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Abstract: Remote predictions of the nitrogen nutrition index (NNI) are useful for precise 

nitrogen (N) management in the field. Several studies have recommended two methods for 

estimating the NNI, which are classified as mechanistic and semi-empirical methods in this 

study. However, no studies have been conducted to thoroughly analyze and compare these 

two methods. Using winter wheat as an example, this study compared the performances of 

these two methods for estimating the NNI to determine which method is more suitable for 

practical use. Field measurements were conducted to determine the above ground biomass, 

N concentration and canopy spectra during different wheat growth stages in 2012. Nearly 

120 samples of data were collected and divided into different calibration and validation 

datasets (containing data from single or multi-growth stages). Based on the above datasets, 

the performances of the two NNI estimation methods were compared, and the influences of 

phenology on the methods were analyzed. All models that used the mechanistic method with 

different calibration datasets performed well when validated by validation datasets 

containing single growth or multi-growth stage data. The validation results had R2 values 

between 0.82 and 0.94, root mean square error (RMSE) values between 0.05 and 0.17, and 

RMSE% values between 5.10% and 14.41%. Phenology had no effect on this type of NNI 

estimation method. However, the semi-empirical method was influenced by phenology. The 

performances of the models established using this method were determined by the type of 

data used for calibration. Thus, the mechanistic method is recommended as a better method 
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for estimating the NNI. By combining proper N management strategies, it can be used for 

precise N management. 
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1. Introduction 

Nitrogen (N) is an essential element for growth and yield of agronomic crops [1]. Because  

field-supplied N depends on soil, weather and plant conditions, the amount of required N fertilizer often 

varies in space and time [2]. To ensure productivity, farmers usually apply more N to fields than  

needed [3]. Supplying excess N not only reduces the income of farmers but also can result in many 

environmental problems, such as greenhouse gas (N2O) emissions [4] and surface and ground water 

contamination [5]. Thus, it is important to optimize fertilization strategies to improve N fertilizer  

use efficiency. 

To enhance N fertilizer use efficiency, many studies have suggested supplying the minimum amount 

of N required to meet the requirements of crop growth during early growth stages and applying most of 

the N fertilizer just before rapid, exponential crop growth using topdressing [6]. During latter 

applications, the crop itself can be used as an indicator of its potential fertilizer N requirements if an 

adequate indicative parameter can be used. In many studies, the nitrogen nutrition index (NNI) has been 

shown to be a good N status indicator for this purpose [7–9]. The NNI is determined by measuring the 

plant N concentration (expressed on a dry matter basis) and is compared with the critical N concentration. 

The critical N concentration is defined as the minimum N concentration that is necessary to achieve 

maximum growth [10] and decreases exponentially as a function of aboveground dry biomass. This 

concentration function has been determined for many crops and is referred to as the critical N  

curve [11–13]. When calculating the NNI, the critical N concentration is predicted using the critical N 

curve and the measured aboveground dry biomass as input variables. NNI values greater than 1 indicate 

that the plants are not limited by N, and values lower than 1 indicate N deficiency [14]. However, 

traditional destructive sampling methods for determining the NNI are time consuming and are not 

practical for use throughout the vegetative growth period under farm conditions [15]. Thus,  

Lemaire et al. suggested using remote sensing measurements to determine the NNI because such 

measurements are rapid and non-destructive and can be repeated multiple times during plant growth [15]. 

By analyzing the spectral features of the canopy reflectance spectrum, remote sensing technologies 

have been shown to be powerful tools for predicting crop parameters, especially through spectral  

indices [16–18]. However, to date, only a few studies have been conducted to estimate the NNI using 

remote sensing. These studies can be classified into two categories. One approach estimates the NNI 

based on its definition. In this method, the plant N concentration, biomass and critical N curve must be 

known before estimating the NNI. Agronomists have determined the critical N curves for many crops, 

and N concentrations and biomass can be predicted by remote sensing. To estimate N concentrations by 

remote sensing, the reflectance and transmittance spectra of dried ground leaves were related to the leaf 

N concentrations, with N absorption features at 1510 nm, 1730 nm, 1940 nm, 1980 nm, 2060 nm,  

2180 nm, 2240 nm, 2300 nm and 2350 nm [19,20]. However, field management cannot be conducted 
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based on those findings because remote sensors are used to collect data over green vegetation rather than 

dry vegetation. In green vegetation, N absorption features are obscured by strong water absorption bands 

that are centered at 1450 nm and 1940 nm [21,22]. Because N correlates with chlorophyll in green  

leaves [23–25], although this relationship is influenced by variables such as species and phenology, the 

spectral features of chlorophyll in visible and red-edge bands can be used as indicators of crop N. Many 

N spectral indices have been proposed using these features [1,26]. To estimate biomass using remote 

sensing, the spectral band, which is significantly influenced by the leaf area index (LAI), can be used 

because biomass strongly correlates with the LAI. Many LAI spectral indices can be used to estimate 

biomass [27]. Thus, Chen et al. suggested that N concentrations and biomass should be estimated using 

N and biomass spectral indices, respectively, and in turn used as inputs for NNI calculation in model to 

predict the NNI using remote sensing [22]. Because this method uses spectral indices as inputs in a model 

with a clear theoretical basis, it can be considered a mechanistic method. Few studies have used this 

method for estimating the NNI. By combining an N concentration index referred to as the Double-peak 

Canopy Nitrogen Index (DCNI) and a biomass index referred to as the Red-edge Triangular Vegetation 

Index (RTVI), Chen et al. successfully estimated the corn NNI in Canada [28]. Using a chlorophyll 

concentration index referred to as the Modified Chlorophyll Absorption Ratio Index/Modified 

Triangular Vegetation Index 2 (MCARI/MTVI2) and a LAI index named MTVI2, Cilia et al. attempted 

to predict the maize NNI in Italy through hyperspectral images. However, the authors calculated the actual 

crop N uptake in the NNI formula as the leaf N concentration instead of the plant N concentration [27]. 

Except for the NNI prediction method described above, existing spectral indices have been used to 

directly assess the NNI using semi-empirical models. This method involves the direct creation of a 

regression model between the NNI and the existing spectral indices. Mistele and Schmidhalter estimated 

the winter wheat NNI in Germany using a spectral index called red edge inflection point (REIP) [29]. 

Using linear regression methods, Liang and Liu estimated the NNI of corn in China using three spectral 

indices, the REIP and the ratios of reflectance from the band at 740 nm to that at 780 nm and the  

band at 780 nm to that at 550 nm [30]. This type of NNI estimation method can be considered a  

semi-empirical method. 

Currently, no studies have thoroughly analyzed and compared these two methods. However, it is 

important to understand how these methods are influenced by external factors and which method 

performs better for practical applications. Thus, winter wheat was used as an example in this study. 

Based on ground-measured spectra and the corresponding plant N concentrations, biomass and NNI 

during different growth stages, the goals of this study were to (i) test the performances of the above NNI 

prediction methods; (ii) analyze the effects of phenology on their performance; and (iii) suggest a better 

prediction method for practical use.  

