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Abstract: We analyzed potential land degradation processes in semiarid regions 

worldwide using long time series of remote sensing images and the Normalized Difference 

Vegetation Index (NDVI) for the period 1981 to 2011. The objectives of the study were to 

identify semiarid regions showing a marked decrease in potential vegetation activity, 

indicative of the occurrence of land degradation processes, and to assess the possible 

influence of the observed drought trends quantified using the Standardized Precipitation 

Evapotranspiration Index (SPEI). We found that the NDVI values recorded during the 

period of maximum vegetation activity (NDVImax) predominantly showed a positive 
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evolution in the majority of the semiarid regions assessed, but NDVImax was highly 

correlated with drought variability, and the trends of drought events influenced trends in 

NDVImax at the global scale. The semiarid regions that showed most increase in NDVImax 

(the Sahel, northern Australia, South Africa) were characterized by a clear positive trend in 

the SPEI values, indicative of conditions of greater humidity and lesser drought conditions. 

While changes in drought severity may be an important driver of NDVI trends and land 

degradation processes in semiarid regions worldwide, drought did not apparently explain 

some of the observed changes in NDVImax. This reflects the complexity of vegetation 

activity processes in the world’s semiarid regions, and the difficulty of defining a universal 

response to drought in these regions, where a number of factors (natural and 

anthropogenic) may also affect on land degradation. 

Keywords: Standardized Precipitation Evapotranspiration Index (SPEI); NDVI;  

NOAA-AVHRR; GIMMS; desertification; vegetation recovery 

 

1. Introduction 

Semiarid vegetation is well adapted to long periods of water scarcity, through various phenological 

and morphological mechanisms [1]. Under natural conditions, semiarid vegetation should not be 

severely damaged by extreme drought events because it is markedly resilient and has the capacity to 

recover. Nevertheless, the majority of semiarid regions worldwide is subject to anthropogenic 

perturbations, and is far from the natural equilibrium state. As a consequence of anthropogenic climate 

forcing and intensive historical land uses (e.g., grazing, agriculture, etc.), semiarid regions are prone to 

land degradation processes. Climate and human forcing can trigger positive feedback between the 

biota and the physical environment, leading the ecosystem towards a degraded state; if taken beyond a 

threshold, return to the initial state is very difficult [2–5]. 

Current climate change processes have been recognized as important factors in land degradation [6–8]. 

Global warming can affect precipitation seasonality and magnitude [9], but may also affect land 

surface water balances through changes in the atmospheric evaporative demand (AED), which will 

probably increase in coming decades as a response to increased air temperature and increased vapor 

pressure deficit [10]. It is expected that climate change will make droughts more frequent and severe  

in the future [11], which may continue current land degradation and trigger new processes in  

semi-arid regions. 

Drought has been considered to be a major factor triggering land degradation processes, and studies 

have stressed the importance of drought episodes in explaining the occurrence of major degradation in 

some regions [12,13]. Nevertheless, the scientific debate about these issues is not resolved. Some 

studies have argued that drought cannot be a factor explaining degradation trends, given the common 

resilience of semiarid vegetation communities and the general recovery of the vegetation following an 

increase in precipitation, even after long dry periods including those recorded in past decades in the 

Sahel [14,15]. Thus, global studies suggest that the world’s semiarid regions have shown a greater 

increase in vegetation activity than that observed for water availability [16]. Nevertheless, some 
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studies have shown that in semiarid regions characterized by soil limitations and intense human 

pressure, drought intensification as a consequence of warming processes may trigger land  

degradation processes [17]. These may be irreversible in areas in which edaphic conditions markedly 

limit vegetation establishment and development [18,19], even with the application of ecological 

restoration practices [20]. 

A number of studies have analyzed vegetation dynamics in response to climate variability [21–24], 

but very few have analyzed the response to drought through accurate quantification of drought severity 

using drought indices [25–29]. In general, these studies have shown that although semiarid vegetation 

is usually resistant and highly resilient to water deficits, vegetation activity in semiarid regions is 

highly controlled by interannual variations in water availability [30], and a decrease in water 

availability may trigger land degradation [12]. 

Remote sensing data provide a global long-term overview of the vegetation dynamics, and 

complement more detailed ground studies. In combination with analysis of other socioeconomic and 

biophysical variables, these data may enable greater understanding of land degradation mechanisms 

and the consequences of drought evolution and severity on land degradation. Studies based on 

available time series of remote sensing images and gridded climate databases have reported 

degradation processes in some regions that could be associated with changes in drought frequency and 

severity [12], but may also be influenced by human land management practices [31,32]. Nevertheless, 

the complexity of the response of global ecosystems to drought severity involves the various 

vegetation strategies [33], but also the drought magnitude and particularly the time scale at which the 

drought severity is measured [30]. This makes it difficult to assess the possible influence of drought on 

current land degradation processes. Although some studies have analyzed vegetation activity trends 

and possible degradation processes in semiarid regions using remote sensing data [16,34,35], the effect 

of drought severity has not been considered in these analyses. The current scientific debate about the 

surface extent and severity of desertification in semiarid lands, and how these are influenced by 

drought variability and trends [36], makes studies in this area a priority under current climate  

change scenarios. 

