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Abstract: Object-based image analysis allows several different features to be calculated for
the resulting objects. However, a large number of features means longer computing times
and might even result in a loss of classification accuracy. In this study, we use four feature
ranking methods (maximum correlation, average correlation, Jeffries–Matusita distance
and mean decrease in the Gini index) and five classification algorithms (linear discriminant
analysis, naive Bayes, weighted k-nearest neighbors, support vector machines and random
forest). The objective is to discover the optimal algorithm and feature subset to maximize
accuracy when classifying a set of 1,076,937 objects, produced by the prior segmentation of
a 0.45-m resolution multispectral image, with 356 features calculated on each object. The
study area is both large (9070 ha) and diverse, which increases the possibility to generalize
the results. The mean decrease in the Gini index was found to be the feature ranking method
that provided highest accuracy for all of the classification algorithms. In addition, support
vector machines and random forest obtained the highest accuracy in the classification,
both using their default parameters. This is a useful result that could be taken into account
in the processing of high-resolution images in large and diverse areas to obtain a land
cover classification.
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1. Introduction

While the traditional pixel-based approach for remote sensing image classification is based on the
statistical analysis of multispectral features of the pixels in an image, object-based image analysis
(OBIA) allows the use of a wide range of additional information. The OBIA approach involves two steps:
segmentation and classification. After segmentation, a very large number of features can be calculated
for the resulting objects. The main advantages of OBIA, compared with pixel-based approaches, is the
larger number of available features and the fact that the features convey more information when they
are calculated on real objects than when sampled on a square grid. The availability of high spatial
resolution satellites for civil use, for example QuickBird [1], and the release of eCognition in 2000,
the first commercial OBIA software [2,3], are the two advances behind the expansion of OBIA.

eCognition [4] was initially developed by Definiens AG to overcome limitations in traditional
approaches to the analysis of high spatial resolution remote sensing images and was the first commercial
software that attempted to overcome such limitations. This software allows the extraction of objects
from the image that have certain meaning and from which it is possible to extract certain semantics
information. eCognition adopted an object-based and a multi-scale approach to the analysis of digital
images and has become the most widely-used software in remote sensing when trying to extract thematic
information from very high spatial resolution images. Its release has given universal access to tools that
previously were only available in specialized research labs [2,3].

Until the mid-1990s, satellite imagery classification was mainly based on conventional statistical
techniques, such as maximum likelihood or minimum distance, usually on a pixel basis. In recent years,
due to the advances made in computing technology, alternative machine-learning algorithms have been
proposed, particularly the use of artificial neural networks, weighted k-nearest neighbors (wk-NN),
decision trees, support vector machines (SVM) and methods derived from the theory of fuzzy logic [5].
OBIA has not been unaffected by this trend, and several studies have used these algorithms to classify
the objects produced by OBIA segmentation algorithms [6–16].

Whatever the algorithm used, having a very large number of features poses two problems. First, the
larger the number of features used in classification, the longer the computing time needed. Second,
using a very large number of explanatory features, especially when some of them are redundant, noisy
or informationless, might result in a less accurate classification [17,18]. This is the so-called curse of
dimensionality or the Hughes effect [19], which is an important issue in optimization and machine
learning. Its main consequence is the need to greatly increase the amount of training objects necessary
to maintain the sampling density in the space of features as the number of dimensions, i.e., the number
of explanatory features, increases. This issue is increasing in importance due to the emergence of both
OBIA and hyperspectral sensors. However, not all classification algorithms are sensitive to this effect.
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If no classification method is to be a priori discarded, it is better to use the lowest possible number of
explanatory features.

However, it may be difficult to select the most relevant for classifying the objects. Thus, feature
selection has become an important research topic in OBIA, and Lu and Weng [18] have identified the
development of approaches to feature selection as one of the critical steps in remote sensing.

Despite its importance, it is not very common for OBIA-related papers to explicitly mention feature
selection or the criteria and measurements used for the same. Most papers in which it is mentioned are
based on Jeffries–Matusita distance [21–23], while others [10,15,24] use the Gini index, an index of
the relative importance of features produced by algorithms based on decision trees. Laliberte et al. [25]
compare the Jeffries–Matusita distance and the mean decrease in the Gini index (MDG) to select features
to use with the wk-NN classification algorithm. MDG is a feature importance measurement provided by
tree-based machine learning prediction methods, such as random forest. The use of Jeffries–Matusita
distance assumes a normal multivariate distribution of the features in each of the classes. However, this
assumption is not always met for features extracted from segmented objects. On the other hand, MDG
is a non-parametric statistic that assumes no theoretical probability distribution, which, in principle, is a
strength of MDG.

The main objectives of this research are:

(1) To study the performance of four feature ranking methods to select the optimum feature subset to
classify a very high resolution image using five classification algorithms.

(2) To identify a feature ranking method that overcomes the Hughes effect in most of the classification
methods.

(3) To identify which of the analyzed classification algorithms is least sensitive to the Hughes effect.
(4) Finally, to obtain a land cover layer.

To achieve these main objectives, it was necessary to fulfil three secondary objectives:

(1) To generate a large number of potentially explanatory variables and to use them to evaluate several
feature ranking and selection methods. The aim is to investigate whether these methods can
identify those features that introduce redundant information or do not contribute to a statistical
discrimination of classes.

(2) To test a group of classification algorithms that represent the most important types of machine
learning algorithms.

(3) To implement a heuristic search process for feature selection. This will allow us to identify the
feature subset that can achieve optimal classification.

The paper is organized as follows: In Section 2, we present the study area (Section 2.1) and the
dataset, which is the result of applying multiresolution segmentation (Section 2.3) on a high-resolution
multispectral image (Section 2.1). Several features obtained from this segmentation (Section 2.4) were
used to classify the objects in order to test several classification algorithms (Section 2.5) and feature
selection methods (Section 2.6). Different parameter values for the classification algorithms were also
tested (Section 2.5). Special care was devoted to a sample design to obtain validation and calibration data
(Section 2.2). In Section 3, we present the results, and finally, the conclusions are presented in Section 4.
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2. Methods

The methodology of this research (summarized in Figure 1) comprises seven steps.

Figure 1. Work flow chart of the methodology.

Previous work with the image appears as Step 0 and is described in [26,27]. The aim of each step is:

(1) To generate a large number of features (Section 2.4) calculated from the objects extracted in the
image segmentation (Section 2.3).

