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Abstract: Local-scale environmental heterogeneity can provide microhabitats that influence
the spatial distribution of competing species. Microhabitats may influence the distribution of
seagrasses along elevation gradients, but difficulty measuring intertidal microtopography has
hindered quantification. Using a terrestrial laser scanner (TLS), we mapped and monitored a
1.84 ha study site for three years to understand spatial and temporal patterns of sediment
microtopography. We performed high-accuracy GPS surveys and vegetation surveys of
a native and an invasive seagrass. TLS provided sub-decimeter scale precision in digital
elevation models (DEMs) of the tideflat. The location and shape of microtopographic
features were stable from year to year, but the magnitude of local relief varied. A simple
index of topographic context predicted the shoot density of the native seagrass, Zostera
marina and the invasive seagrass, Zostera japonica, but the shoot density of the invasive
seagrass was better predicted by the shoot density of Z. marina than by topographic context.
Microtopographic relief at this site appears to exert a strong influence on the meter-scale
distribution of seagrass. We demonstrate the potential for TLS mapping of habitat-relevant
microtopography in a soft sediment intertidal environment where TLS faces substantial
challenges but promises unique insights.
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1. Introduction

Spatial environmental heterogeneity can lead to spatial patterns in species distributions, allow for
coexistence of species competing for the same limiting resource [1], and influence biodiversity [2].
Fine-scale topographic heterogeneity can be particularly influential in intertidal communities. In the
rocky intertidal, small crevices and tidepools can provide thermal refugia [3]. In soft sediments,
microtopographic relief can trap water during low tides providing additional habitat for desiccation
sensitive species [4–6], and affecting spatial patterns of herbivory [7]. Intertidal microtopographic relief
has been suggested to influence the local distribution of an invasive seagrass Zostera japonica, and its
native congener Zostera marina [5,6]. Recent work has shown that microtpopgraphic relief can influence
competitive interactions between these species [8], but the relationship between microtopography and
the distribution of these species has not been quantified or critically tested.

While microtopography is likely important to intertidal soft-sediment communities, it is particularly
difficult to measure. Soft, unconsolidated sediment hinders direct measurement both by limiting travel,
and by making it difficult to measure elevations without disturbing or compacting sediments. Intertidal
topography has been traditionally mapped with survey techniques such as level and stadia, e.g., [9],
which are effective for constructing shoreline profiles. These techniques are too time-intensive to be
practical for high-resolution mapping and risk compacting and disturbing the sediment that is measured.
Sediment Elevation Tables (SETs) [10], and water levels [11] have been very successful at high
precision (sub-centimeter) measurements of topography over small extents. SETs consist of a permanent
monument to which a removable rotating leveling arm is attached. Changes in sediment elevation
can be measured relative to this leveled arm. These techniques have been particularly valuable for
estimating sediment elevation change rates, however they are limited to spatial extents of only a few
meters per installment.

Unfortunately, remote measurements are also problematic. Typical Aerial Laser Scanning (ALS)
data, also known as aerial LiDAR, can cover great extents, easily covering a whole bay, and its spatial
resolution continues to increase. However, it must be obtained during a low tide, e.g., [12] which
precludes the use of much readily available ALS data. Even during a low tide exposure, standing water
and saturated soils reduce the efficacy of the infrared lasers used in most ALS applications [13]. The
shallow water depth at such locations inhibits sonar surveys, both by limiting the size of vessel that can
carry out such surveys, and by reducing the swath width that can by mapped with a single pass.

Bathymetric ALS employs higher-energy green wavelengths that are less attenuated by water. These
systems are capable of penetrating water depths of 25 m or more depending on water clarity [14], and
have been successfully employed mapping Zostera noltii habitat [15], salt marsh habitat [16], and coral
reef structure [14]. There are relatively few bathymetric ALS systems in operation, often operated by
government agencies (e.g., EAARL, operated by NASA), which limits the availability of these data.
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Furthermore, despite their impressive capacity to map large extents of coastline, their ranging accuracy,
15–50 cm [17,18], may be too coarse to map fine-scale intertidal topography and its temporal dynamics.