In this study we investigated land degradation processes in the world’s semiarid regions, measured 

using long time series of remote sensing images. The objectives of the study were to identify semiarid 

regions showing a marked decrease in the annual maximum vegetation activity, which could be 

indicative of the occurrence of land degradation processes, and to determine the possible influence of 

the observed drought trends. We used a multi-scalar drought index, the Standardized Precipitation 

Evapotranspiration Index (SPEI), which accounts for the positive influence of precipitation and the 

negative influence of the AED on drought severity. The SPEI is likely to be better than other indices 

for assessing the varying sensitivity of vegetation communities to water deficits [37], as it can be 

obtained on different time scales [38]. 
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2. Data and Methods 

2.1. Datasets 

2.1.1. Global Normalized Difference Vegetation Index 

Various remote sensing products enable the assessment of vegetation variability and change at the 

global scale. The datasets derived from SPOT (Satellite Pour l´Observation de la Terre)-Vegetation, 

MODIS (Moderate-Resolution Image Spectroradiometer)-Aqua and Terra satellites each provide the 

Normalized Difference Vegetation Index (NDVI) from 1998 and 2000 but currently the unique earth 

observation program, which currently enables analysis of vegetation activity over the past three 

decades, is provided by the National Oceanic and Atmospheric Administration (NOAA) Polar orbiting 

satellites. The NOAA satellites contain the Advanced Very High Resolution Radiometer (AVHRR) 

sensor, which collects spectral information in the visible and near infrared regions, facilitating 

calculation of the NDVI [39]. The NDVI data from NOAA-AVHRR sensors have been widely used to 

analyze vegetation variability and trends in various regions of the world [16,40–42]. A range of NDVI 

global datasets have been developed from NOAA-AVHRR. Beck et al. [43] conducted a review of the 

available datasets and their performance in spatial and temporal studies. Currently, the most widely 

used global dataset of NDVI from NOAA-AVHRR data is the Global Inventory Monitoring and 

Mapping Studies (GIMMS) database [44], which covers a longer period than the other available 

datasets (1981–2011). The GIMMS NDVI data is generated from the original 1.1 km2 NOAA-AVHRR 

data as bi-weekly maximum value composites aggregated to an 8 × 8 km pixel resolution. The quality 

and consistency of the GIMMS data are assured by correction for (i) sensor degradation,  

(ii) sensor intercalibration differences, (iii) solar zenith and viewing angles, (iv) volcanic aerosols,  

(v) atmospheric water vapor, and (vi) cloud cover. By comparing NOAA GIMMS and Landsat images, 

Beck et al. [43] showed that the GIMMS is the most accurate AVHRR-NDVI dataset for assessing 

vegetation variability and trends. A recent Special Issue of the journal Remote Sensing has focused on 

the description and applications of the third generation (3g) GIMMS NDVI. This issue includes a 

detailed description of the dataset [45], and studies on climate impacts on vegetation [46–48], 

vegetation trends [49–52] and land degradation in certain regions of the world [53,54]. In this study we 

used the GIMMS NDVI3g at a spatial resolution of 0.083° with a 15-day temporal interval for the 

period of July 1981 and December 2011. To enable comparison with existing drought datasets, these 

data were transformed to monthly values using the Maximum Value Composite of the two monthly  

15-day images.  

2.1.2. Drought Data 

To assess global scale drought variability for the period 1981–2011 we used the SPEIbase [55], 

which is based on the SPEI [38]. The SPEI is obtained from the monthly climatic water balance 

(precipitation minus reference evapotranspiration (ETo-)), which is adjusted using a three-parameter 

log-logistic distribution. The values are accumulated at various time scales and converted to standard 

deviations with respect to average values. The SPEI has clear advantages over other drought indices as 

it facilitates better spatial comparability [56], has greater capacity than other drought indices to identify 
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drought impacts in a variety of systems [37], and has more coherent response to precipitation and the 

AED than other indices [57]. We used SPEI time scales from 1 to 12 months. Although the vegetation 

of some regions may respond to longer time scales, semiarid vegetation mostly responds to drought 

time scales <6 months [30]. The monthly 0.5° spatial resolution SPEI was transformed to 8 km to 

match the GIMMS NDVI3g data, using a bilinear convolution. Although this approach could introduce 

inaccuracies when applied in areas having complex topography and marked climate variability, most 

of the semiarid regions identified in this study correspond to areas of plain having minor topographic 

variation and little climate variability. Consequently, it was assumed that the change of resolution of 

the climate dataset would have minor effects on the resulting analysis. 

2.1.3. Other Data 

We also used other auxiliary global datasets to identify the study domain. Thus, we used a global 

land cover map (GlobCover) to select regions suitable for analysis based on the land cover type. 

GlobCover is a European Space Agency initiative to develop a global land cover map using input 

observations from the 300m MERIS sensor on board the ENVISAT satellite mission. To match the 

GIMMS NDVI3g data, these satellite data were also transformed to 8 km resolution using a mode 

filter, with land cover categories being assigned according to the mode of the 300 m cells contained 

within each 8-km cell. We also used global records of annual precipitation and annual reference 

evapotranspiration from the Climate Research Unit (CRU) TS3.2 dataset [58]. This is the most 

complete and updated dataset of gridded precipitation and reference evaporation at the global scale. It 

has a spatial resolution of 0.5°, and covers the period 1901–2013. The maps of annual precipitation and 

ETo at a resolution of 0.5° were also transformed to 8 km using the bilinear convolution approach 

referred to above. 

2.2. Analysis 

2.2.1. Identification of Semiarid Regions 

We firstly identified the semiarid regions of the world using annual precipitation and the ETo 

climatology. Various approaches have been used to identify the world’s semiarid regions [59,60]. 

These are based on values of precipitation and the AED. The United Nations Environmnet  

Programme [61] proposed an indicator based on the quotient between precipitation and AED; but this 

diminishes the role of the AED in relation to precipitation in determining water deficit conditions [57]. 

We calculated a simple climatic water balance based on the difference between the average annual 

precipitation and the average ETo, which quantifies the available deficit or surplus of water at each 

site. After testing various thresholds we identified semiarid regions according to a threshold of  

P – ETo = −200 mm year−1, as this provides a better match with current semiarid vegetation biomes [62]. 