(2) To select an appropriate number of random validation areas and a set of training areas.
(3) To apply four methods of feature ranking and selection (Section 2.6). The results of each of them

are presented in Table 3 with features ordered according to each ranking method.
(4) To execute several classification cycles (Section 2.6.2). For each classification algorithm

(Section 2.5) and each vector of ranked features, a backward elimination process is executed until
only two features remain. In each cycle, the kappa classification obtained from the validation data
is stored. Thus, a vector with the values of the classification accuracy obtained for each of the
20 combinations of classification algorithms and ranking methods is obtained.

(5) To display, using line graphs, how accuracy varies when the number of features increases by adding
features in ranking order and how these variations differ among different classification algorithms
(Section 3.2). For each combination of classification algorithm-ranking method, this display can
identify the subset of variables that allows one to reach the maximum classification accuracy.
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(6) To modify some parameters of the classification algorithms identified in the literature as the most
relevant to improve classification accuracy.

(7) To analyze validation data using the best combination ranking method-classification algorithm.

Finally, a land cover layer is obtained.

2.1. Study Area and Data Used

The study area (Figure 2) is located in the Murcia region (southeast Spain) and corresponds to
Irrigation Unit (UDA) 28, as was defined in the Plan Hidrológico de la cuenca del Segura (River Segura
Basin Hydrological Plan), the previously in-force water resources planning law passed on 24 July 1998
(R.D.1664/1998). A 150-m buffer zone has been added to ensure the complete inclusion of the relevant
plots. The study area is large, 9070 ha, including the buffer, and includes different types of agricultural
landscape; the intra-class variability of the Mediterranean countryside is also well represented.

Figure 2. Irrigation Unit 28. National Topographic Map 1:200,000 from the Spanish
National Geographic Institute (IGN).

This irrigation unit includes traditional orchards and modern, highly technical agriculture areas. As a
result, there is a large variety of crops and land covers (40% grass and 60% trees). The traditional
irrigation systems are very old. Initially, several springs in the limestone rocks, predominant in the River
Argos headwaters, were exploited (more than 80% of the currently used resources). Later, several wells
were excavated to complement those resources, and today, groundwater represents 15% of the resources
used [32].

Most of the information used in this research was obtained from the Servicio de Integración y
Gestión Ambiental (Environmental Integration and Management Service, SIGA), a branch of the
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Murcia regional government. The data, obtained under the Natmur-08 project [33], consist of a 2-m
resolution multispectral (blue, green, red and near-infrared) image and a 0.45-m panchromatic digital
image. The images corresponding to the study area were acquired on 9, 10 and 11 July 2008 with
an Intergraph Z/I-Imaging Digital Mapping Camera. Both images were fused using Gram–Schmidt’s
method [26,34,35] to obtain the final 0.45-m resolution multispectral image used in this study.

Additionally, digital terrain (DTM) and digital surface (DSM) models, with a resolution of 4 m, were
used as ancillary data. These layers, also produced under the Natmur-08 project, had been interpolated
from LiDAR point clouds obtained with a LEICA ALS50-III; we only had access to the interpolated
layers and not to the original point clouds.

2.2. Classification Scheme, Sample Design and Field Data

As the aim of the work was to produce a map of agricultural land cover types, most of the classes
included in the classification scheme have an agronomic sense. There are also two classes that include
natural vegetation and artificial objects. The list of classes includes: Cereals (Cer); Rainfed arable lands
(Rar); Rural wasteland (Rws); Irrigated grassland (Igr); Almond trees (Alm); Irrigated fruit trees (Ifr),
including seedlings; Olive trees (Oli), including seedlings; Greenhouses (Gre); Other non-agricultural
vegetation (Ot.Ve); and Other artificial areas (Ot.Ar).

Validation areas were sampled by generating random points; the plots (both agricultural and
non-agricultural) where such points were located were selected as validation areas. Training areas were
not randomly chosen; instead, those that adequately characterized the different classes were selected.

To obtain a statistically-consistent sampling strategy, the multinomial distribution equations [36] were
used to calculate the sample size necessary for this research with a confidence level of 95% and a margin
of error of 5%; the result was a total of 558 plots.

Two sampling schemes were used. The first random sampling included 254 validation areas, 200
of which correspond to agricultural uses. The main objective of this first sampling was to evaluate the
spectral variability of each class. This information is useful to establish the sampling size of each stratum
(land use class) in the second (stratified) sampling. The objective of this stratified sampling was to
evaluate the accuracy of the classification by class rather than the accuracy of the whole scene.

One of the critical points of stratified sampling is the distribution of the samples across strata [37].
Some authors [36] claim that at least 50 samples for each class are needed in projects similar to ours.

In the present study, a minimum of 50 validation areas was used for each class. The other 58 were
distributed proportionally to the spectral variability, calculated as a coefficient of variation, of the 10
classes. The distribution of sampling plots in each stratum is shown in Table 1.

The analysis unit, the unit on which the decision of the success or failure of the classification is made,
is the object. Congalton and Green [36] recommend that the analysis unit is the object, even when the
methodology is based on pixels. Objects have been used as analysis units in several studies [30,38–40].

All of the relevant objects in a validation area receive the label corresponding to the area. In areas
with tree cover, almonds for instance, this label is manually assigned to all tree-objects or intersections of
trees, the bare soil objects remaining unlabeled. In plots without trees, classless objects will be minimal.
In this way, the labeled objects become the cases to classify.
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Fieldwork was conducted in different periods: July 2009, and December 2010, to verify that land use
had been correctly identified. Most of the plots were visited about a year after the capture of the images,
so that the state of vegetation of image and fieldwork coincided. Table 1 also summarizes the distribution
of the training and validation areas in the study area.

Table 1. Summary statistics of the training and validation samples: cereals (Cer),
rainfed arable lands (Rar), rural wasteland (Rws), irrigated grassland (Igr), almond trees
(Alm), irrigated fruit trees (Ifr), including seedlings, olive trees (Oli), including seedlings,
greenhouses (Gre), other non-agricultural vegetation (Ot.Ve) and other artificial areas
(Ot.Ar).