2. Data and Methods 

2.1. Study Sites and Experimental Design 

During the 2011–2012 wheat growing season, a field experiment was conducted to control  

nitrogen levels and assess the nitrogen status of winter wheat on a farm in the suburbs of Yucheng  

City (36°33'36", 116°23'24"), which is located on the northwestern plain of Shandong Province, China.  
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The following three widely used winter wheat cultivars were planted: JiMai 22, KeNong 199 and 

AiKang 58. N experiments were conducted using three cultivars and five N treatments in a randomized 

complete block design with four replicates. The soil (0–20 cm) had a loam texture and a pH of 8.0. The 

average soil organic matter, NO3−N, available P, and available K contents were 3.1%, 26.3 mg·kg−1,  

22.8 mg·kg−1, and 126.0 mg·kg−1, respectively, in the 0–20 cm soil layer before N treatment. The five N 

fertilization treatments included applications of urea at 0, 70, 140, 210, and 280 kg·N·ha−1. These 

concentrations were selected based on the local soil N status and other N experiments that were 

previously conducted in the region. Half of the N was applied at sowing, and half was applied by 

topdressing during Feekes growth stage 5.0 [31] (3 April 2012). Winter wheat was sown at a density  

of 4,500,000 plants·ha−1 with a row spacing of 20 cm on 13 October 2011 in 5 by 10 m plots. All of the 

treated plots received 120 kg·ha−1 P2O5 and 80 kg·ha−1 K2O before sowing and were irrigated during the 

winter wheat life cycle to prevent water stress. 

2.2. Data Acquisition 

During the winter wheat growing season, ground-sampling campaigns were conducted on a nearly 

weekly basis for 8 weeks to monitor the shoot biomass and plant N concentrations. In addition, the 

corresponding canopy spectra, SPAD (an indicator of chlorophyll content), and LAI values were 

measured at Feekes growth stages 4 and 7–8. For each sampling campaign, a representative area was 

selected as the sampling location for each plot. Thus, sixty points were selected for each sampling date.  

2.2.1. Remote Sensing Data 

The canopy spectra of the wheat were acquired using an Analytical Spectral Devices (ASD) 

spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA), which recorded the reflectance 

between 325 nm and 1075 nm over a sampling interval of 1.6 nm with a resolution of 3.5 nm. These 

measurements were obtained during cloud-free periods between 10 a.m. and 2 p.m. to minimize changes 

in illumination. A white Spectralon reference panel (Labsphere, North Sutton, NH, USA) was used under 

the same illumination conditions to convert the spectral radiance measurements to reflectance. 

Measurements were made at the sampling location in each plot by looking straight down from 1.8 m 

above the canopy. With a field of view of 25°, the sensor viewed an area with a diameter of 0.8 m, which 

covered four rows of wheat. Ten scans were measured at each point and averaged to produce the final 

canopy spectra. 

2.2.2. Crop Biophysical and Biochemical Variables 

The following biophysical and biochemical variables of the crops were measured at the corresponding 

spectral sampling points: (1) leaf area index (LAI) using a Sunscan (Delta-T Devies Ltd., Cambridge, 

England); (2) plant N concentration and biomass using procedures described below; and (3) chlorophyll 

using a handheld chlorophyll meter (SPAD-502, Minola Osaka Company, Ltd., Osaka, Japan). 

To measure the plant N concentrations and biomass, an area of 0.4 × 0.8 m2 was harvested in each 

plot using pruning scissors. Next, the shoot biomass was weighed to obtain the fresh biomass, and  

a subsample was collected to determine the dry matter content and N concentrations. The subsample was 
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dried at 65 °C in a forced-draft oven to a constant weight. Next, the material was ground and passed 

through a 1 mm sieve before storing it at room temperature until analysis. The N concentration was 

measured using the Dumas Combustion Method with a vario MACRO cube analyzer (Elementar,  

Hanau, Germany). 

2.3. Determination of the NNI 

The critical N concentration of winter wheat was described using Equation (1), which was based  

on a recent report of the studied region [32]. The NNI was calculated using Equation (2) [33].  

In Equations (1) and (2), W is the above ground dry biomass in Mg·ha−1, Nc is the plant critical N 

concentration expressed as a percentage of the dry matter, and Nact is the actual measured plant N 

concentration expressed as a percent of the dry matter. 

ୡܰ ൌ 4.34ܹି଴.ସଵ (1)

ܫܰܰ ൌ ୟܰୡ୲

ୡܰ
 (2)

2.4. Data Analysis 

At the Feekes 4 and 7–8 growth stages, the destructively sampled data and corresponding canopy 

spectra were measured in each replication of the treatments. By considering three cultivars, five N 

treatments, four replications and two growth stages, 120 paired data points were obtained. This dataset 

was used for the following analyses. 

First, because chlorophyll and the LAI dominate spectral features in the visible and near infrared 

bands, the relationships between the SPAD values, LAI, plant N concentration, biomass and NNI were 

investigated to determine the principal spectral features of the variables that affected N concentration, 

biomass and NNI predictions using data from each growth stage and all 120 paired data points. Second, 

for each N treatment on each sampling date, one replication was randomly selected for use as validation 

data. Thus, 30 paired data points were divided into the validation databases, and the remaining 90 paired 

data points were considered the calibration database. Third, based on calibration data, the NNI estimation 

models were established using the two NNI assessment methods described above. To estimate the NNI 

by the mechanistic method, the N concentration estimation model and biomass estimation model must 

be established using remote sensing. The following steps were used. (1) Spectral indices considered as 

good candidates for estimating the plant N concentration and biomass were selected (Table 1 [1,22,34–44] 

and Table 2 [17,45–52], respectively); (2) To investigate phenology effects, three calibration datasets 

were produced based on the calibration database that contained data from Feekes 4 and 7–8 growth 

stages and the two growth stages, respectively. All datasets were used to select the best N concentration 

estimation index and biomass estimation index; (3) Regarding the N concentration and biomass, three 

estimation models were constructed using the best index and the three calibration datasets. Using a  

semi-empirical method to estimate the NNI, the following steps were used: (1) the above mentioned three 

datasets were produced; (2) the relationships between the selected spectral indices and NNI were 

examined using the three datasets, respectively, and the best index for NNI assessment was selected; and 

(3) three NNI estimation models were established using the best index and three calibration datasets. 

Finally, the validation database was used to test the performances of the models established using the 
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two NNI assessment methods. During this process, the validation database was used to produce three 

validation datasets to investigate the phenology effects. These datasets contain data from Feekes 4 and 

7–8 growth stages and both growth stages. Each validation dataset was used to test the performances of 

the models established using the two NNI assessment methods. The determination coefficient (R2), root 

mean square error (RMSE) and relative RMSE (RMSE/average mean × 100, RMSE%) were used to 

evaluate the model performances throughout the procedure. 