In these regions we selected the natural vegetation areas from the GlobCover dataset, and removed 

deserts, human infrastructure, urban areas and cultivated lands. Most of the selected lands correspond 

to areas of herbaceous and shrubs cover. Figure 1 shows the spatial distribution of the semiarid regions 

according to these criteria. 
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Figure 1. Spatial distribution of the semiarid regions analyzed in the study. 

2.2.2. Identification of the Month of Maximum Vegetation Activity (NDVImax) 

Land degradation is usually described as the loss of potential productivity in a vegetation 

community [2,63]. Vegetation productivity is usually assessed using satellite images integrated over 

biweekly or monthly periods during the active period [64–66]. Nevertheless, an annual parameter is 

not suitable for identifying land degradation processes, as a loss of productivity over the period in 

which the maximum is recorded could be masked by changes during periods of growth or senescence. 

Moreover, vegetation activity can respond differently to drought conditions, as a function of 

seasonality [29]. In addition, using an annual summary of vegetation activity does not allow defining 

the SPEI drought time scales that are affecting the NDVI in the various months of the year. 

Consequently, we analyzed land degradation taking into account the month at which maximum 

vegetation activity was recorded, which varied among the semiarid regions analyzed. The NDVImax 

provided information on the maximum potential vegetation activity in each region, and although it may 

not be fully indicative of all annual vegetation growth, and the month corresponding to this value can 

change from year to year; we have found a strong one-month autocorrelation in the monthly NDVI 

series of most of the analyzed semiarid regions and also a high correlation between the NDVImax and 

the annual integrated NDVI (results not shown). This reduces shortcomings in the methodology used. 

The month in which maximum vegetation activity was recorded in each 8-km pixel was identified 

using the monthly average NDVI values over the 30 years for which data were available, selecting the 

month in which monthly averages corresponded to the annual maximum NDVI. Figure 2 shows the 

month of the year in which the maximum value NDVI was reached in each region. 
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Figure 2. Month of the year in which the monthly average maximum Normalized 

Difference Vegetation Index (NDVImax) was recorded. 

2.2.3. NDVImax Trends: Sign and Magnitude 

We firstly analyzed the NDVI trends in the months of average maximum vegetation activity. For 

this purpose we selected the monthly series of the NDVI corresponding to the month of average 

monthly maximum NDVI (NDVImax). The Mann-Kendall statistical test was used to determine trend 

significance. The nonparametric coefficient (Mann-Kendall tau) was selected because it is more robust 

than parametric coefficients, and does not assume normality of the data series [67]. The value of tau 

measures the degree to which a trend is consistently increasing or decreasing. In our study positive 

values of tau indicated a trend of increasing vegetation cover, and negative values indicated decreasing 

cover. Statistically significant trends were defined as those below the threshold p < 0.1. We also 

analyzed the magnitude of change in NDVImax. To identify areas that underwent the greatest changes 

in NDVImax we used a regression analysis between the series of time (independent variable) and the 

temporal NDVImax (dependent variable). The results yielded one model for each 8-km grid, and took 

the form y = mx + b. The slope of each model (m) indicated the change in NDVImax per year, which we 

multiplied by 10 to provide a more comprehensive measurement of NDVImax change decade−1. 

2.2.4. Time Scale of SPEI with Maximum Correlation between NDVImax and SPEI 

We secondly analyzed the existing correlation between the NDVImax and SPEI in each 8-km grid 

cell. As noted above, the response of vegetation to drought can differ as a function of the drought time 

scale [30]. As a consequence of different physiological, anatomical or edaphic factors, some vegetation 

communities can show a response to short periods of water deficit, whereas others may be resistant to 

soil water deficit and/or enhanced AED, and respond to longer drought time scales representative of 

water deficits of longer duration. As it was not possible to know a priori how the NDVImax responded 
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to SPEI time scales in each grid cell, we correlated NDVImax with the 1- to 12-month SPEI series for 

the same month, and retained maximum correlation for further analysis. Figure 3 illustrates this 

procedure. The plots to the left show the monthly evolution of the 1-, 3- and 12-month SPEI and 

NDVImax for 28.7°S, 23.1°E. The plots to the right show the evolution of NDVImax in the month of 

average maximum NDVI and the evolution of the 3-, 6- and 12-month SPEI. It shows that the 

NDVImax mainly relates to cumulative water deficits at shorter time scales, reaching a maximum 

correlation with the 3-month SPEI, which was selected for the analysis for this location. Significant 

correlations between the NDVImax and SPEI were based on a threshold of p < 0.1. 

 

Figure 3. Example of the analysis used to determine the influence of various drought  

time-scales on the maximum NDVI at 23.1°E, 28.7°S. The left column shows the evolution 

of the 3-, 6- and 12-month Standardized Precipitation Evapotranspiration Index (SPEI) and 

the monthly NDVI. The right column shows the evolution of the NDVI (solid line) and the 

1-, 3- and 12-month SPEI (dotted line) during the month in which the average maximum 

NDVI was recorded. The bottom plot shows the correlation between the NDVI and the  

1- to 12-month SPEI. 

2.2.5. Relationship between NDVImax Trends and SPEI Trends 

To identify possible relationships between observed trends in the NDVImax and changes in drought 

severity, we also assessed (Mann-Kendall tau test; p < 0.1) the trends in the SPEI series for each 8-km 

grid cell corresponding to the month of NDVImax and the SPEI time scale at which the maximum 

correlation between NDVImax and SPEI was reached. The magnitude of change in the SPEI was also 
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assessed using least-square simple regression between the series of time (as independent variable) and 

the series of the SPEI. To detect any association between the observed changes in NDVImax and SPEI 

we related the observed NDVImax changes (in NDVI units per decade) between 1981 and 2011 to the 

SPEI changes (in SPEI units per decade). Moreover, we related the sign and the signification of the 

trend in both the NDVI and SPEI using a cross tabulation analysis [68]. This assesses the spatial 

distributions of trend signs (positive and significant, positive but non-significant, negative and 

significant, negative but non-significant) between NDVImax and the SPEI. Thus, the default structure of 

the table was 4 × 4. This enabled similarities among the spatial distributions of the NDVI and SPEI to 

be detected. Statistical assessment of the overlaps was based on the chi-squared (χ2) test. The null 

hypothesis (H0) was that the spatial distribution of the two categorical variables was independent and 

randomly distributed. The alternative hypothesis (H1) was that the spatial association between the two 

categorical variables was significant. When the null hypothesis is rejected, the degree to which the 

categorical variables are associated can be calculated using the coefficient of contingency [69], which 

can be interpreted using the Pearson’s r statistic. 