Training Validation
Classes Plots Objects % Area Plots Objects % Area CV

Cer 30 830 0.07 53 1043 0.21 0.14
Rar 55 1399 0.32 54 1459 0.90 0.19
Rws 31 1309 0.10 55 1567 0.52 0.21
Igr 37 1187 0.07 55 3920 0.57 0.21
Alm 32 4080 0.07 55 8289 0.14 0.23
Ifr 63 5617 0.18 58 4894 0.29 0.35
Oli 39 2987 0.05 58 4613 0.19 0.33
Gee 38 341 0.03 55 1290 0.10 0.20
Ot.Ve – 2307 0.18 56 3885 0.26 0.25
Ot.Ar – 4687 0.40 59 7396 0.86 0.41

Total 325 24,744 1.46 558 38,356 4.048 –

2.3. Image Segmentation

Multiresolution segmentation [41], the segmentation algorithm that we used with this image, is one
of the most widely used in OBIA. It has been included in eCognition since the first versions [42,43], and
despite its recent availability, it is rapidly becoming one of the most cited segmentation algorithms [18].
The details of the algorithm can be consulted in [41]. The key parameter for this segmentation method is
the scale parameter, although there is no straightforward method available to obtain an optimum value of
the same. The usual approach is to find a compromise value for the whole image by trying several values
and evaluating the results [4,44–46]. However, this global approach needs a certain degree of uniformity
in the image, so its application to large heterogeneous images, as in this study, may be difficult.

For this reason, a local approach for image segmentation, consisting of splitting the image into
uniform spatial units, whereby the scale parameter is optimized locally, was assayed. The multiresolution
segmentation algorithm was locally optimized with 3 spectral bands (red, green and near-infrared), all
with the same importance. The importance of shape homogeneity was 30%, and the weighting coefficient
for both compactness and smoothness was 50%. The importance given to each layer, the weights given
to the form and the importance given to the compactness and smoothness were not optimized, but
remained invariant throughout the whole optimization process. This methodology and the results are
fully explained in [27]. As a result of the segmentation, a set of 1,076,937 objects was obtained.
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2.4. Features Obtained from the Objects

Table 2 shows the object features calculated using eCognition software. Features are grouped into six
main categories; their names are in bold face, and a short description is added when needed. Some of the
features were only calculated with the red band. The reason for this is that, due to the high correlation
within the visible spectrum, we did not think that blue and green bands would have added much to
the discrimination capacity. Moreover, their inclusion would have strongly increased the computation
complexity and would probably have complicated the feature selection process. The number of bands
from which the features were calculated is indicated between parentheses. Technical details of every
feature are described in DEFINIENS [47].

Texture is one of the most important features when identifying objects from a raster image.
Haralick et al. [48] proposed a set of indices extracted from the grey level co-occurrence matrix
(GLCM) [49,50]. The spatial relationships between neighboring pixels can be measured in each of the
four main directions (N-S, NE-SW, E-W, SE-NW) or as a directionally-invariant average. Each textural
feature is calculated in each of the four main directions in four layers—red band reflectivity, slope,
aspect and convexity—and as a directionally-invariant average in the 10 input layers. Overall, there are
204 textural features.

The context features of objects are extracted by comparing an object feature (spectral, geometric
or textural) with the same feature in the neighboring objects. These features can be used to improve
the classification results [51]. Although the concepts of brighter and darker objects only make sense
in features related to spectral properties and not in those related to topographical properties, we have
maintained the feature names given by eCognition after the segmentation phase.

In summary, there are 40 spectral features, 5 pixel-based features, 24 geometric features, 204 texture
features and 83 context features. This large number of features (356) poses a problem of collinearity that
will be solved using the feature selection techniques introduced below.

2.5. Classification Algorithms

Five classification algorithms were used in this study, representing the most relevant approaches in
remote sensing imagery classification: linear discriminant analysis [52] and naive Bayes [52], which
are included among the classical parametric statistical techniques; weighted k-nearest neighbors [53],
a method based on distances measured on the features space; random forest [5,54–61], which is a
tree-based algorithm; and finally, support vector machines [5,61,62], which is a kernel-based algorithm.

Besides the features used for classification, other factors that might affect the accuracy of a
classification algorithms are the values given to its parameters. To analyze this problem, the parameters
of the classification algorithms identified as relevant in the literature were modified. Naive Bayes and
linear discriminant analysis algorithms have no parameter to change.

Parameter changes were made sequentially, because complete modification was not feasible from a
computational point of view. For example, with SVM, the optimal kernel was first determined using the
default values for C and G. The C parameter was optimized using the optimal kernel and the default
G. Finally, the G parameter was optimized using the optimal kernel and C value.
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Table 2. Summary of the calculated object features [47]. Some of the features are calculated
from all of the original bands and others from just one. Textural features are calculated for
several directions. The total number of features appears in parentheses. DTM, digital terrain
model; DSM, digital surface model.

Original bands Pixels within the objects
B1 red MEAN(10)
B2 green SD (10) standard deviation
B3 blue MAX(1) maximum value
B4 near-infrared MIN(1) minimum value
C5 DTM ASYM(10) skewness
C6 DSM INTENSITY(1)
C7 DSM-DTM HUE(1)
C8 slope SATURATION(1)
C9 aspect NDVI (1)
C10 convexity RATIO(4) percentage of total brightness

Object geometry Object texture
PERIM (1) including inner borders GLCM.homo (26) homogeneity

LENGTH (1) GLCM.cont (26) contrast
WIDTH (1) GLCM.dis (26) dissimilarity
L/W (1) LENGTH/WIDTH GLCM.ent (26) entropy
ASYM02 (1) asymmetry GLCM.asm (26) angular second moment
BORDER.i (1) PERIM/perimeterSR GLCM.mean (26) mean
COMPACT (1) LENGTH ·WIDTH/AREA GLCM.sd (26) standard deviation
DENSITY (1) similarity to a square GLCM.corr (26) correlation
ELLIPTIC.fit (1) similarity to a ellipse Object border
MAIN.dir, (1) main direction MEAN.int.bor (1) mean reflectivity of the inner border
RADIUS.largest (1) radius of the largest enclosed ellipse MEAN.ext.bor (1) mean reflectivity of the outer border
RADIUS.smallest (1) radius of the smallest enclosed ellipse BOR.cont (1) difference between MEAN.int.bor and

the borders of the surrounding objects
RECT.fit (1) similarity to a rectangle SD.rec (1) standard deviation of pixels not in the

object but in the SR
ROUNDNESS (1) NEIGH.cont (1) difference between MEAN and the

mean of pixels not in the object but in
the surrounding rectangle

SHAPE.i (1) PERIM/(4 ·
√
AREA) Object context

AREA.excl (1) area excluding inner polygons NUM.c (1) number of neighboring objects
AREA.incl (1) area including inner polygons MEAN.c (2) neighboring objects’ mean
LENGTH.arc (1) average length of arcs MEAN.d.c (10) mean difference to neighboring

objects, using objects’ means
LONGEST.arc (1) length of longest arc MEAN.d.c.dr (10) mean difference to darker neighboring

objects
COMPACT.p (1) AREA divided by the area of a circle

with the same perimeter
MEAN.d.c.dr2 (10) modified mean difference to darker

neighboring objects when the darker
object is being analyzed

NUMBER.arcs (1) MEAN.d.c.br (10) mean difference to brighter
neighboring objects

NUMBER.int (1) number of inner objects MEAN.d.c.br2 (10) modified mean difference to brighter
neighboring objects when the brighter
object is being analyzed