3. Results and Analyses  

3.1. Relationships between the SPAD, LAI, Plant N Concentration and NNI Values 

Because water absorption obscures N absorption features in the shortwave bands, it is difficult  

to detect plant N concentrations from N absorption features in this portion of the electromagnetic 

spectrum [22]. Thus, it is appropriate to use reflectance in the visible and red-edge bands to estimate N 

concentrations based on the good relationships between chlorophyll concentrations and plant N 

concentrations. In addition, biomass has a good relationship with the LAI in green vegetation, and the 

NNI is calculated using the N concentration, biomass and a known critical N curve. The relationships 

among the SPAD, LAI, plant N concentration, biomass and NNI values were assessed because  

the visible and near infrared reflectance are dominated by the LAI and chlorophyll absorption features.  

Significant correlations (p < 0.01) were found between the SPAD values and plant N concentrations 

in the three datasets (Table 3 and Figure 1a). Cartelat et al. and Chen et al. also observed a significant 

correlation between the chlorophyll and N concentrations in wheat [22,25]. In this study, the LAI had  

a weak relationship with plant N concentration in the dataset containing data from all growth stages, 

although the relationship was significant. In addition, the LAI was strongly related to the plant N 

concentration in the dataset that contained data from the single growth stage. As the crop grows, from 

planting to biophysical maturity, crop N and chlorophyll concentration decrease as the biomass and LAI 

increase [13]. For a given growth stage, the plant N concentration and LAI change consistently, 

according to the variation in the available N in the field. Thus, on the one hand, the plant N concentration 

is strongly related to both the LAI and chlorophyll in the dataset that contained data from a single growth 

stage. On the other hand, the plant N concentration was weakly related to the LAI in the dataset that 

contained data from multiple growth stages. Thus, the following conclusions can be obtained that: (1) 

the spectral feature of chlorophyll can be used to estimate the N concentration and (2) the LAI influence 

is a confounding factor for remotely assessing the N concentration at different growth stages.  
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Table 1. Summary of the studied spectral indices for predicting plant nitrogen (N) concentration. 

Index Name Formula Developed by 

Nitrogen Indices 

Viopt Optimal Vegetation Index (1 + 0.45)((R800)2 + 1)/(R670 + 0.45) Reyniers et al. [34] 

RVI I † Ratio Vegetation Index I R810/R660 Zhu et al. [1] 

RVI II † Ratio Vegetation Index II R810/R560 Xue et al. [35] 

MCARI/MTVI2 Combined Index 

MCARI/MTVI2 

MCARI: (R700 − R670 − 0.2(R700 − R550))(R700/R670) 

MTVI2:1.5(1.2(R800 − R550) − 2.5(R670 − R550))/ 

sqrt((2R800 + 1)2 − (6R800 − 5sqrt(R670)) − 0.5) 

Eitel et al. [36] 

REIP-LE 
Red Edge Inflection Point:  

Linear Extrapolation Method 

Based on the linear extrapolation of two straight lines through 

two points on the far-red and two points on the NIR flanks of 

the first derivative reflectance spectrum of the red edge 

region. The REIP is defined by the wavelength value at the 

intersection of the straight lines. 

Cho and Skidmore [37] 

DCNI Double-Peak Canopy Nitrogen Index (R720 − R700)/(R700 − R670)/(R720 − R670 + 0.03) Chen et al. [22] 

Chlorophyll Indices 

MCARI 
Modified Chlorophyll  

Absorption Ratio Index 
(R700 − R670 − 0.2(R700 − R550))(R700/R670) Daughtry et al. [38] 

TCARI 
Transformed Chlorophyll  

Absorption in Reflectance Index 
3((R700 − R670) − 0.2(R700 − R550)(R700/R670)) Haboudane et al. [39] 

TCARI/OSAVI Combined Index II † 

TCARI/OSAVI 

TCARI: 3((R700 − R670) − 0.2(R700 − R550)(R700/R670)) 

OSAVI: 1.16(R800 − R670)/(R800 + R670 + 0.16) 

Haboudane et al. [40] 

MTCI MERIS Terrestrial Chlorophyll Index (R750 − R710)/(R710 − R680) Dash and Curran [41] 

R-M † Red Model R750/R720 − 1 Gitelson et al. [42] 

CCI Canopy Chlorophyll Index D720/D700 Sims et al. [43] 

REIP-LI 
Red Edge Inflection Point:  

Linear Interpolation Method 

700 + 40(Rre − R700)/(R740 − R700) 

Rre: (R670 + R780)/2 
Guyot et al. [44] 

Ri indicates the reflectance at band i (nanometer); † indicates named by Chen et al. [22]; Di indicates derivative reflectance at band i (nanometer). 
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Table 2. Summary of the studied spectral indices for predicting above ground biomass. 

Index Name Formula Developed by 

LAI Indices 

NDVI 
Normalized Difference  

Vegetation Index 
(R800 − R670)/(R800 + R670) Rouse et al. [45] 

RVI Ratio Vegetation Index R800 /R670 Pearson et al. [46] 

EVI Enhanced Vegetation Index 2.5(R800 − R670)/(R800 + 6R670 − 7.5R470 + 1) Huete et al. [47] 

TVI Triangular Vegetation Index 0.5(120(R750 − R550) − 200(R670 − R550)) Broge and Leblanc [48] 

MSAVI 
Modified  

Soil-Adjusted Vegetation Index 
(2R800 + 1 − sqrt((2R800 + 1)2 − 8(R800 − R670)))/2 Qi et al. [49] 

OSAVI 
Optimization of  

Soil-Adjusted Vegetation Index 
1.16(R800 − R670)/(R800 + R670 + 0.16) Rondeaux et al. [50] 

GNDVI 
Green Normalized Difference  

Vegetation Index 
(R800 − R550)/(R800 + R550) Gitelson et al. [51] 

MTVI2 
Modified Triangular  

Vegetation Index 2 

1.5(1.2(R800 − R550) − 2.5(R670 − R550))/ 

sqrt((2R800 + 1)2 − (6R800 − 5sqrt(R670)) − 0.5) 
Haboudance et al. [17] 

Biomass Indices 

RTVI 
Red-Edge Triangular  

Vegetation Index 
(100(R750 − R730) − 10(R750 − R550))sqrt(R700/R670) Chen et al. [52] 

Ri indicates the reflectance at band i (nanometer). 

Table 3. Correlation matrix among the SPAD, leaf area index (LAI), plant N concentration, 

biomass and nitrogen nutrition index (NNI) values. 