2.2.6. Regression Model NDVImax-SPEI 

Finally, following a methodology similar to that proposed by Evans and Geerken [31], and used 

extensively [32,70–72], we calculated a regression model for each 8-km grid cell in which a significant 

correlation between the SPEI and NDVI was found. The SPEI of the month of NDVImax and the time 

scale of strongest NDVImax -SPEI correlation was the independent variable, and the NDVImax was the 

dependent variable. To focus on the regions in which the NDVImax variability was related to drought 

change, we selected only those grid cells in which a significant correlation was found between both 

variables. This enabled a residual per year (the difference between the observed NDVImax and the 

modeled NDVImax by SPEI) to be obtained. We are aware that the SPEI does not comprise all effects 

of meteorology on plant growth. For instance, precipitation intensity is a factor, which is not 

considered by current drought indices and it could be highly relevant to explain soil water availability 

in semiarid regions. Moreover, other atmospheric phenomena such as heat waves, frost periods, etc., 

are also not well captured by drought indices. Nevertheless, in world semiarid regions, the main 

limiting factor for the vegetation growth is the soil water availability, which is driven by two main 

elements: (i) the total precipitation recorded over a certain period of time, and (ii) the atmospheric 

evaporative demand (AED). These two variables are considered in the SPEI, taking into account the 

influence of the incoming solar radiation and temperature but also relative humidity and wind speed on 

the NDVI by means of their inclusion in the reference evapotranspiration calculations.  

Trend analysis was also applied to the residual series using the Mann-Kendall test and the 

magnitude of the trend, assessed using simple regression models. The evolution of these residual series 

may be indicative of: (i) an increase of the NDVImax above the expected potential according to the 

evolution of drought conditions (i.e., a positive trend of residuals), which could be indicative of 

decreased perturbations affecting the ecosystem (e.g., human pressure); (ii) a stationary evolution in 

which the residuals do not show any trend, and the evolution of the NDVImax follows the evolution of 

water availability according to the SPEI evolution; and (iii) a decrease of the NDVImax below the 

expected potential according to the SPEI evolution (a negative evolution of the residuals), which could 
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be indicative of a lesser increase in the NDVImax, or a larger decrease in NDVImax than expected 

according to the SPEI evolution. 

To identify factors that might drive the observed evolution of the NDVImax, the spatial patterns of 

correlation between the SPEI and NDVImax and the evolution of the series of residuals were related to 

the sign and significance of correlations (between the SPEI and NDVImax) or trends (for the NDVImax, 

SPEI and the series of residuals) (positive and significant, positive and non-significant, negative and 

significant and negative and non-significant) and with the average NDVImax and the average aridity 

index (see Section 2.2.1). The sign and signification of the series of residuals were also related to the 

observed change in the SPEI and NDVImax. We also considered the Water Use Efficiency (WUE) [73] 

for each 8-km grid cell; this is a parameter similar to the Rainfall Use Efficiency (RUE). The  

RUE is a standard measure widely used to assess the health of ecosystems and their productive  

capacity [2,71,74]. The WUE was estimated as the quotient between the average annual climatic water 

balance (the difference between precipitation and ETo, plus a constant to ensure positive values) and 

the average maximum NDVI. We judged that WUE may be more useful than the RUE for quantifying 

the efficiency of use of the available water, as it takes into account both precipitation and the AED. 

Lower values of WUE are indicative of a decreased capacity for generating green biomass per unit of 

available water, and usually represent more degraded areas [2,74,75]. We compared graphically the 

values of these variables in each of the four trend groups, and assessed the statistical differences 

among the groups using one-way analysis of variance (ANOVA). We used the Tamhane post-hoc 

contrast to identify subsets of means that do not differ from each other. This test uses the Student’s t 

distribution and it is appropriate even when variances and group sizes are unequal. In other words,  

it does not require the assumption of homogeneity in the variance of the factors among the trend 

groups, and here it was used to identify the statistically significant differences among the trend groups 

for each of the variables. 

3. Results 

3.1. NDVImax Trends 

Figure 4 shows the spatial distribution of changes in the NDVImax during the month of maximum 

vegetation activity in the semiarid regions of the world. Figure 5 shows the percent of semiarid regions 

with positive and negative changes, and the magnitude of the changes observed. Positive trends clearly 

dominated across the world’s semiarid regions for the period 1982–2011. More than 70% of the 

regions showed a positive trend in NDVImax, 30% of which were significant, while for only 5% of the 

semiarid zones was there a significant negative trend (see Figure 5). Large areas showed clear 

significant positive trends (including amongst others the Sahel; northwest India; northeast Australia; 

the northwestern border area of South Africa with Botswana, Zimbabwe and Mozambique; southeast 

of the Iberian Peninsula; central and southeastern areas of North America). Other areas of smaller 

extent showed significant negative trends (a band through central Asia extending west to east, the 

interior of the Horn of Africa, California, north of Patagonia). Therefore, the dominant pattern at the 

global scale showed a general NDVImax increase throughout the world’s semiarid regions. 
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Figure 4. Trends in the NDVI in semiarid regions during the month of average maximum 

vegetation activity, under the assumption of monotonic change (1982–2011). Top: sign  

and signification (p < 0.1) of the trends. Bottom: magnitude of the trend (in NDVI  

units decade−1). 
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Figure 5. Percentage of semiarid lands according to the observed NDVI magnitude of 

change (NDVI units decade−1) between 1982 and 2011. The inset graph shows the 

percentages of semiarid lands having negative and positive trends (including signification). 