PERIMETER.p (1) excluding inner borders NUM.dr (10) number of darker neighboring objects
SD.edges (1) standard deviation of length of arcs NUM.br (10) number of brighter neighboring

objects
POR.bor.br (10) relative border to brighter neighboring

objects
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2.5.1. Linear Discriminant Analysis

Linear discriminant analysis is one of the first used, simplest and most used supervised classification
algorithms. It tries to maximize the between-group variance and minimize the within-group variance,
assuming that the features arise from a multivariate normal distribution with a class-specific mean vector
and a common variance-covariance matrix [63].

The distributions of the predictors are first analyzed for each of the classes, and then, the Bayes
theorem is used to obtain the probability of each class given the predictor values using the well-known
Bayes equation:

Pr(Y = k|X = x) =
P (k) · fk(x)
K∑
l=1

P (l) · fl(x)

(1)

where k and l are each one of the classes analyzed and P (k) and P (l) are the prior probabilities of such
classes. In the case of linear discriminant analysis, fk(x) and fl(x) correspond to the multivariate normal
density. When this function is introduced into Equation (1), we obtain an equation that, taking logs and
rearranging to eliminate constants, gives a linear equation that can be calculated for each class:

xt ·Σ−1 · µk −
µt
k · Σ−1 · µk

2
+ log(P (k) (2)

The method receives its name from the fact that this equation is linear. Each observation X = x

is finally assigned to the class k that maximizes Equation (2). In practice, linear discriminant analysis
creates a linear frontier (hyperplane) between each pair of classes in the feature space and divides it into
regions belonging to each class. The observations are classified according to the region in which they
are located.

2.5.2. Naive Bayes

Bayesian networks model the dependence of the dependent variable on each of the predictors as
a directed acyclic graph. The final node represents the dependent variable and the other nodes the
predictors. The topology of the graph reflects the dependence relations among variables.

Naive Bayes [52] is the simplest case of a Bayesian network. In this case, just one arc goes from each
of the predictors to the dependent variable. This means that predictors are assumed to be conditionally
independent in every class. Therefore, a simplified version of the Bayesian equation is applied. The
function to maximize is:

D∏
d=1

P (xd|vj) (3)

where V is the set of classes and P (xd|vj) the density function of each feature for an observation arising
from the class vj .

Although conditional independence is a rather strong assumption, naive Bayes is a competitive
algorithm whose results can even outperform other algorithms [64–66]. Another advantage is that the
independence assumption causes a significant reduction in computing time [66].
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2.5.3. Weighted k-Nearest Neighbors

When used for classification, k-nearest neighbors [53] estimates the class for every new observation
using the k-closest observations, according to a distance metric, from the training set. Class probabilities
for the new observation are estimated as the proportion of training set neighbors in each class. Ties are
broken randomly or by including the k + 1 closest neighbor in the calculation.

An important parameter to be taken into account is k, the number of neighbors. A small value leads
to a low-bias, high-variance prediction, increasing the probability of over-fitting, while too large a value
cause a high-bias classification.

Despite its simplicity, this algorithm has been successful in a large number of classification
problems [61].

The algorithm wk-NN is a modification of k-NN, in which each training example is weighted
according to its distance from the point being classified.

As regards the wk-NN parameters, both the number of neighboring cases taken into account to
predict and the distance measurement can be modified. Euclidean and Manhattan are the available
distance measurements, the latter being the default option. Although it is possible to vary the type of
kernel, it was not modified, following the advice of the author of the R package that implements the
algorithm [53]. For modifying the number of neighbors, an arithmetic progression from 1 to 19, with a
step of two, was tested.

2.5.4. Random Forest

Decision trees build a classification model by a recursive binary partition of a labeled dataset into
increasingly homogeneous nodes. Homogeneity is measured by the Gini index [54], defined as:

G =
∑

k · P (k) · (1− p(k)) (4)

where P (k) is the proportion of observations in the k-th class. At each step, an optimization is carried
out to select, in each node, the feature and the numeric threshold, or group of values if the variable is
categorical, that would produce the lowest G value if used to divide the node. This process continues until
it is not possible to reduce the Gini index in any node [60]. The final result should be a classification
tree whose lower nodes are completely homogeneous. However, this is not always the case, and the
predominant class is used to label the node, the other cases being classification errors. On the basis of
these errors, the tree is pruned to allow a higher generalization capacity. A single classification tree is
very sensitive to small modifications in the dataset. Ensemble learning techniques try to overcome this
limitation and to obtain a better predictive performance.

Random forest [56] generates a large number of unpruned trees (500–2,000) using a bootstrapped
sample of the cases; each node division is carried out with a randomized subset of the predictors to
add randomness and to decrease the correlation between trees. Uncorrelation is a desirable property in
ensemble learning classifiers because the different results give sense to the voting system that is finally
used to estimate the class to which any new case belongs. Random forest can outperform other machine
learning classification algorithms (support vector machines or neural networks) and other decision tree
algorithms [56,57].
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As the classification errors of any tree are diluted into the ensemble, random forest does not over-fit
the model to the dataset [6,56,67,68]. Since the cases not included in a bootstrapped sample are not used
to fit the corresponding tree, they can be used to perform a cross-validation accuracy estimation [60].

The number of trees and the number of predictors used to train each tree are the parameters that can
be set by the user. Nevertheless, the method does not seem to be very sensitive to these values, which
are, by default, 500 and the square root of the number of available features [57,59]. In general, random
forests do remarkably well and require very little tuning [61].

A disadvantage of random forest compared with the simple classification tree approach is that, as
individual trees cannot be examined separately, it becomes a “black box” approach [68]. However, it
provides several metrics that help to interpret the model. Variable importance is evaluated by calculating
how the accuracy or the Gini index would decrease if the data for that predictor were permuted randomly.
The resulting values can be used to compare the relative importance among predictor variables. In this
way, the result is easier to interpret than in other algorithms, such as neural networks [68].