Spectral Index Biomass LAI N Concentration SPAD NNI 

Data from all growth stages (n = 120)     

Biomass 1.00     

LAI 0.93 * 1.00    

N concentration 0.19 0.25 * 1.00   

SPAD 0.05 0.07 0.77 * 1.00  

NNI 0.73 * 0.74 * 0.80 * 0.47 * 1.00 

Data from Feekes 4 (n = 60)     

Biomass 1.00     

LAI 0.76 * 1.00    

N concentration 0.64 * 0.73 * 1.00   

SPAD 0.52 * 0.60 * 0.70 * 1.00  

NNI 0.87 * 0.81 * 0.93 * 0.68 * 1.00 

Data from Feekes 7–8 (n = 60)      

Biomass 1.00     

LAI 0.84 * 1.00    

N concentration 0.69 * 0.87 * 1.00   

SPAD 0.66 * 0.70 * 0.80 * 1.00  

NNI 0.83 * 0.92 * 0.97 * 0.80 * 1.00 

n indicates number of samples; * denotes significance at the 0.01 level. 
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Figure 1. Correlation matrices between (a) plant nitrogen concentration (%) and SPAD 

values; (b) biomass and LAI; (c) NNI and SPAD values; and (d) NNI and LAI.  

Significant correlations (p < 0.01) were observed between the biomass and LAI in the three datasets 

(Table 3 and Figure 1b). Lemaire et al. also found a good relationship between biomass and the LAI [53]. In 

this study, the SPAD value did not significantly correlate with biomass when using the data from all 

growth stages. However, a significant relationship was observed with biomass when using the data from 

a single growth stage. The reason for the relationship between N concentration and the LAI also applies 

to the relationship between biomass and the SPAD value. As the crop grows, the crop N and chlorophyll 

concentrations decrease as the biomass and LAI increase [13]. For a given growth stage, biomass and 

chlorophyll consistently change as the available N in the field varies. Thus, biomass is significantly 

related to both the LAI and SPAD values in the dataset containing data from a single growth stage. In 

addition, the biomass showed no significant relationship with the SPAD in the dataset that contained 

data from multiple growth stages. Therefore, the following conclusions were made: (1) The spectral 

bands influenced by the LAI can be used for biomass estimation; and (2) the spectral feature of 

chlorophyll is a confounding factor for remotely assessing biomass at different growth stages. 

Significant correlations (p < 0.01) were observed between the LAI and NNI and between the SPAD 

values and NNI in the three datasets (Table 3). These relationships most likely occurred because the NNI 

is calculated using biomass and N concentration. Although significant correlations were found, they 

were influenced by phenology (Figure 1c,d). The data points from two growth stages were gathered into 

two groups. Thus, (1) both spectral features influenced by the LAI and chlorophyll can be used to 

estimate the NNI; and (2) the influences of phenology must be considered when creating a NNI prediction 

model that uses the spectral features influenced by the LAI or chlorophyll. 
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3.2. The NNI Estimation Model Using a Mechanistic Method 

To select the best indices for estimating the plant N concentration, a correlation analysis was 

performed using three calibration datasets. When a significant correlation (p < 0.01) was observed 

between the indices and the plant N concentrations, linear, exponential, power, and logarithmic models 

were tested for the regression analysis. The R2 values, RMSE values, RMSE% values and model types 

of the best model are reported in Table 4, which indicates that the best relationships occurred when  

the MCARI/MTVI2 was used. The regression equation for the MCARI/MTVI2 had an R2 value of 0.62, 

RMSE value of 0.46, and RMSE% value of 14.74% when using calibration data from all growth stages, 

an R2 value of 0.61, RMSE value of 0.33, and RMSE% value of 9.91% when using calibration data from 

Feekes 4 growth stage, and an R2 value of 0.72, RMSE value of 0.48, and RMSE% value of 16.55% 

when using calibration data from Feekes 7–8 growth stage. To obtain a good estimation of the N 

concentration, the spectral index should be correlated with the N concentration and show low sensitivity 

to other confounding factors [38]. The LAI had a limited influence on the MCARI/MTVI2, with a weak 

relationship with LAI using calibration data from different growth stages (R2 = 0.26). 

Table 4. Regression analysis between the N-related spectral indices and plant N 

concentrations. Linear(Lin), logarithmic(Log), exponential(Exp), and power(Pow) models 

were used for fitting the data. The results [R2, RMSE(%) and RMSE%] of the best calibration 

models are shown. 

Spectral Index 
N Concentration LAI 

R2 (Model Type) RMSE (RMSE%) R2 (Model Type) RMSE (RMSE%) 
Using data from all growth stages (n = 90)   

Viopt 0.13 (Log) 0.67 (21.47%) 0.90 (Pow) 0.47 (25.00%) 
RVI I 0.09 (Log) 0.68 (21.79%) 0.90 (Pow) 0.53 (28.19%) 
RVI II 0.13 (Pow) 0.68 (21.79%) 0.90 (Pow) 0.50 (26.60%) 

MCARI/MTVI2 0.62 (Exp) 0.46 (14.74%) 0.26 (Pow) 0.98 (52.13%) 
REIP-LE 0.36 (Pow) 0.60 (19.23%) 0.56 (Pow) 0.75 (39.89%) 

DCNI 0.43 (Pow) 0.59 (18.91%) 0.41 (Lin) 0.87 (46.28%) 
MCARI − − 0.64 (Pow) 0.76 (40.43%) 
TCARI 0.12 (Exp) 0.70 (22.44%) 0.15 (Pow) 1.08 (57.45%) 

TCARI/OSAVI 0.37 (Exp) 0.60 (19.23%) 0.59 (Pow) 0.76 (40.43%) 
MTCI 0.32 (Pow) 0.61 (19.55%) 0.80 (Lin) 0.56 (29.79%) 
R-M 0.17 (Log) 0.65 (20.83%) 0.89 (Pow) 0.50 (26.60%) 
CCI 0.31 (Log) 0.59 (18.91%) 0.49 (Exp) 0.85 (45.21%) 

REIP-LI 0.32 (Pow) 0.63 (20.19%) 0.77 (Exp) 0.55 (29.26%) 
Using data from the Feekes 4 growth stage (n = 45)   

Viopt 0.55 (Lin) 0.34 (10.21%) 0.77 (Pow) 0.17 (16.19%) 
RVI I 0.55 (Log) 0.35 (10.51%) 0.76 (Log) 0.16 (15.24%) 
RVI II 0.59 (Log) 0.33 (9.91%) 0.80 (Log) 0.14 (13.23%) 

MCARI/MTVI2 0.61 (Log) 0.33 (9.91%) 0.67 (Exp) 0.21 (20.00%) 
REIP-LE 0.48 (Lin) 0.37 (11.11%) 0.60 (Pow) 0.24 (22.86%) 

DCNI 0.51 (Log) 0.37 (11.11%) 0.42 (Pow) 0.25 (23.81%) 
MCARI 0.20 (Pow) 0.47 (14.11%) 0.40 (Pow) 0.26 (24.76%) 
TCARI − − 0.25 (Pow) 0.29 (27.62%) 

TCARI/OSAVI 0.59 (Log) 0.33 (9.91%) 0.67 (Exp) 0.20 (19.05%) 
MTCI 0.65 (Log) 0.31 (9.31%) 0.83 (Pow) 0.15 (14.29%) 
R-M 0.61 (Log) 0.33 (9.91%) 0.84 (Pow) 0.14 (13.33%) 
CCI 0.56 (Lin) 0.35 (10.51%) 0.45 (Pow) 0.25 (23.81%) 

REIP-LI 0.65 (Lin) 0.31 (9.31%) 0.81 (Exp) 0.20 (19.05%) 
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Table 4. Cont. 