Figure 6 provides a box plot showing the values of average NDVImax, climate aridity and WUE as a 

function of the four categories of NDVImax trend. The positive and significant trends correspond to 

areas that showed higher average NDVImax and WUE values than the other trend categories. 

Nevertheless, only the areas having positive and significant trends showed statistically significant 

differences from the other trend categories. In contrast, the various trend categories showed a clear 

difference in aridity values (annual precipitation minus annual ETo). In general, the areas showing 

negative and significant trends in NDVImax mostly corresponded to areas associated with lower climate 

aridity, whereas the areas showing positive and significant NDVImax trends in general corresponded to 

the most arid regions, although this pattern could have little validity on a local scale. The differences in 

the average aridity between the various groups of NDVImax trends were statistically significant, 

according to the ANOVA analysis and the Tamhane post-hoc test at p < 0.001, which suggests that the 

observed trends in NDVImax between 1982 and 2011 were controlled by spatial patterns in aridity. 
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Figure 6. Box plots showing the average NDVI, aridity and Water Use Efficiency (WUE) 

for the four categories of NDVI trend. 

3.2. Drought Influence on NDVI Variability and Trends 

Figure 7 shows the spatial distribution of the Pearson’s r correlation coefficient between the SPEI 

and NDVImax time series, corresponding to the SPEI time scale at which the maximum correlation 

between NDVImax and SPEI was reached. For the majority of the world’s semiarid regions the 

correlation was positive and statistically significant (67.9% of the total surface, see Figure 8), which 

highlights the importance of water availability in explaining variability in NDVImax in these areas. 

Strong correlations were found for Australia, South Africa and Namibia, areas of the Sahel, southern 

USA, northern Mexico and northern Maghreb. Figure 9 shows box plots of the average maximum 

NDVImax, climate aridity and WUE, corresponding to the categories of SPEI vs. NDVImax correlations. 

Areas showing a positive and significant correlation between NDVImax and the SPEI generally showed 

lower values of NDVImax than the other categories. This was also observed for the WUE. Nevertheless, 

the differences were not statistically significant according to the ANOVA analysis. The box plot of the 

climate aridity as a function of the four SPEI-NDVImax correlation categories shows that the areas 

having positive and significant correlations between NDVImax and the SPEI correspond to more arid 

areas than the regions showing negative or positive but non-significant correlations. There was a clear 

aridity gradient between the various categories of correlation between the SPEI and NDVImax. The 

differences of aridity between the positive and negative categories were statistically significant, as well 

as between the positive and non-significant and the positive and significant correlations. 
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Figure 7. Pearson’s r correlation coefficients between SPEI and NDVI time series in the 

month of maximum vegetation activity (1982–2011). Top: magnitude of Pearson’s r 

correlations. Bottom: areas (in black) having positive and significant correlations between 

the SPEI and NDVI (p < 0.1). 



Remote Sens. 2015, 7 4405 

 

 

Figure 8. Percentage of semiarid regions according to the correlation coefficient between 

the NDVI and SPEI (1982–2011). The inset plot shows the percentages of semiarid lands 

having negative and positive trends (including signification). 

 

Figure 9. Box plots showing the average NDVI, aridity and WUE for the four categories 

of correlation between the SPEI and NDVI. 
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3.3. Trends in SPEI 

Figure 10 shows the evolution of the SPEI corresponding to the month in which the maximum 

vegetation activity was identified in each pixel, and the SPEI time scale at which the maximum 

SPEI/NDVImax correlation was identified. In areas of the Sahel, Namibia and northern Australia the 

SPEI showed clear positive and significant trends, indicating lesser drought severity and greater water 

availability over the last three decades. A dominant SPEI decrease, indicative of drier conditions, was 

identified in North America, regions of Argentina, Asia, and inner areas of the Horn of Africa and 

South Australia, among others. Positive and significant SPEI trends were spatially dominant with 

respect to negative and significant trends at the global scale (18.9% vs. 8.6%, respectively). 

 

Figure 10. Trends of the SPEI (1982–2011) corresponding to the month of maximum 

vegetation activity and the SPEI time scale at which the maximum SPEI/NDVI correlation 

was identified in each pixel. (Top) magnitude of the trends (in SPEI units decade−1). 

(Bottom) sign and signification (p < 0.1) of the trends. 
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3.4. Relationship between SPEI Trends and NDVImax Trends 

Figure 11 provides a scatterplot showing the observed magnitude of change of NDVImax and the 

magnitude of change in the SPEI during the month of average maximum NDVI and the SPEI  

time-scale that recorded the highest correlation. Although not strong, the spatial relationship between 

both parameters was positive, indicating that positive SPEI trends tend to favor positive NDVImax 

trends. This was clearly evident in the cross-tabulation analysis. Table 1 shows that the sign and 

significance of the trends in the SPEI were significantly correlated to the sign and trend of NDVImax. 

The Coefficient of Contingency was significant, indicating that a significant decrease of the SPEI 

favors a decrease in NDVImax, and vice versa. Thus, the various categories of NDVImax trends clearly 

corresponded to different populations of SPEI change. Figure 12 provides a box plot showing the 

magnitudes of change in the SPEI corresponding to the four categories of NDVImax trend noted above. 

Clearly there is a gradient between negative NDVImax trends, in which the magnitude of change in the 

SPEI tends to be negative, and the positive NDVImax trends that coincide with positive magnitudes  

of change. 