The most relevant parameters in random forest are the number of trees (ntree) generated and the
number of randomly chosen features used to divide the nodes in each of the individual trees (mtry).
The default values in the R package randomForest are ntree = 500 and mtry = int(

√
Nf ), where Nf

is the number of features. Random forest does not seem to be very sensitive to its parameters [57,61];
however, we then tried using ntree = {250, 500, 1000} and doubling and halving mtry following the
recommendations of the authors of the package [57].

2.5.5. Support Vector Machines

Support vector machines (SVM) [61,62] are a very flexible classification algorithm that tries to
maximize the distance between the hyperplanes that separate classes and the cases closer to those
hyperplanes, the so-called support vectors. These large distances, margins in SVM terminology, give
SVM a greater generalization capacity, because they maximize the probability of correctly classifying
new cases located in the area between two different classes.

The decision function used to estimate the class of each new case is:

D(u) = β0 +
P∑
i=1

yiαiK(xi, u) (5)

where xi are the feature vectors of each one of the training cases, yi the class of the training cases, u the
feature vector of the new case whose class is to be estimated and α a parameter that only differs from
zero for the training cases that are support vectors. In this way, the decision is a function of only the
support vectors.

SVM is included in the category of kernel methods; the function K(xi, u) is the kernel function. In the
simplest case, it is just the dot product of both feature vectors, producing linear hyperplanes. In addition,
different non-linear kernel functions can be used to transform the space of features and, in this way,
produce non-linear hyperplanes.

When the classes are not completely separable, a cost parameter will penalize those cases situated
on the wrong side of the separating hyperplane. The higher the cost, the most complex the hyperplane
needed to avoid misclassifications. Therefore, a higher cost parameter will also produce a model with a
lower generalization capacity.
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SVM is conceived of as an algorithm to separate two classes. When there are more than two classes,
it is usually applied on a one vs. the others basis, using the distance to the separating hyperplanes as a
membership criterion.

In the case of SVM, it is possible to modify the kernel type, the cost parameter C and the width
parameter G. Four kernel transformations were tested: linear, polynomial, radial and sigmoidal. For the
penalty parameter, the following values were tested:
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1 being the default value. For the width parameter, the following values were tested:
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2.5.6. Software Used

R software [69], an open source statistical program and language, was used to run all
classification algorithms. The classification algorithms used in this work are included in the packages:
randomForest [57], e1071 [70], kknn [71] and MASS [72].

2.6. Feature Ranking and Selection Methods

A successful approach in machine learning is to view feature selection as a heuristic procedure in
which a subset of possible features is specified at each step of an iterative search [73]. Such a procedure
involves 3 steps:

(1) Ranking all features in accordance with a criterion related to their relevance to classify the dataset.
(2) Iteratively improving a classification model by adding features according to their rank.
(3) Selecting the best feature subset according to a classification accuracy measurement.

2.6.1. Feature Ranking

Four feature ranking criteria were used: average correlation, maximum correlation, Jeffries–Matusita
distance and mean decrease in the Gini index. In addition to these four ranking methods, a random
ranking was used to compare the results.

Average correlation is a simple approach, in which the relevance of a feature is related to its correlation
with other features. Thus, highly-correlated variables will be considered as redundant information, since
they only contribute to classification complexity without adding greater discrimination power. The
correlation matrix (using the Pearson correlation coefficient in this case) is used to calculate the
importance of any feature as its average correlation coefficient. After eliminating the feature with the
highest average correlation, the correlation matrix is recalculated, and the procedure continues. The
feature eliminated in each iteration is stored, and finally, a vector of features in ascending order of
importance is obtained.

Maximum correlation is very similar to the above criterion; the only difference being that the criterion
for choosing the feature to be deleted in each cycle is the maximum rather than the average correlation.
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The Jeffries–Matusita distance between each pair of classes measures a feature’s average capacity to
separate classes. Features are ranked according to this distance, whose equation is:

JMab = 2 · (1− e−Bhab) (6)

where JMab is the distance between the two classes being compared (a and b) and Bh is the
Bhattacharyya distance [51]:

Bhab =
1

8
(Xa −Xb)

2 2

S2
a + S2

b

+
1

2
ln

[
S2
a + S2

b

2SaSb

]
(7)

where Xa is the average of the analyzed feature for class a, and S2
a the variance of the feature for class

a. The Jeffries–Matusita distance values range from zero to two: zero means that the classes cannot be
separated using the feature being analyzed, and two means full separability. The average of all inter-class
distances is the feature separability. This ranking method assumes the normal distribution of the variables
in each of the classes.

The mean decrease in Gini index is a feature importance statistic produced by random forest averaging
Gini indices of the individual trees [54]. The importance of a variable in a tree is measured as the sum of
the decrements in the Gini index attributed to that feature. The global feature importance is the average
of its importance for all of the trees.

The mean decrease in the Gini index ranking method is obtained by running as many classification
cycles as there are features available. In each cycle, MDG is calculated, and the feature with the lowest
MDG value is eliminated from the dataset. Thus, the order in which each feature is removed gives a rank
of its importance.

2.6.2. Iterative Classification and Accuracy Criterion

For each classification algorithm and feature ranking method, all of the features were used to train the
algorithm; the kappa index [36] was then calculated from the validation sample, and the least important
feature was eliminated from the dataset. This procedure was repeated until only one feature was left. A
line graph for each classification method was then drawn in a graph whose horizontal axis is the number
of features used in each cycle and where the ordinate is the kappa value obtained (Figures 3 and 4). A
visual analysis of the curves was sufficient to locate the number of features that maximizes accuracy.

Because wk-NN classification is substantially slower than the others, only 199 classification cycles
were run using the 200 most important features. Linear discriminant analysis and naive Bayes only use
quantitative features, which means 333 features and, accordingly, 332 classification steps. Random forest
and SVM were classified with the complete dataset of 356 features. Because all of these classification
cycles were replicated for the five ranking methods (including the random ranking), the total number of
classification was 7865.

3. Results

3.1. Feature Selection

Tables 3 and 4 summarize the results of the feature ranking process. Table 3 shows the 40 most
important features according to each ranking method, while Table 4 shows the kind of features included
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in different subsets: the 40 most important features according to each ranking method, that is, a summary
of Table 3, and the optimal subsets using MDG in each of the classification algorithms.

Table 3. Ranking of the 40 most relevant features according to each ranking method.
Features that were calculated with more than one of the original bands are followed
by a colon and the band that was used. In textural features, the direction is indicated
between parentheses.