Spectral Index 
N Concentration LAI 

R2 (Model Type) RMSE (RMSE%) R2 (Model Type) RMSE (RMSE%) 
Using data from the Feekes 7–8 growth stage (n = 45)   

Viopt 0.86 (Pow) 0.36 (12.41%) 0.84 (Pow) 0.59 (21.61%) 
RVI I 0.78 (Pow) 0.45 (15.52%) 0.81 (Pow) 0.68 (24.91%) 
RVI II 0.83 (Pow) 0.40 (13.79%) 0.84 (Pow) 0.65 (23.81%) 

MCARI/MTVI2 0.72 (Pow) 0.48 (16.55%) 0.75 (Exp) 0.71 (26.01%) 
REIP-LE 0.76 (Exp) 0.45 (15.52%) 0.67 (Pow) 0.73 (26.74%) 

DCNI 0.65 (Pow) 0.56 (19.31%) 0.71 (Pow) 0.79 (28.94%) 
MCARI − − − − 
TCARI 0.23 (Exp) 0.75 (25.86%) 0.31 (Exp) 0.93 (34.07%) 

TCARI/OSAVI 0.67 (Pow) 0.54 (18.62%) 0.76 (Exp) 0.74 (27.11%) 
MTCI 0.85 (Exp) 0.39 (13.45%) 0.88 (Pow) 0.61 (22.34%) 
R-M 0.84 (Pow) 0.38 (13.10%) 0.82 (Pow) 0.63 (23.08%) 
CCI 0.63 (Pow) 0.51 (17.59%) 0.53 (Pow) 0.79 (28.94%) 

REIP-LI 0.86 (Exp) 0.42 (14.48%) 0.89 (Pow) 0.62 (22.71%) 

− indicates that significant (p < 0.01) correlations were not observed between the two variables; n indicates the 

sample number. 

The good relationships between the MCARI/MTVI2 and LAI when using calibration data from a 

single growth stage occurred because the plant N concentration and LAI changed consistently during a 

given growth stage with variations in available N in the field (Table 3). The second best relationship was 

observed between the DCNI and the plant N concentration. The regression equations of the DCNI had 

an R2 value of 0.43, RMSE value of 0.59, and RMSE% value of 18.91% when using calibration data 

from all growth stages, an R2 value of 0.51, RMSE value of 0.37, and RMSE% value of 11.11% when 

using calibration data from Feekes 4 growth stage, and an R2 value of 0.65, RMSE value of 0.56, and 

RMSE% value of 19.31% when using calibration data from Feekes 7–8 growth stage, respectively. The 

Transformed Chlorophyll Absorption in Reflectance Index (TCARI) and MCARI had little or no 

relationship with the N concentrations of the three datasets. Other indices had medium or good 

relationships with the N concentrations, with R2 values between 0.48 and 0.86, RMSE values between 

0.31 and 0.54, and RMSE% values between 9.31% and 18.62% when using calibration data from the 

single growth stage. Meanwhile, these indices had weak or moderate relationships with the N 

concentrations with R2 values between 0.09 and 0.37, RMSE values between 0.59 and 0.68, and RMSE% 

values between 18.91% and 21.79% when using calibration data from all growth stage. The LAI had a 

strong influence on these indices, which have good correlative relationships with the LAI. Thus, the 

MCARI/MTVI2 was selected to estimate the N concentrations when using the mechanistic NNI 

estimation method, and a scatterplot for the MCARI/MTVI2 vs. N concentration is shown in Figure 2a. 

To select the best indices for estimating biomass, the previously described procedure was used and 

the relationships between the selected biomass-related spectral indices and biomass were analyzed. The 

results are listed in Table 5, which shows that all of the tested spectral indices had good correlations with 

biomass in the three calibration datasets. Meanwhile, the correlations between the tested indices and 

SPAD values were not significant when using calibration data from all growth stages, which indicated 

that chlorophyll does not significantly influence the performances of these indices for estimating 

biomass. The good relationships between the tested indices and SPAD values when using calibration 
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data from a single growth stage occur because the biomass and chlorophyll levels consistently change 

during a given growth stage with the variation of available N in the field (Table 3). Among all of the 

indices, the RTVI performed best for assessing biomass, with an R2 value of 0.85, RMSE value of 0.53, 

and RMSE% value of 19.27% when using calibration data from all growth stages, an R2 value of 0.80, 

RMSE value of 0.24, and RMSE% value of 13.19% when using calibration data from Feekes 4 growth 

stage, and an R2 value of 0.73, RMSE value of 0.59, and RMSE% value of 15.99% when using 

calibration data from Feekes 7–8 growth stage, respectively. The regression equations between biomass 

and the other indices had R2 values between 0.79 and 0.86, RMSE values between 0.51 and 0.63, and 

RMSE% values between 18.55% and 22.91% when using calibration data from all growth stages, R2 

values between 0.75 and 0.80, RMSE values between 0.24 and 0.28, and RMSE% values between 

13.19% and 15.38% when using calibration data from the Feekes 4 growth stage, and R2 values between 

0.60 and 0.72, RMSE values between 0.61 and 0.68, and RMSE% values between 16.53% and 18.43% 

when using calibration data from the Feekes 7–8 growth stage. Additionally, the Normalized Difference 

Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the Modified Soil-Adjusted 

Vegetation Index (MSAVI) and the Optimization of Soil-Adjusted Vegetation Index (OSAVI) are 

NDVI-like spectral indices that have been criticized because they can easily become saturated when the 

biomass content is medium to high [54]. Chen et al. reported that the Triangular Vegetation Index (TVI), 

Green NDVI (GNDVI), and Modified Triangular Vegetation Index 2 (MTVI2) were also easily saturated 

under medium to high biomass [52]. The biomass data in this study were measured at Feekes 4 and Feekes 

7–8 growth stages, and it is important to apply N by topdressing between these two growth stages. The 

wheat biomass during this period was not high. Thus, the EVI, TVI, MSAVI and MTVI2 did not present 

saturation issues in this study. However, the NDVI, OSAVI and GNDVI were saturated more easily, 

and these indices exhibited saturation when using the data in this study with high biomass contents (data 

not shown). Finally, the RTVI was selected for estimating biomass, and a scatterplot for the RTVI and 

biomass is shown in Figure 2b. 

Table 5. Regression analysis results between the biomass-related spectral indices and 

biomass. Linear, logarithmic, exponential, and power models were used for fitting. The 

results (R2, RMSE(Mg·ha−1) and RMSE %) of the best calibration models are shown. 