 

Figure 11. Relationship between the magnitude of the NDVI and SPEI trends (units 

decade−1) between 1982 and 2011 for the world’s semiarid regions. 

 

Figure 12. Box plot showing the magnitude of change in the SPEI corresponding to the 

categories of NDVI trend between1982 and 2011. 
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Table 1. Association between the sign and signification of the NDVI and the SPEI trends 

according to the cross-tab analysis. The chi-square and the coefficient of contingency (CC) 

are shown. 

Chi-Square 5293,838 

sig <0.000 

CC 0.350 

sig <0.000 

3.5. Evolution of Residual Series 

Figure 13 shows an example of the evolution of the residual series at two sites. The left upper plot 

shows the evolution of the April NDVI (corresponding to the month having the average maximum 

NDVI) and the four-month SPEI (the time scale at which the maximum correlation was found), at 91°E, 

31.2°N (North America). The left middle plot shows the evolution of the observed vs. predicted NDVI, 

based on a regression model in which the four-month SPEI was the predictor. The residual (the 

difference between observed and predicted) is shown in the bottom plot. The plot shows a clear positive 

trend in the residual, indicative of a NDVI increase greater than expected by the evolution of the SPEI. In 

contrast, at 2.5°E, 35.5°N the opposite occurred, whereby the predicted NDVI was higher than that 

expected by the SPEI evolution, which suggests that factors other than water availability during the 

month in which the maximum NDVI was recorded may have affected the evolution of the NDVI. Figure 

14 shows the spatial distribution of the sign and signification of the evolution of residuals in the regions 

in which a significant correlation between NDVImax and SPEI was observed. This shows dominant 

negative trends in regions of Namibia, South Africa, North America and Argentina, but dominant 

positive trends in the Sahel, Mexico, northeast Brazil, and central and South Australia. Thus, there was a 

dominant increase of residuals at the global scale, with >25% of the analyzed areas showing a positive 

and significant increase, and 64% showing positive coefficients (Figure 15). 

 
Figure 13. Examples of the evolution of residuals between NDVI observations and 

predictions, using the SPEI as predictor. Left: USA at −91°E, 31.2°N, Right: Algeria at 

2.5°E, 35.5°N. 
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Figure 14. Trend in residual series (difference between observed and predicted NDVI, 

according to variations of SPEI) in areas having positive and significant correlations 

between the SPEI and NDVI. Top: sign and signification (p < 0.1) in the trend of the 

residual series. Bottom: magnitude of the residual series (in NDVI units decade−1). 
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Figure 15. Percentage of semiarid regions in which there was a significant correlation 

between the SPEI and NDVI, according to the magnitude of change in the residual series. 

The inset plot shows the percentages of the analyzed lands having negative and positive 

trends of the residuals (including signification). 

The residual trends category showed a level of control exerted by the spatial distribution over some 

of the factors analyzed (Figure 16). No marked differences were evident among category trends as a 

function of the average aridity, the WUE or the observed change in SPEI. There were no significant 

differences among the values of these variables as a function of the trend categories of residuals. 

Nevertheless, we detected patterns for the average NDVImax for the period 1982–2011 for each 8-km 

cell. Areas showing positive and significant trends for the series of residuals in general showed higher 

average NDVImax values than areas showing negative trends. The pattern was much clearer for the 

observed change in the NDVImax. The areas showing positive and significant trends in the series of 

residuals were in general characterized by dominant positive trends in the NDVImax values, whereas 

the areas showing negative and significant trends in the series of residuals tended to show negative 

trends in NDVImax values. The differences among the groups were statistically significant. 
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Figure 16. Box plots showing the average NDVI, aridity, WUE and magnitude of change 

in the SPEI and NDVI in the four categories of trend in the residual series. 

4. Discussion  

In this study we used the GIMMS dataset to analyze trends in the Normalized Difference Vegetation 

Index (NDVI) in the world’s semiarid regions, based on 30 years of NOAA-AVHRR images. We 

investigated the influence of drought events on semiarid land degradation processes using a multi-scalar 

drought index (the Standardized Precipitation Evapotranspiration Index; SPEI), which took into account 

both precipitation and the atmospheric evaporative demand, and was able to be calculated at different 

time scales to take account of the varied times of response of vegetation activity to water availability. 
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4.1. Vegetation Activity Trends 

The NDVI values recorded during the period of maximum vegetation activity (NDVImax) showed a 

dominant positive evolution in the majority of the world’s semiarid regions between 1982 and 2011; 

this was very evident for the Sahel, northeast Brazil, east Mexico, Australia, and in other smaller areas. 

Thus, 73% of the semiarid regions showed a positive evolution of the NDVImax in the month of 

maximum activity, although only 33% of the regions showed a positive and statistically significant 

trend. In contrast, 22% of the areas showed a negative trend in NDVImax, and only 5% of these were 

statistically significant. These results are consistent with a number of regional and global studies on the 

evolution of vegetation activity in semiarid regions [15,16,34,51]. Although these were based on 

monthly maximum value composites of NDVI values or integrated annual values, the results are 

comparable with the results we found using NDVImax. 

Fensholt et al. [16] also used the AVHRR-GIMMS dataset for the period 1981–2007 to determine 

monthly trends of NDVI in the world’s semiarid regions. They showed dominance of vegetation 

greenness in semiarid areas between 1981 and 2007, and concluded that “current generalizations, 

claiming that land degradation is ongoing in semiarid areas worldwide, are not supported by the 

satellite based analysis of vegetation greenness”. These results are consistent with the evolution of 

NDVImax over the period 1981–2011, confirming that maximum biomass productivity in semiarid 

ecosystems may have increased in recent decades. This pattern could be indicative of less constraining 

environmental conditions as a consequence of increased soil water availability. The most 

representative case is probably the Sahel, where various studies have documented this pattern [15,76]. 