Average Cor. Maximum Cor. Jeffries-Matusita Distance Gini Index

1 AREA NDVI AREA.incl MEAN:C5
2 MAIN.dir NUM.c AREA.excl MEAN:C6
3 POR.bor.br:C5 GLCM.homo:C5 (Dis) MEAN:C7 NDVI
4 POR.bor.br:C8 MAIN.dir NUM.dr:B1 NEIGH.c:B1
5 GLCM.homo:C8 (N) ASYM:C5 NUM.dr:B2 RATIO:B3
6 ASYM:B4 MEAN.d.c:C5 NUM.dr:B3 RATIO:B4
7 MEAN.d.c.dr:C7 ASYM:C8 MEAN:B1 MEAN:C8
8 ASYM:C5 MEAN.d.c:C8 NUM.dr:B4 MEAN.d.c:B1
9 MEAN.d.c.br:B2 ASYM:C10 MIN:B1 MEAN:B2
10 SATURATION ASYM:C9 PERIMETER SD:C6
11 GLCM.homo:C9 (E) GLCM.corr:B1 (NE) INTENSITY RATIO:B1
12 ASYM:C10 POR.bor.br:C7 MEAN:B2 RATIO:B2
13 MEAN.d.c:C8 L/W HUE MEAN.d.c.dr:B1
14 MEAN.d.c.br2:C9 MEAN.d.c:C10 MEAN.int.bor:B1 MEAN:B4
15 L/W SD:C9 MEAN.d.c.dr:C7 MEAN.d.c:B3
16 POR.bor.br:C10 MEAN:C7 MEAN.d.c.dr2:C7 HUE
17 ASYM:C9 ASYM:C7 POR.bor.br:B2 GLCM.asm:B1 (SE)
18 GLCM.cont:C7 (Dis) ASYM:B1 RATIO:B4 MEAN.d.c.br:B1
19 MEAN.d.c:C10 MEAN:B4 NUMBER.arcs RATIO:B1
20 MEAN.d.c.br:C7 GLCM.cont:C5 (Dis) POR.bor.br:B1 MEAN.d.c.dr:B4
21 ASYM:C8 MEAN.d.c:C9 POR.bor.br:B3 SD:C5
22 MEAN.d.c.dr2:C9 SATURATION NEIGH.cont:B1 MEAN:B1
23 SD:B3 MEAN.c:C10 PERIMETER.p INTENSITY
24 MEAN.d.c:C8 MEAN:C8 NDVI MEAN.d.c:B2
25 GLCM.sd:C8 (SE) COMPACT RATIO:B1 SATURATION
26 ASYM:C7 SD:B1 MEAN.d.c.br:C7 SD:C7
27 MEAN.d.c.dr2:C5 GLCM.corr:C8 (N) SD:C7 MEAN.d.c.dr:B3
28 ASYM:B3 MEAN.d.c:C8 MEAN:B3 MIN:B1
29 POR.bor.br:C9 MEAN.d.c.dr:C5 MEAN.d.c:C7 GLCM.corr:B3 (Dis)
30 POR.bor.br:C7 MEAN:C5 RATIO:B2 SD.rec:B1
31 GLCM.corr:B1(SE) MEAN.d.c.br:C5 MEAN.d.c.br2:C7 MEAN.ext.bor:B1
32 MEAN.d.c:C10 SD.rec:B1 NUM.c MEAN.d.c.br:C7
33 GLCM.homo:C8 (E) SD:C8 MEAN.ext.bor:B1 GLCM.ent:B1 (SE)
34 MEAN:C6 GLCM.sd:C10 (Dis) WIDTH MEAN.d.c:C8
35 GLCM.homo:C9 (N) BOR.cont:B1 SD:C6 MEAN:C7
36 ASYM02 GLCM.homo:C7 (Dis) POR.bor.br:B4 MEAN.d.c:B4
37 NUMBER.int GLCM.homo:B1 (Dis) RATIO:B3 MEAN.d.c.dr:B2
38 MEAN.d.c.br2:C5 GLCM.corr:B1 (SE) MEAN.d.c.dr2:B2 MEAN.d.c.br:B2
39 ASYM:C6 RATIO:B3 MEAN.d.c.dr2:B3 MEAN.int.bor:B1
40 GLCM.med:B1 (E) LENGTH.arc MEAN.d.c.dr2:B1 GLCM.corr:B1 (E)

The features calculated within the objects seem to be the most relevant, especially in the case of
the MDG ranking method. Geometry features do not appear among the 40 most important features for
MDG; textural features do not appear among the 40 most important according to the Jeffries–Matusita
distance ranking method; finally, border features do not appear within the subsets obtained using the
correlation methods. Although these results are interesting and should be analyzed in the future, it is not
the objective of this study to enter into these details.
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Table 4. Summary of the feature types in different optimal subsets. Each subset includes
three rows: the first shows the number of features of each type; the second row shows the
percentage of each feature type with respect to the features included in the subset; and the
third row shows the percentage of each feature type with respect to the number of features
of that type. MDG, mean decrease in the Gini index.

Feature Subset Within Object Geometry Textural Border Context

Maximum correlation (40)
16 5 8 0 11
40 12.5 20 0 27.5

36.4 20.8 3.8 0 13.2

Average correlation (40)
12 4 8 0 16
30 10 20 0 40

27.3 16.7 3.8 0 19.3

Separability (40)
14 7 0 3 16
35 17.5 0 7.5 40

31.8 29.2 0 60 19.3

MDG (40)
21 0 4 3 12

52.5 0 10 7.5 30
47.7 0 1.9 60 14.5

Random forest optimal (50)
22 1 7 4 16
44 2 14 8 32
50 4.2 3.4 80 19.3

wk-nearest neighbors (46) 22 1 5 3 15
optimal 47.87 2.2 10.9 6.5 32.6

50 4.2 2.4 60 18.1

Support vector machines (29) 20 0 2 1 6
optimal 69 0 6.9 3.5 20.7

45.5 0 1 20 7.2

Naive Bayes optimal (11)
10 0 0 1 0

90.9 0 0 9.1 0
22.7 0 0 20 0

LDA optimal (90)
30 7 22 4 27

33.3 7.8 24.4 4.4 30
68.2 29.2 10.6 80 32.5

The features selected using the average correlation method do not include any spectral variable, only
three features related with skewness and one related with IHS transformation. Most of the features drawn
by this method are related to shape, context and texture.