Spectral Index 
Biomass SPAD 

R2 (Model Type) RMSE (RMSE%) R2 (Model Type) RMSE (RMSE%) 

Using data from all growth stages (n = 90)   

NDVI 0.86 (Exp) 0.53 (19.27%) − − 

RVI 0.85 (Pow) 0.53 (19.27%) − − 

EVI 0.82 (Pow) 0.58 (21.09%) − − 

TVI 0.79 (Pow) 0.63 (22.91%) − − 

MSAVI 0.84 (Pow) 0.55 (20.00%) − − 

OSAVI 0.86 (Exp) 0.52 (18.91%) − − 

GNDVI 0.86 (Exp) 0.51 (18.55%) − − 

MTVI2 0.85 (Pow) 0.54 (19.64%) − − 

RTVI 0.85 (Pow) 0.53 (19.27%) − − 
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Table 5. Cont. 

Spectral Index 
Biomass SPAD 

R2 (Model Type) RMSE (RMSE%) R2 (Model Type) RMSE (RMSE%) 

Using data from the Feekes 4 growth stage (n = 45)   

NDVI 0.78 (Pow) 0.25 (13.74%) 0.34 (Pow) 4.30 (8.42%) 

RVI 0.75 (Log) 0.25 (13.74%) 0.25 (Pow) 4.22 (8.26%) 

EVI 0.78 (Pow) 0.26 (14.29%) 0.32 (Pow) 4.04 (7.91%) 

TVI 0.75 (Pow) 0.28 (15.38%) 0.29 (Pow) 4.13 (8.09%) 

MSAVI 0.78 (Pow) 0.26 (14.29%) 0.31 (Pow) 4.06 (7.95%) 

OSAVI 0.78 (Pow) 0.26 (14.29%) 0.33 (Pow) 4.00 (7.83%) 

GNDVI 0.80 (Pow) 0.24 (13.19%) 0.39 (Pow) 3.83 (7.50%) 

MTVI2 0.78 (Pow) 0.26 (14.29%) 0.30 (Pow) 4.09 (8.01%) 

RTVI 0.80 (Pow) 0.24 (13.19%) 0.40 (Pow) 3.82 (7.48%) 

Using data from the Feekes 7–8 growth stage (n = 45)   

NDVI 0.65 (Pow) 0.65 (17.62%) 0.60 (Pow) 3.47 (7.70%) 

RVI 0.63 (Pow) 0.64 (17.34%) 0.54 (Pow) 3.75 (8.33%) 

EVI 0.66 (Pow) 0.64 (17.34%) 0.61 (Pow) 3.49 (7.75%) 

TVI 0.60 (Pow) 0.68 (18.43%) 0.55 (Pow) 3.75 (8.33%) 

MSAVI 0.67 (Pow) 0.63 (17.07%) 0.62 (Pow) 3.44 (7.64%) 

OSAVI 0.68 (Pow) 0.63 (17.07%) 0.63 (Pow) 3.39 (7.53%) 

GNDVI 0.72 (Pow) 0.61 (16.53%) 0.68 (Pow) 3.20 (7.10%) 

MTVI2 0.66 (Pow) 0.63 (17.07%) 0.61 (Pow) 3.50 (7.77%) 

RTVI 0.73 (Pow) 0.59 (15.99%) 0.66 (Pow) 3.31 (7.35%) 

− indicates that significant (p < 0.01) correlations were not observed between the two variables; n indicates sample number. 

 

Figure 2. Scatterplots for (a) MCARI/MTVI2 vs. N concentration and (b) RTVI vs. biomass. 

Finally, based on the N concentration estimation model of the MCARI/MTVI2 and the biomass 

estimation model of the RTVI, the NNI values were assessed using the three calibration datasets. The 

relationship between the estimated and actual NNI had an R2 value of 0.83, RMSE value of 0.10 and 

RMSE% value of 10.37% when using calibration data from Feekes 4 growth stage, an R2 value of 0.78, 

RMSE value of 0.19 and RMSE% value of 16.09% when using calibration data from the Feekes 7–8 
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growth stage, and an R2 value of 0.83, RMSE value of 0.14 and RMSE% value of 13.24% when using 

calibration data from all growth stages. In Figure 3, points are noted that represent the estimated and 

actual NNI values that were assessed using the three different calibration models. These points were 

clustered together, which indicated no phenology influences on the mechanistic NNI estimation method. 

 

Figure 3. Calibration results of the mechanistic NNI estimation method when using three 

calibration datasets. 

3.3. The NNI Estimation Model Using a Semi-Empirical Method 

To select the best index for estimating the NNI using the semi-empirical method, a correlation analysis 

was performed using the three calibration datasets. When a significant correlation (p < 0.01) occurred 

between the indices and NNI, linear, exponential, power, and logarithmic regression models were tested. 

The R2 values, RMSE values, RMSE% values and model types of the best model are reported in Table 6. 

Except for the MCARI and TCARI, all of the selected indices resulted in medium to high correlations 

with the NNI. These relationships occurred because of the good relationships between the NNI and 

chlorophyll, and between the NNI and LAI (Table 3). Among these indices, the REIP-LI and MTCI 

exhibited the best results. The regression equation between the REIP-LI and NNI had an R2 value of 

0.80, an RMSE value of 0.15, and an RMSE% value of 14.03% when using calibration data from all 

growth stages; an R2 value of 0.83, an RMSE value of 0.14, and an RMSE% value of 14.29% when using 

calibration data from the Feekes 4 growth stage; and an R2 value of 0.93, an RMSE value of 0.14, and an 

RMSE% value of 12.17% when using the calibration data from the Feekes 7–8 growth stage. Meanwhile, 

the regression equations between MTCI and the NNI resulted in an R2 value of 0.79, an RMSE value of 

0.17, and an RMSE% value of 15.90% when using the calibration data from all growth stages; an R2 

value of 0.84, an RMSE value of 0.10, and an RMSE% value of 10.20% when using the calibration data 

from the Feekes 4 growth stage; and an R2 value of 0.92, an RMSE value of 0.15, and an RMSE% value 

of 13.04% when using the calibration data from the Feekes 7–8 growth stage. The MCARI and TCARI 

values exhibited weak or no correlation with the NNI. The regression equation between the other indices 

and NNI had R2 values between 0.52 and 0.75, RMSE values between 0.19 and 0.24, and RMSE% values 
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between 17.77% and 22.45% when using the calibration data from all growth stages; R2 values between 

0.52 and 0.83, RMSE values between 0.10 and 0.18, and RMSE% values between 10.20% and 18.37% 

when using the calibration data from the Feekes 4 growth stage; and R2 values between 0.63 and 0.93, 

RMSE values between 0.13 and 0.27, and RMSE% values between 11.30% and 23.48% when using the 

calibration data from the Feekes 7–8 growth stage. Therefore, the REIP-LI and MTCI were selected for 

estimating the NNI. The scatter plots between the REIP-LI and NNI and between the MTCI and NNI are 

shown in Figure 4a,b, respectively. The data from two growth stages generally formed two groups and 

slightly overlapped when plotted. Therefore, although good calibration results were obtained when using 

data from all growth stages, the phenology influenced the relationships between the NNI and the two 

spectral indices. 

Table 6. Regression analysis results between all of the selected spectral indices and the NNI. 

