were noticeable misclassified open scrub Avicennia in the WV-2 + LiDAR produced map. Although 

there was a clear difference pattern on the produced maps (Figure 9o and p), the results from the accuracy 

assessment did not show much difference between them (54% and 53%, respectively). The mangrove 

composition map produced by Queensland Herbarium has high details of thematic information. 

However, the coarse scale of the reference map (1:25,000), as opposed to the image resolution (0.5 and 

2 m), was likely to be the source of this inaccuracy. The thematic information of the reference map was 

found to be useful for locating mangrove species communities, but not the boundary of the class.  

3.3. Accuracies, Errors and Uncertainties of the Maps 

The main strength of this study was the high detection rate of mangrove features across the mapping 

levels. The area-based accuracy assessment calculated the area of the correctly classified class relative 

to the class domain area. In this study, we used an entire image for the domain area of level 1, vegetation 

class for level 2, and so on. Table 5 summarises the results of the area-based accuracy assessment 

descriptive statistics for all mangrove composition levels in this study. The overall quality (OQ) shows 

the class-related area accuracy; for instance, the area of correctly classified vegetation was 85% out of 

the total area of vegetation in level 1. On the other hand, the overall accuracy (OA) calculated the 

percentage of all correctly classified classes (vegetation and non-vegetation) in comparison to the total 

class domain area (an entire image). 

Table 5. Summary of the area-based accuracy descriptive statistics in percentage (%). 

L
ev

e
l 

Class 

Landsat TM ALOS AVNIR-2 WorldView-2 WV2 + LiDAR 

OQ PA UA OA OQ PA UA OA OQ PA UA OA OQ PA UA OA 

1 
Vegetation 85 92 92 

89 
90 93 97 

93 
95 99 97 

97 
     

Non-vegetation 70 82 83 81 94 86 90 92 97     

2 
Mangroves 74 79 92 

82 
76 81 93 

82 
80 94 84 

85 
91 99 99 

94 
Non-mangroves 66 88 72 66 85 75 63 69 88 87 98 97 

3 

Zone 1 - - - - 55 57 92 

46 

72 75 96 

53 

72 75 95 

59 
Zone 2 - - - - 59 59 100 45 45 98 60 61 96 

Zone 3 - - - - 38 38 99 49 50 97 39 39 99 

Zone 4 - - - - 34 34 100 44 44 99 68 68 99 

4 

   PS WV-2 PS WV-2 + LiDAR 

Tree crowns - - - - - - - - 64 81 76 
68 

56 64 82 
64 

Canopy gaps - - - - - - - - 34 65 41 24 36 42 

5 

Avicennia (CF) - - - - - - - - 65 82 75 

54 

57 87 62 

53 Avicennia (LCF) - - - - - - - - 58 87 64 65 77 81 

Avicennia (OS) - - - - - - - - 22 23 94 4 4 20 

OQ: overall quality, PA: producer’s accuracy, UA: user’s accuracy, OA: overall accuracy,  

PS: Pan-sharpened, CF: closed-forest, LCF: low closed-forest, OS: open scrub. 
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The percentage of OQ and OA have similar pattern throughout the levels. For local mangrove features 

(levels 1 and 2), both OQ and OA have high accuracy levels, with increasing accuracy for the higher 

spatial resolution images (63%–95% and 82%–97%, respectively). It indicated the effectiveness of the 

mapping approach and the superiority of the high-spatial resolution images. The OQ and OA of “within 

mangrove features” (levels 3 to 5) showed lower accuracy levels (4%–72% and 46%–68%, respectively), 

suggesting that the rule set developed at these levels was unable to classify the targeted objects properly. 

Heumann [73] reported similar results, where the overall acuracy of mangrove stands was 94.4% and 

dropped to about 25% at mangrove species level. The producer’s accuracy (PA) depicts the omission error 

or the probability of a reference object being correctly classified, whereas the users’s accuracy (UA) or 

commission error indicates the probability of an object classified on the map actually represents that 

category on the ground [64]. For instance, for the delineation of tree crowns using the pan-sharpened  

WV-2 image, 81% of the tree crown areas was correctly classified as tree crown, but only 76% of the areas 

called tree crown on the map were actually tree crown on the ground. 

Overall, the area-based accuracy assessment was simple to implement and easy to interpret. The result 

of this accuracy assessment approach was not only checking the thematic category of the object, but also 

representing the spatial accuracy of object boundaries compared to the reference. However, it calculated 

one class at a time [62] rather than all of the accuracy samples in one attempt, making the calculation 

more time-consuming. The locations of the areal sampling for calculation were also limited to the class 

domain area. Therefore, in accordance with the findings of Whiteside et al. [63], this may contribute to 

limiting the area sampled and hence included in the area-based accuracy assessment. 