On the other hand, the methods based on Jeffries–Matusita distance and MDG included several pairs
of closely-correlated features in the first rankings. This was expected in the case of Jeffries–Matusita
distance, because if a feature provides large separability, all of the features correlated with it will show
similar separability.
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3.2. Classification

The kappa statistic is calculated from a set of confusion matrices with 14 classes. These classes
include the original classification scheme, but with adult trees separated from seedlings in irrigated
fruit trees and olive trees and mature irrigated grassland separated from plants in an early state of
development. The final new classification scheme also includes shadows (Shd) cast by objects in the
validation areas (usually trees and buildings).

Figures 3 and 4 show the result of the kappa index in several classification cycles using every ranking
method and classification algorithm. These figures should be read from right to left, since a backward
elimination was performed.
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Figure 3. Kappa indices obtained with three classification algorithms: random forest,
weighted k (wk)-NN and SVM and the five ranking methods.

The random forest classification method provided the highest accuracy, especially using the features
ranked by the MDG index. Figure 3 shows no significant changes until the curve reaches the 50th feature,
meaning that random forest is quite insensitive to the presence of redundant or noisy features, i.e., to the
Hughes effect. This is because random forest does not overfit the model to the calibration data.
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Another ranking method that attains high accuracy with random forest is maximum correlation;
however, with fewer than 75 features, the results are inferior to those obtained with MDG, especially
when fewer than 30 features are used. Using about 50 features, the kappa indices of MDG and maximum
correlation are virtually the same. Furthermore, the downward slope of the kappa index between 50 and
10 is greater in the maximum correlation method than in MDG.
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Linear Discriminant Analysis
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Figure 4. Kappa indices obtained with two classification algorithms: naive Bayes and linear
discriminant analysis and the five ranking methods.

The average correlation gives very similar values to the previous two methods when more than 140
features are used, while if fewer features are included, there is a substantial decrease in accuracy. As
expected, the worst results were obtained when features were ranked randomly.

MDG also reaches a high accuracy value when using the wk-NN classification algorithm. A kappa
value of 0.69 is reached with 46 features, which can be considered the most appropriate number of
features to be used with wk-NN. This classification method is, however, more sensitive to the presence
of unnecessary features. Using the first 200 features, the kappa index is about 0.60, which is significantly
different compared with the value obtained with the first 40 features. According to these data, this
classification algorithm seems to be more sensitive to the Hughes effect than random forest. If wk-NN
is the only algorithm to be used for classification, a major effort in feature selection will be needed.

When using the Jeffries–Matusita distance, a kappa value of only 0.60 is reached in the best case.
Moreover, the curve does not show any increase in accuracy when the least important features are
eliminated. The maximum correlation results are also rather weak, below 0.55; however, this ranking
method seems to be able to remove unnecessary features in some sections of the curve, such as the
stretch between 85 and 50 features, in which there is an increase in accuracy. Whatever the case, this
method cannot be considered to provide acceptable results. Average correlation also gives very poor
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results; analyzing the form of the curve, it seems that important features are eliminated, and, as a result,
dimensionality reduction provides no increase in accuracy.

When analyzing SVM, the highest kappa index is obtained with MDG and 29 features. The sensitivity
to high dimensionality is not very great, although it is greater than in the case of random forest. In the case
of MDG, the kappa index remains stable between 360 and 200 features, while from 200 to 125 features,
it increases and remains stable until 30 features are reached, when there is a sharp drop. The rest of the
ranking methods have much lower kappa values. The curves obtained from maximum correlation and
Jeffries–Matusita distance are very similar, while the average correlation curve is quite different.

With naive Bayes, again, MDG provides the highest accuracy, although its highest kappa value is 0.63,
well below that reached by random forest or SVM. However, this accuracy peak is reached with only 11
features, creating quite a parsimonious model. It is very sensitive to the Hughes effect: with 337 features,
the kappa values are very low, around 0.4. In the case of MDG, the kappa index increases steadily as
features are eliminated, and there are several points on the graph where the elimination of only one or
two features causes a particularly sharp increase in classification accuracy. The other methods provide
very weak results in all cases, with kappa values under 0.5 throughout the curve.

The general performance of linear discriminant analysis is much lower than that of random forest,
wk-NN and SVM. This algorithm, too, obtains the best results with MDG; although, in this case, there
are fewer differences with the other ranking methods, especially average separability. The number of
features in the optimal subset with MDG (65) is much higher than in the case of naive Bayes. The curve
remains almost stable until the 90th feature, when there is a slight increase in accuracy. It is below the
50th feature that accuracy rates begin to fall very sharply.

Table 5. Omission (OE) and commission (CE) errors in each class, kappa (K) and accuracy
(F) of each classification method, using, in each case, the optimal feature set whose size is
shown in the last column. In all cases, the highest accuracy was reached with the optimal
subset drawn by MDG. Shd, shadow.

OE Cer Rar Rws Igr Alm Ifr Oli Gre Ot.Ve Ot.Ar Shd K F Size

RF 0.28 0.43 0.64 0.37 0.09 0.34 0.29 0.18 0.10 0.06 0.37 0.74 0.78 78
wk-NN 0.35 0.43 0.55 0.34 0.10 0.27 0.44 0.12 0.23 0.14 0.45 0.70 0.74 46
SVM 0.31 0.42 0.56 0.34 0.09 0.33 0.37 0.16 0.13 0.09 0.41 0.73 0.77 33
NB 0.26 0.60 0.65 0.35 0.09 0.32 0.46 0.09 0.41 0.24 0.52 0.65 0.69 11
LD 0.48 0.43 0.47 0.35 0.10 0.39 0.39 0.83 0.37 0.22 0.28 0.66 0.71 65

CE Cer Rar Rws Igr Alm Ifr Oli Gre Ot.Ve Ot.Ar Shd K F Size

RF 0.36 0.46 0.61 0.02 0.10 0.34 0.16 0.00 0.26 0.19 0.26 0.74 0.78 78
wk-NN 0.46 0.43 0.60 0.08 0.16 0.41 0.26 0.14 0.18 0.13 0.18 0.70 0.74 46
SVM 0.49 0.46 0.47 0.05 0.12 0.37 0.21 0.07 0.21 0.16 0.21 0.73 0.77 33
NB 0.48 0.62 0.69 0.16 0.14 0.45 0.29 0.16 0.33 0.13 0.33 0.65 0.69 11
LD 0.46 0.50 0.62 0.11 0.12 0.44 0.31 0.18 0.26 0.11 0.26 0.66 0.71 65

Table 5 summarizes the confusion matrices of the five classification methods using the MDG ranking
method (always the one that provides maximum accuracy) and the feature set that produced the greatest
accuracy. The table shows omission and commission errors in each class, kappa, accuracy and the
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number of features required to reach the maximum kappa index. Both random forest and SVM produced
the best result, the former being slightly better. SVM needed fewer features than random forest to
reach the maximum accuracy; however, Figure 3 shows that random forest results have a large sill,
which means that even with substantially fewer features, accuracy is almost the maximum possible.
Interestingly, naive Bayes reaches its maximum accuracy with just 11 features, although its kappa and
accuracy are much smaller than those corresponding to random forest and SVM.