Thus, field studies in the region have indicated that flora diversification has occurred since the  

mid-1990s as a response to more precipitation [77]. Nevertheless, we note that regional and local 

variability can occur, and that greening recorded in some areas using remote sensing data does not 

necessarily mean that land degradation processes are absent, as an increase in vegetation cover 

concentrated in a few areas could produce vegetation greening but mask accompanying degradation 

processes. Herrman and Tappan [78] recently used long-term field surveys to show that despite 

greening in central Senegal, impoverishment of the vegetation cover had occurred at various study 

sites, as indicated by an overall reduction in species richness, an increase in the dominance of shrubs, 

and a shift towards more arid-tolerant species. Schlesinger et al. [79] and Reynolds et al. [80] detailed 

similar processes in semiarid areas of North America. They found that an increase in shrub cover and 

density (and greening) could be accompanied by land degradation processes, because the cycling of 

nutrients was progressively confined to the zones of litter accumulation beneath shrubs, while the bare 

inter-shrub spaces became increasingly nutrient poor, and subject to overland flow, soil erosion by 

wind and water, and nutrient losses. The replacement of herbaceous plants by shrubs, and the 

progressive development of shrub resource islands is considered to be an early warning sign of 

desertification [5], which could be independent of the greening trends found in some regions of  

the world. 

We also note that land degradation processes are scale-dependent and that the spatial resolution 

used in this study (8 × 8 km) could mask land degradation processes only evident at a smaller scale. 

Stellmes et al. [81] compared land degradation processes using time series of Landsat (30 m) and 

NOAA-AVHRR images (1.1 km) in northern Greece, and showed that although the high temporal 
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resolution of NOAA-AVHRR enables the use of enhanced time series methods, several cover 

modifications can only be assessed using long-term field surveys or high resolution time series, such as 

provided by Landsat TM/ETM+. This is common in complex semiarid landscapes in which land 

degradation processes are evident at very small spatial scales [17,82,83]. The large-scale study 

presented here identifies the main features of vegetation changes in the world’s semiarid regions, but 

cannot provide details of particular processes identified at regional or local scales, some of which are 

highly complex. These include processes observed in Mediterranean regions, in which the magnitude 

of the response of the vegetation to drought is very sensitive to differences among sites, seasons,  

and species, but also to interactions with different environmental factors that determine plant 

conditions [84,85], and where centuries of significant human pressure have interacted with climate 

change and drought to produce mosaics of land degradation processes [17,19]. 

4.2. Influence of the Drought Variability on Vegetation Activity 

A number of previous studies have noted the marked influence of interannual precipitation 

variability on the NDVI [47,86–89]. We found that for the majority of world’s semiarid regions the 

NDVI values during the peak of maximum vegetation activity were highly correlated with drought 

variability, evaluated using the SPEI. Several previous studies have reported that the influence of 

rainfall on interannual NDVI variability is not very strong, including in semiarid regions as South 

Africa [90] and the Sahel [73,91]. Hein et al. [92] reported that the response of semiarid vegetation to 

precipitation variability can be disturbed by other factors including nutrient status, lag effects between 

precipitation and subsequent vegetation activity and growth [47], and rainfall-runoff relationships, 

which are determined by the intensity of particular rainfall events. 

In our study we showed that there was a positive and significant correlation between the SPEI and 

NDVI in 68% of the area of semiarid regions of the world. The SPEI is probably more suited to 

identifying the influence of water availability and drought severity on the vegetation dynamics in 

semiarid regions than is precipitation, as the SPEI is based on the combined climatic water balance 

(precipitation minus AED), and takes into account the strong atmospheric evaporative demand that is 

typical of semiarid regions. Recent studies using tree-ring records have shown that in various regions 

under current global warming conditions the AED can have a greater influence on the vegetation 

dynamics than does precipitation [93–95], as AED largely determines the soil and plant water stress. 

Thus, Stephenson [96] showed that the evapotranspiration deficit is a better metric than precipitation 

for explaining the current distribution of vegetation communities at the global scale. Moreover, the 

SPEI is computed on different time scales, enabling identification of the most suitable time scale to 

detect the varied response times of vegetation communities to water deficits [30,97]. This approach is 

undoubtedly preferable to identifying drought impacts on vegetation activity and growth based on 

annual precipitation, and has usually been used in studies analyzing the influence of climate on the 

NDVI in semiarid regions [98–100]. 

We found that the trends in drought events exerted an influence on the NDVI max trends at the global 

scale. The relationship between the trends in these variables was not strong, but at a spatial level was 

statistically significant. Thus, the semiarid regions that showed a greater increase in NDVImax (the 

Sahel, northern Australia, South Africa) were characterized by a clear positive trend in the SPEI 
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values, indicative of more humidity and lesser drought conditions. Thus, the categories of NDVImax 

trends clearly showed significant differences in the magnitude of change in the SPEI (positive changes 

for positive NDVImax trends, and negative changes for negative NDVImax trends). 

4.3. Other Possible Explanatory Factors 

A number of studies have considered the important role of droughts in triggering land degradation 

processes [6,12,13]. Nevertheless, although changes in drought severity may be an important driver of 

NDVI trends and land degradation processes in semiarid regions, it is important to note that the results 

obtained in the present study suggest that drought may not explain several of the observed changes in 

NDVImax. The residuals of the models created to predict the NDVImax evolution based on the SPEI 

showed that the trend in residuals was predominantly positive throughout semiarid regions, and that 

the observed spatial patterns were not related to the average NDVI, climate aridity or WUE conditions. 

Thus, positive trends in the residuals of the models were mainly found to occur in areas characterized 

by large increases in the NDVI, including the Sahel, central Australia, southern and northern America 

and northeast Brazil. The observed trends and the response of droughts in various semiarid regions of 

the world suggest marked resilience of semiarid ecosystems; although some studies have suggested 

drought as the primary driver of land degradation in areas of Africa [12,73], these areas showed  

an increase in potential production that was much greater than expected by the evolution of  

drought severity. 