Linear, logarithm, exponential, and power models were used for fitting. The results (R2, 

RMSE and RMSE%) of the best calibration models are shown. 

Spectral Index 
All Growth Stages (n = 90) Feekes 4 Growth Stage (n = 45) Feekes 7–8 Growth Stage (n = 45) 

R2 (Model) RMSE (RMSE%) R2 (Model) RMSE (RMSE%) R2 (Model) RMSE (RMSE%) 

Viopt 0.64 (Lin) 0.20 (18.71%) 0.76 (Exp) 0.13 (13.27%) 0.89 (Pow) 0.17 (14.78%) 

RVI I 0.57 (Log) 0.22 (20.58%) 0.75 (Log) 0.12 (12.24%) 0.83 (Pow) 0.20 (17.39%) 

RVI II 0.64 (Log) 0.20 (18.71%) 0.80 (Pow) 0.11 (11.22%) 0.89 (Pow) 0.17 (14.78%) 

MCARI/MTVI2 0.75 (Pow) 0.20 (18.71%) 0.71 (Pow) 0.14 (14.29%) 0.80 (Pow) 0.23 (20.00%) 

REIP-LE 0.71 (Pow) 0.19 (17.77%) 0.68 (Pow) 0.18 (18.37%) 0.78 (Exp) 0.21 (18.26%) 

DCNI  0.68 (Pow) 0.22 (20.58%) 0.52 (Lin) 0.17 (17.35%) 0.73 (Pow) 0.26 (22.61%) 

MCARI 0.17 (Log) 0.31 (29.00%) 0.35 (Pow) 0.20 (20.41%) − − 

TCARI − − 0.21 (Pow) 0.22 (22.45%) 0.28 (Pow) 0.37 (32.17%) 

TCARI/OSAVI 0.73 (Exp) 0.20 (18.71%) 0.69 (Exp) 0.14 (14.29%) 0.75 (Exp) 0.24 (20.87%) 

MTCI 0.79 (Pow) 0.17 (15.90%) 0.84 (Pow) 0.10 (10.20%) 0.92 (Pow) 0.15 (13.04%) 

R-M 0.67 (Log) 0.19 (17.77%) 0.83 (Pow) 0.10 (10.20%) 0.90 (Pow) 0.16 (13.91%) 

CCI 0.60 (Lin) 0.22 (20.58%) 0.59 (Exp) 0.16 (16.33%) 0.63 (Pow) 0.27 (23.48%) 

REIP-LI 0.80 (Lin) 0.15 (14.03%) 0.83 (Exp) 0.14 (14.29%) 0.93 (Pow) 0.14 (12.17%) 

NDVI 0.52 (Lin) 0.24 (22.45%) 0.78 (Exp) 0.12 (12.24%) 0.84 (Exp) 0.19 (16.52%) 

RVI 0.55 (Log) 0.23 (21.51%) 0.75 (Log) 0.12 (12.24%) 0.82 (Pow) 0.21 (18.26%) 

EVI 0.69 (Lin) 0.19 (17.77%) 0.77 (Pow) 0.12 (12.24%) 0.93 (Pow) 0.13 (11.30%) 

TVI 0.67 (Lin) 0.19 (17.77%) 0.74 (Pow) 0.13 (13.27%) 0.88 (Pow) 0.17 (14.78%) 

MSAVI 0.67 (Lin) 0.19 (17.77%) 0.77 (Pow) 0.12 (12.24%) 0.93 (Pow) 0.13 (11.30%) 

OSAVI 0.61 (Lin) 0.21 (19.64%) 0.78 (Pow) 0.12 (12.24%) 0.92 (Exp) 0.14 (12.17%) 

GNDVI 0.63 (Lin) 0.21 (19.64%) 0.81 (Exp) 0.11 (11.22%) 0.89 (Exp) 0.17 (14.78%) 

MTVI2 0.63 (Lin) 0.21 (19.64%) 0.76 (Pow) 0.12 (12.24%) 0.91 (Pow) 0.14 (12.17%) 

RTVI 0.70 (Log) 0.19 (17.77%) 0.81 (Pow) 0.11 (11.22%) 0.93 (Pow) 0.13 (11.30%) 

− indicates that significant (p < 0.01) correlations were not observed between the two variables; n indicates the sample number. 
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Figure 4. Scatterplots for (a) REIP-LI vs. NNI and (b) MTCI vs. NNI. 

3.4. Validation of the NNI Estimation Models 

Based on the above findings, for the mechanistic NNI estimation method, only the NNI assessment models 

using the MCARI/MTVI2 and the RTVI were validated using the three validation datasets. Meanwhile, for 

the semi-empirical NNI estimation method, the NNI assessment models using the REIP-LI or MTCI were 

validated using three validation datasets. The validation results are listed in Table 7. For the MCARI/MTVI2- 

and RTVI-based NNI prediction models, the validation results showed that phenology had no influence on 

estimating the NNI. Regardless of whether the models were calibrated using data from all growth stages or 

data from a single growth stage, the models had similar performances when validated by the three validation 

datasets. The R2 values varied from 0.85 to 0.89, the RMSE values varied from 0.11 to 0.13, and the RMSE% 

values varied from 10.18% to 12.04% when validated by data from all growth stages; the R2 values varied 

from 0.93 to 0.94, the RMSE values varied from 0.05 to 0.06, and the RMSE% values varied from 5.10% to 

6.12% when validated by data from the Feekes 4 growth stage; and the R2 values varied from 0.82 to 0.86, 

the RMSE values varied from 0.15 to 0.17, and the RMSE% values varied from 12.71% to 14.41% when 

validated by data from the Feekes 7–8 growth stage. For the MTCI-based NNI prediction models and  

REIP-LI-based NNI prediction models, the influences of phenology can be observed from the validation 

results. For these models, the validation performance of the model was determined using the same types of 

samples in the calibration datasets. When the calibration dataset contained the proper amount of data 

collected at the same growth stage as the validation dataset, the validation results of the model were good. 

However, when the calibration dataset contained no data that were collected at the same growth stage as the 

validation dataset, the validation results of the model were worse. For the MTCI related NNI prediction 

models, the RMSE values varied from 0.13 to 0.25 and the RMSE% values varied from 12.03% to 23.15% 

when validated by data from all growth stages, the RMSE values varied from 0.05 to 0.23 and the RMSE% 

values varied from 5.10% to 23.47% when validated by data from the Feekes 4 growth stage, and the RMSE 

values varied from 0.13 to 0.35 and the RMSE% values varied from 11.02% to 29.66% when validated by 

data from the Feekes 7–8 growth stage. For the REIP-LI-based NNI prediction models, the RMSE values 

varied from 0.11 to 0.31 and the RMSE% values varied from 10.19% to 28.60% when validated by data from 

all growth stages, the RMSE values varied from 0.08 to 0.26 and the RMSE% values varied from 8.16% to 
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26.53% when validated by data from the Feekes 4 growth stage, and the RMSE values varied from 0.14 to 

0.42 and the RMSE% values varied from 11.86% to 36.16% when validated by data from the Feekes 7–8 

growth stage. Thus, the NNI estimation model when using the mechanistic method performed better when 

expanded to different growth stages than the NNI prediction model that was established using the semi-

empirical method, at least between the Feekes 4 and Feekes 7–8 growth stages of wheat, which are critical 

stages for N topdressing. 