As regards parameter optimization, except for the number of neighbors in the wk-NN algorithm,
modifying the default parameters brings about only small improvements in accuracy. In the case of
wk-NN, the use of the Euclidean distance rather than Manhattan distance produced a substantial decrease
in accuracy. Accuracy increases as does the number of neighbors, reaching a peak with 19. More
neighbors were not tested, because the increase from k = 17 to k = 19 was very modest, and using
k = 19 and Manhattan distance led to a kappa value of 0.69.

As an example, Figure 5 shows a subset of the results obtained by each classification method, using
in each case the proposed optimal feature set.

Figure 5. Example of the land cover maps obtained with the five classification methods
using the optimal feature set obtained with the method based on the Gini index. (a) RF-Gini
i., 78 features; (b) wk-NN-Gini i., 46 features; (c) SVM-Gini i., 33 features; (d) nB-Gini
i., 11 features; (e) LDA-Gini i., 65 features; and (f) Z/I-Imaging DMC image with 45-cm
spatial resolution.
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4. Discussion

Laliberte et al. [25] compare the Jeffries–Matusita distance and MDG to select features for use with
the wk-NN classification algorithm. Although both ranking methods, along with the other two, were
used in our research, the results are not completely comparable, because in the above-mentioned work,
the number of features to be selected was fixed a priori, whereas in our study, the optimal number of
variables to be used in each algorithm was one of the outcomes of the ranking and selection process.
While the results of the cited work suggest that the results obtained with the Gini index are very similar
to those obtained with the Jeffries–Matusita distance, the results obtained in this study lead to a different
conclusion: that better results are obtained using the MDG ranking method whichever classification
algorithms is tested.

Pal [6], Duro et al. [10], Löw et al. [15] and Ghosh and Joshi [16] obtained similar results to us.
In our study, SVM needed fewer features than random forest to reach the maximum accuracy, as was
observed by Ghosh and Joshi [16]. In our work, as occurred in Löw et al. [15], using SVM to classify
with the whole feature set produces a higher error than when using the optimal subset in accordance with
the MDG ranking method. The classification results of Pal [6] are very similar to those obtained in the
present work. By contrast, Ghosh and Joshi [16] found that SVM performed better than random forest,
with a difference in favor of the first of 0.05 in kappa. Since the difference was slight, bearing in mind
that both studies are quite comparable, we can conclude that, in terms of classification accuracy, both
algorithms provide very similar results. Interestingly, naive Bayes reaches its maximum accuracy with
just 11 features, although its kappa and accuracy are much smaller than those corresponding to random
forest and SVM.

As regards parameter optimization, except for the number of neighbors in the wk-NN algorithm,
modifying the default parameters brings about only small improvements in accuracy. In the case of
wk-NN, the use of Euclidean distance rather than Manhattan distance led to a substantial decrease in
accuracy. More neighbors were not tested because the increase from k = 17 to k = 19 was very modest
and using k = 19 and Manhattan distance gave a kappa value of 0.69.

We agree with Pal [6] that the need for only two parameters to be set and the lack of sensitivity to these
parameters are clear advantages of using random forest. For example, no important effect was observed
when the number of trees was doubled or halved compared with the default value. Similar results were
obtained when modifying the mtry parameter. In this respect, our empirical results also coincide with
those given by Duro et al. [10].

Another advantage of random forest is that, along with linear discriminant analysis, it is insensitive to
the Hughes effect. In the case of random forest, similar results were found by Duro et al. [10]. However,
other authors, like Guan et al. [11], obtained different results. In this work, decreasing from 48 to 10
features led to a significant improvement in classification accuracy (from kappa = 0.6 to kappa = 0.8).
We think that the cause of these differences is two-fold: first, the study areas in [11] are very small;
second, the ntree parameter in [11] was 100, quite lower that the recommended value that we used in our
study (500). SVM has low sensitivity to the Hughes effect, while wk-NN and, especially, naive Bayes
are very sensitive.
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5. Conclusions

Regarding the classification algorithms, random forest and SVM have provided the highest
classification accuracy, followed by wk-NN. On the other hand, the results of naive Bayes and linear
discriminant analysis are less accurate, with kappa indices around 10 percentage points lower than those
obtained with random forest or SVM.

It was to be expected that the MDG feature ranking method would obtain a good result with random
forest, because both methods are fairly closely related. However, MDG obtained the highest accuracy
with all classification algorithms. This consistency strongly suggests that MDG can be considered as one
of the best options for ranking features.

Another advantage of random forest is that, along with linear discriminant analysis, it is insensitive to
the Hughes effect. SVM has low sensitivity, while wk-NN and, especially, naive Bayes are very sensitive.

Random forest and SVM obtain the highest accuracy with the default parameters, which is an
advantage over other classification methods, such as wk-NN, which need to be calibrated. In fact, the
accuracy obtained with wk-NN increased with the number of neighbor cases used to classify. However,
this increase in accuracy was still small.

According to Laliberte et al. [25], because our comparison of feature selection methods was based on
the same segmentation, it was reasonable to assume that the classification accuracies could be attributed
to the feature selection methods and not to the prior segmentation step.

In summary, random forest with features selected using MDG was the most suitable algorithm for
classifying the analyzed image. If only one classification method is used, it should be random forest,
because it provides the greatest accuracy values and does not really need feature selection, unless the
number of features available is too large for the computing power available.

The results also allowed an improvement in land use classification, which was the main objective of
analyzing this image.

Object-oriented analysis represents an advantage over the pixel-based approach because of the
substantial reduction in the number of cases. Segmentation can be regarded as a necessary step for
remote sensing imagery classification when using cutting-edge machine learning techniques with large
computing requirements. We agree with Ghosh and Joshi [16] when they say that “The extensive use
of open source R statistical software allows free and easy access of the framework under study to
researchers and users across the world.”
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