The main limitation of the mapping approach related to the classification rule set was its site, sensor 

and time dependency. This limitation was due to the spectral reflectance variations of the images 

captured by different sensors and the variations of the mangrove environmental settings. The rule set 

developed (i.e. algorithms and thresholds) was not directly transferrable to different sites, sensors and 

times of acquisition, and need to be modified accordingly. The only uncertainties introduced in the accuracy 

assessment were attributed to the time gap of one and three years between the image and field data acquisition 

times for Moreton Bay and Karimunjawa Island, respectively. Some level of change in mangrove condition 

may have occurred within these time gaps. However, we notice that there was no major disturbance (such as 

flood, tsunami, cyclone and logging) affecting the study areas within the time gaps. 

3.4. Multi-Scale Mangrove Composition Mapping 

The effects of the L- and H-resolution model of remote sensing data [74] to the produced mangrove 

maps were evident in this study. The results indicated that low-resolution images have limited ability to 

depict mangrove features compared to the high-resolution images (Figure 9). The TM image (30 m) was 

only able to differentiate mangrove stand objects (Figure 9e); and the AVNIR-2 (10 m) and WV-2 

images (2 m) were able to map different mangrove zonation patterns (Figure 9i and j). The  

pan-sharpened WV-2 (0.5 m) and LiDAR, on the other hand, were able to map more detailed mangrove 

features to the level of mangrove tree crowns and species communities (Figure 9l to 9o). A decrease in 

image spatial resolution affects spectral heterogeneity of the image since it creates mixed pixels [27,74] 

hence being less sensitive to the spatial complexity and hampers the ability to discriminate small objects 

relative to the pixel size [74,75]. 
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The comparison of overall accuracy per image (Figure 10a) indicated that WV-2 imagery has the 

highest overall accuracy for all of the levels. For levels 1 and 2 there were a clear increase of accuracy 

when increasing image spatial resolution. Levels 3 to 5 also confirmed this pattern. The decrease of 

overall accuracy when combining WV-2 and LiDAR data was attributed to the 2 m resampling of LiDAR 

point cloud. Yet, it is important to note that a comparatively large number of spectral bands available 

with a limited spectral range for the WV-2 image also enabled more flexibility in applying the GEOBIA 

rule set [12]. Increasing in spectral resolution provides additional explanatory information in object 

recognition [75], which in turn increases the classification accuracy.  

 

Figure 10. Comparison of the overall accuracy result of (a) different images and  

(b) different levels, and (c) area of the produced maps for level 1, 2, and 3 in Whyte Island, 

Moreton Bay. 

Looking at the variation across levels, the overall accuracy decreased by increasing of the mapping 

level (i.e., finer scale or smaller object size) (Figure 10b). There are several possible explanations for 

this pattern. First, smaller object sizes (i.e., zonations, tree crowns, and individual species) required more 

complex classification rule sets to map the land-cover classes. The inaccurate definition of the rule set 

will affect the accuracy of the mapping. Second, smaller object sizes increase within-class variability, 

which decreases the spectral separability of classes and potentially decrease the accuracy [76,77]. This 

effect is well-known in pixel-based approaches [75] and may also affect the GEOBIA approach. Third, 

it is suggested that a higher number of thematic classes used in the classification tends to reduce the 

accuracy of the results [78,79]. A larger number of targeted land-cover classes requires a more complex 

definition of each object category for effective separation, and increase the “boundary effect” [77]. As 

the targeted objects become smaller, the proportion of segments falling on the boundary of objects will 

increase and hence potentially decrease the mapping accuracy. The object area comparison in Figure 10c 

showed that the area difference of land-cover classes between images (indicated by the numbers on top 
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of the bar graph) was increased by the increasing number of targeted object classes. At level 1 the area 

was similar across images. At levels 2 and 3 the area increased by to 0.14 and 0.32 km2, respectively. 

The relatively large area of mangroves mapped from WV-2 image was attributed to the decreasing 

boundary effect due to the high-spatial resolution of the image. 

3.5. Applicability of the Approach to Other Sites 

The next question following the success of the implementation of the mapping approach is whether 

the approach can be applied elsewhere. Developing an approach or algorithm that can be universally 

implemented is one of the major challenges in remote sensing applications. Unfortunately, this situation 

is difficult to achieve and rarely happen because of varying environmental conditions, seasonality, sensor 

viewing geometry, level of pre-processing, spatial resolution and image sensor types. Most of the 

mapping procedures and algorithms employing remote sensing data are site and sensor specific. We 

investigated the transferability of the conceptual hierarchical model of multi-scale mangrove features 

and its rule set to another site on Karimunjawa Island using the same image datasets (TM, AVNIR-2, 

and WV-2). All image datasets were pre-processed to the same level using the same correction methods, 

to ensure a fair comparison. 