Table 7. Validation results for the two NNI estimation method types. 

Spectral Index  

Used in Model 

Data Used for Model  

Establishment in  

Calibration Dataset 

Validation by  

Data from  

All Growth Stages  

(n = 30) 

 

Validation by  

Data from  

the Feekes 4  

Growth Stage  

(n = 15) 

Validation by  

Data from  

the Feekes 7–8  

Growth Stage  

(n = 15) 

R2 RMSE (RMSE%) R2 RMSE (RMSE%) R2 RMSE (RMSE%) 

MCARI/MTVI2  

and RTVI 

All data  

(n = 90) 
0.89 0.11 (10.18%) 0.94 0.06 (6.12%) 0.86 0.15 (12.71%) 

MCARI/MTVI2  

and RTVI 

Feekes 4 growth stage  

(n = 45) 
0.88 0.12 (11.11%) 0.94 0.05 (5.10%) 0.86 0.16 (13.56%) 

MCARI/MTVI2  

and RTVI 

Feekes 7–8 growth stage  

(n = 45) 
0.85 0.13 (12.04%) 0.93 0.06 (6.12%) 0.82 0.17 (14.41%) 

MTCI 
All data  

(n = 90) 
0.86 0.13 (12.03%) 0.94 0.11 (11.22%) 0.90 0.14 (11.86%) 

MTCI 
Feekes 4 growth stage  

(n = 45) 
0.85 0.25 (23.15%) 0.94 0.05 (5.10%) 0.90 0.35 (29.66%) 

MTCI 
Feekes 7–8 growth stage  

(n = 45) 
0.85 0.19 (17.59%) 0.94 0.23 (23.47%) 0.90 0.13 (11.02%) 

REIP-LI 
All data  

(n = 90) 
0.88 0.11 (10.19%) 0.91 0.08 (8.16%) 0.89 0.14 (11.86%) 

REIP-LI 
Feekes 4 growth stage  

(n = 45) 
0.81 0.31 (28.60%) 0.94 0.10 (9.77%) 0.87 0.42 (36.16%) 

REIP-LI 
Feekes 7–8 growth stage  

(n = 45) 
0.83 0.21 (19.44%) 0.94 0.26 (26.53%) 0.88 0.15 (12.71%) 

4. Discussion 

The NNI results estimated by remote sensing using existing methods are highly variable. Based  

on the REIP-LI, Mistele and Schmidhalter reported R2 values of between 0.84 and 0.99 for winter wheat 

when predicting NNI values in southeast Germany [29]. Using a linear regression method, Liang and 

Liu reported an R2 value of 0.91 for corn when estimating NNI values in northeastern China [30]. Chen 

et al. obtained an R2 value of 0.81 for corn when estimating the NNI in the northwestern plains of 

Shandong province, China, based on the back-propagation of an Artificial Neural Networks model [55]. 

Thus, the results obtained in this study are within the range of previously published results.  

For the practical use of NNI prediction approaches, the influences of external factors on these 

methods, such as sites, year, and phenology, must be known. This study conducted an innovation 

analysis and comparison of the effect of phenology on two types of existing NNI estimation methods, 
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the mechanistic method and the semi-empirical method. The study is very important for using remote 

sensing to predict the NNI. If the performance of an NNI prediction method is not influenced by 

phenology, it does not require collecting samples during each crop growth stage to design prediction 

models, which reduces the forecasting cost. In addition, different farmers do not always conduct farming 

activities at the same time. Thus, crops in different field are not always at the same growth stage during 

the growth season. In addition, the field N and other soil conditions vary significantly, which may result 

in phenology differences within a field. Because it is difficult to spatially determine the growth stage of 

a crop in detail [22] or to collect enough data to cover all prediction conditions for the phenology-

influenced NNI prediction method to perform model calibration, methods that are insensitivity to 

phenology changes likely perform better when NNI prediction is conducted at a regional scale by using 

remote sensing sensors on planes or satellites. Based on the data in this study, the semi-empirical NNI 

prediction method is influenced more by phenology than the mechanistic method. This result can be 

explained as follows. (1) The existing index was designed to estimate chlorophyll, N, biomass, and the 

LAI to make it sensitive to objective factors while minimizing its sensitivity to other confounding  

factors [38]; (2) When using remote sensing to obtain the biomass and N concentration, which are used 

in the mechanistic model, studies of existing corresponding spectral indices have considered 

confounding factors such as phenology; (3) Because the NNI is calculated using biomass and N 

concentration, the detected spectral features for the NNI must be a combination of the spectral features 

of the LAI and chlorophyll (Table 3). However, no studies of spectral indices have been conducted that 

consider the above factors. Thus, the selected best NNI estimation indices in the semi-empirical method 

are sensitive to confounding factors such as phenology. In addition, these results suggest that the 

mechanistic method is better for predicting the NNI. 

Remote sensing techniques have been used to conduct precise N management in the field [56–58]. 

Many variable-rate nitrogen application strategies have been proposed for N topdressing at critical crop 

growth stages based on remote detection of the N status of the crop [27]. Generally, the NDVI has been 

used as a crop N diagnosis tool in these studies. However, the NDVI is sensitive to many confounding 

factors, such as crop density and phenology. The NNI has been defined as a specific (varies only with 

nitrogen nutrition), sensitive (reacts rapidly to any change in plant N nutrition status), memorable (can 

give information about the history of the stand), and predictive (can infer future elements of crop 

behaviors) tool for crop N diagnosis [15]. Thus, smart N management can be improved by including the 

remotely sensed crop NNI. When the NNI is used for N management, existing variable-rate N application 

strategies can be adopted by making proper modifications. Additionally, for remote detection of the NNI, 

spectral data collected from crops with a tractor-mounted field spectrometer can be related to the NNI 

within a field [29]. By combining this method with a variable-rate computer controller mounted in a 

tractor, this type of data measurement can be used for precise N management “on-the-go”. In addition, 

airborne and satellite images can be used to produce spatially detailed NNI maps for large-scale applications.  

5. Conclusions 

Based on the use of a wide range of wheat data (three cultivars, different growth stages (Feekes 4  

to Feekes 7–8)) and hyper-spectral data, the performances of two NNI estimation methods were 

evaluated. The mechanistic NNI prediction method performed well for estimating the NNI and was not 
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influenced by phenology. Meanwhile, the semi-empirical NNI prediction method performed well when 

a large enough database was collected for model calibration but was influenced by phenology, which 

limits its application in practice. Thus, the mechanistic NNI prediction method was recommend as a 

better method for estimating the NNI. By combining the NNI with a variable-N management strategy, 

the NNI can be used for precise N management in the field.  
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