Le Houerou [6] reported that under conditions of sufficient soil water content a CO2-enriched 

atmosphere could enhance photosynthesis, plant size and overall productivity, and reduce stomatal 

conductance and transpiration in semiarid ecosystems, thus improving the WUE. Fensholt et al. [16] 

and Donohue et al. [101] suggested atmospheric CO2 fertilization [102] as the most plausible 

explanation for the generalized greening observed in the world’s semiarid regions, in excess of the 

estimated climate potential. Nevertheless, the effects of CO2 fertilization are not uniform [103], and are 

determined by the availability of water and other nutrients. Thus, Smith et al. [104] showed that CO2 

fertilization would not enhance production under drought conditions because, independent of the 

atmospheric CO2 concentration, plant physiological processes are highly constrained by water deficits, 

and also by nitrogen limitations [105]. This could help explain why we found a general negative trend 

of NDVImax in the regions characterized by negative SPEI trends (e.g., Argentina, southern USA  

and areas of the Horn of Africa), as water deficits could limit the influence of CO2 fertilization in  

these regions. 

In addition to drought evolution and CO2 fertilization, other local to regional factors should be 

analyzed to understand current NDVI trends in semiarid regions. Factors including the abandonment of 

traditional land uses (with consequent increase of shrub cover potentially increasing the risk of severe 

forest fires), increased grazing or cropping, and the loss of soil fertility through salinization or 

decreased organic content (with consequent loss of moisture retention) could explain the NDVI 

decrease in some areas, and land cover changes and human land intensification could explain the 

increased greening observed in some regions. Olsson et al. [15] concluded that climate trends cannot 

fully explain the changes in vegetation activity in the Sahel, and that other factors including land use 

changes and migration may contribute. Evans and Geerken [31] showed that the expansion of 
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agriculture was responsible for the positive NDVI trends observed in the drylands of Syria.  

Begué et al. [106] suggested that the increase of the NDVI in the Sahel region may be the consequence 

of high cropping rates. Thus, Brink and Eva [107] reported an increase of 14% and 26% in the 

cropland classes for the period 1975–2000 in the Sahel and Sudan ecoregions, respectively.  

In addition, increased investment and improvements in soil and water conservation techniques,  

such as contour bunding, in response to drought crises experienced by farmers could explain positive 

trends [108]. The importance of human factors, including decisions on production strategies and land 

use, in contributing to environmental and vegetation change over long time periods must also be taken 

into account [109]. Some studies have noted that higher stocking rates may favor vegetation recovery 

because herbivores reduce the aboveground grass biomass, but they lead to a reduction of fine fuel and 

a consequent reduction or complete elimination of grassland fires [110]. 

We showed that areas having dominant negative trends in residuals, including Namibia, Argentina 

and regions of southern USA, Somalia, Ethiopia and Australia showed a general negative trend in the 

NDVImax. In these areas the NDVImax has decreased to a greater extent than expected with the 

evolution of drought conditions. These areas show a strong correlation between the NDVI and the 

SPEI, but the mechanisms that have caused a greater decrease of the NDVImax than that expected from 

the SPEI evolution may be driven by various factors. In southern USA and Argentina the SPEI trends 

have been predominantly negative. This could mean that lower water availability reinforces the effect 

of other driving factors (e.g., grazing). In other areas including Namibia and regions of Australia the 

SPEI trends have been positive, but under these more favorable conditions the NDVImax has not 

significantly increased, which suggests that other factors (e.g., human, edaphic, ecological) could  

be influential.  

5. Conclusions 

In this study we used the the Global Inventory Monitoring and Mapping Studies (GIMMS) dataset 

to analyze trends in the Normalized Difference Vegetation Index (NDVI) in the world’s semiarid 

regions, based on 30 years of National Oceanic and Atmospheric Administration-Advanced Very High 

Resolution Radiometer (NOAA-AVHRR) images. We investigated the influence of drought events on 

semiarid land degradation processes using a multi-scalar drought index (the Standardized Precipitation 

Evapotranspiration Index; SPEI), which took into account both precipitation and the atmospheric 

evaporative demand, and was able to be calculated at different time scales to take account of the varied 

times of response of vegetation activity to water availability. The main conclusions of this study are: 

i. Positive trends in NDVImax clearly dominated across the world’s semiarid regions for the 

period 1982–2011. 

ii. Areas showing negative and significant trends in NDVImax mostly corresponded to areas 

associated with lower climate aridity, whereas the areas showing positive and significant 

NDVImax trends in general corresponded to the most arid regions. 

iii. For the majority of the world’s semiarid regions the correlation between drought and the 

maximum annual NDVImax was positive and statistically significant. 
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iv. There is a gradient between negative NDVImax trends, in which the magnitude of change in 

drought severity tends to be negative, and the positive NDVImax trends that coincide with 

changes toward less drought severity. 

v. Non-predicted NDVImax evolution based on drought severity showed predominantly positive 

residuals throughout semiarid regions, which means an increase in potential production much 

greater than expected by the evolution of drought severity, but several local and regional 

differences have been found. 

These conclusions all highlight the complexity of vegetation activity processes in the world’s 

semiarid regions, and the difficulty of defining a universal response to the effect of drought, as a 

variety of factors (natural and anthropogenic) interact in these regions. Further studies, from local to 

regional scales, are needed to understand the variety of ways in which current drought variability, 

frequency and severity is affecting land degradation and land recovery in the world’s semiarid lands. 

This is essential considering the current drought projections under global climate models for the end of 

21st century, which indicate that droughts will increase [11], mostly as a consequence of warmer 

conditions and enhanced Atmospheric Evaporative Demand (AED) [10]. 
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