In theory, the conceptual hierarchical model developed indicates the “domains of scale” [17] of 

mangrove features and provides logical multi-scale mapping guideline, that can be applied everywhere. 

However, when it comes down to the technical mapping aspect, the result might be unexpected. We 

found that only the three first hierarchical levels could be mapped. This limitation was in accordance 

with the results of mangrove spatial pattern analysis discussed in Section 3.1 (Figure 8). According to 

field observations, mangroves on Karimunjawa Island are richer in species composition, have higher 

canopy density, and consist of taller and more matured trees as opposed to Moreton Bay mangroves. The 

dense and highly overlapping tree canopies prevented the delineation of the individual tree crowns. 

Therefore, the difference of environmental settings and local variation of mangrove composition affected 

the implementation of the model. 

A direct transfer of the rule set from Moreton Bay to Karimunjawa Island was not possible. At level 1, 

the FDI algorithm successfully discriminated vegetation and non-vegetation objects from all of the images, 

but required modification in the membership thresholds. Mangrove and non-mangrove separation and 

mangrove zonation delineation were performed using different processes and membership rules in the rule 

set compared to the Moreton Bay site. Apart from the environmental setting, the canopy reflectance 

depends on a numbers of factors and varied across location and time [80]. Thus, the image spectral 

response might also contribute to the rule set modification requirements. 

4. Conclusions and Future Research 

This study compared and contrasted the ability of different image datasets (Landsat TM, ALOS 

AVNIR-2, WorldView-2, LiDAR) to map five levels of mangrove features, including vegetation 

boundaries, mangrove stands, mangrove zonations, individual tree crowns, and species communities. 

We used Moreton Bay in Australia as the primary site to develop the classification rule sets and 

Karimunjawa Island in Indonesia to test the applicability of the rule sets. This study was the first attempt 

to develop and implement a conceptual spatial and temporal hierarchical organization of mangroves for 
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mangrove feature mapping at multiple scales. The results demonstrated that scale-specific, ecologically 

relevant information on mangroves can be effectively mapped using a conceptual hierarchical model of 

multi-scale mangrove features implemented through the rule sets in GEOBIA. For mangrove and  

non-mangrove mapping, the use of TM, AVNIR-2, WV-2 and WV-2 + LiDAR data provided overall 

accuracies of 82%, 82%, 85%, and 94%, respectively. The results suggest that higher spatial resolution 

images are required to map detailed information of mangroves. The TM image was only able to 

differentiate mangrove stand objects, while AVNIR-2 and WV-2 imagery allowed different mangrove 

zonation patterns to be mapped. The pan-sharpened WV-2 and LiDAR data could be used to map more 

detailed mangrove features, including individual mangrove tree crowns and species communities. 

However, we also noted that the superiority of WV-2 imagery was also attributed to the relatively large 

number of spectral bands. 

Developing an efficient rule set requires an understanding of the spectral, physical, and contextual 

characteristics of the targeted object(s). We found that the inclusion of contextual information, in the 

form of elevation and distance, significantly increased the accuracy of the mapping. However, the 

development of rule sets is image and site dependent. Different algorithms and threshold values might 

be applied to different images to map similar objects due to variation of object spectral reflectance 

responses between images. Modification of algorithms and membership thresholds was also needed to 

map similar object at different locations, due to the different environmental settings, local mangrove 

composition variation, and the site-specific spectral response. We found that the accuracy of maps was 

defined by interactions between image spatial resolution, the scale of the targeted objects, and the 

number of object land-cover classes mapped. Although it is achievable using high-resolution images, 

mapping smaller objects required a more complex rule set to be developed due to increase within-class 

variability that potentially decreases the mapping accuracy. Incorporation of a larger number of object 

categories adds more complexity of class definition and increases the boundary effect, which in turn will 

decrease the mapping accuracy. 

The findings of this study provide a conceptual guidance of multi-scale mangrove mapping and a 

technical demonstration to produce scale-specific mangrove information. This information is essential 

to address mangrove ecological problems at a relevant spatial scale. Hence, this research builds a 

fundamental approach for multi-scale mangrove mapping and advances the current knowledge on and 

the application of GEOBIA for mangrove mapping. However, the results of this study were limited to 

the selected images, mapping techniques, and mangrove sites. Further research need to include a wider 

range of images and mapping techniques. The potential of including image texture in high-spatial 

resolution image also needs to be explored further. Finally, to ensure the transferability of the conceptual 

hierarchical model, this approach needs to be tested at locations rich in mangrove species with distinctive 

individual tree canopies. 
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