Terrestrial Laser Scanning (TLS), also known as ground-based LiDAR, may overcome some of the
aforementioned challenges to topographic measurement in estuarine wetlands. These tripod-mounted
instruments are capable of mapping surfaces with near-centimeter precision [19,20]. Just as ALS,
TLS measures the time of flight of emitted laser pulses to create three dimensional point clouds of
a surface. With this technique, sediment disturbance can be limited to the scanner location while
remotely measuring undisturbed areas. While TLS has mostly been applied to industrial and engineering
studies [21], terrestrial ecological applications include tree allometry [22], measurement of leaf area
index [23], and characterizing peatland morphology [24,25]. To date, there are few examples of TLS
studies in intertidal areas, but it has been used to measure marsh morphology [26], and tidal stream
channels [27]. One study has successfully mapped an intertidal flat from an adjacent dyke [28].

Here we present a novel use of TLS to map and monitor microhabits in an intertidal flat. We
use TLS to examine the role that local microtopographic relief and local microtopographic change
play in structuring vegetation distribution in an intertidal seagrass mosaic composed of the invasive
Z. japonica and its native congener Z. marina. Specifically we address the following questions: (1) Is
TLS capable of effectively measuring (a) spatial patterns of microtopographic relief at centimeter scales;
and (b) temporal change in microtopographic relief from year to year at centimeter scales? (2) Does
microtopographic relief predict the intertidal distributions of Z. marina and Z. japonica?

2. Methods

2.1. Overview

We mapped microtopography using a TLS at an intertidal study site for three years. From TLS
data, we created Digital Elevation Models (DEMs), and mapped a simple topographic index, calculated
from these DEMs. At the same study site, we sampled the shoot density of two different seagrass
species, Z. marina and Z. japonica, at randomly chosen, georeferenced locations. Using non-parametric
statistical methods, we examined how well the topographic index could predict seagrass shoot densities.
To better characterize microtopographic variability in time, we examined the difference between DEMs
in subsequent years.

2.2. Study Site

We conducted TLS monitoring in Padilla Bay, a large, shallow bay located north of the Puget Sound
in Washington (Figure 1). Padilla Bay measures approximately 13 km north to south, and 5 km east to
west and experiences a maximum tidal range of approximately 4 m. Before European settlement, Padilla
Bay was a part of the Skagit River distributary system, but subsequent diking and draining of agricultural
lands on the Skagit delta have severed this intermittent connection [29]. Turbidity is relatively low in
Padilla Bay, with seasonal means varying from 1.8 nephelometric turbidity units (NTU) in the spring
to 5.5 NTU in the summer [30]. Extensive intertidal flats in the bay are populated with Z. marina and
Z. japonica [31], forming the largest seagrass meadow in the greater Puget Sound [32]. Sub-decimeter
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vertical scale microtopographic relief in the northern portion of the bay retains water during low tides,
creating a mosaic of pools and mounds in the intertidal.
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Figure 1. Location of study area. Right panel shows the footprint of Terrestrial Laser Scans
(TLS) common across all years in grey, and the footprint of the 2011 surveys in blue. Yellow
points show locations used both for TLS validation and vegetation surveys, red points are
location used only for TLS validation.

Our study site, in this northern portion of the bay, comprised a 1.84 hectare area of predominantly
sandy intertidal sediment, situated between 0.78 and 0.22 m above Mean Lower Low water. Mean Lower
Low Water (MLLW), is a tidal elevation datum based on a long-term average of the lowest daily tides at a
location. During the year’s lowest low tides, the site would be exposed by the tides for as long as three h.

2.3. TLS Deployment

To understand spatial and temporal patterns in intertidal microtopography, we mapped and monitored
the study site with a Leica Scanstation II TLS. The Scanstation II is a pulsed laser scanner with a 4 mm
laser footprint at 50 m and a nominal range of 300 m at 90% albedo or 134 m at 18% albedo. It can
capture up to 50,000 points per second and utilizes a green laser. The scanner is operated through a
software interface on a laptop computer, and powered by either alternating or direct current. The TLS
incorporates a digital camera that allows coloring the point cloud for visualization purposes, but we found
that the image and color quality were inadequate for analysis. We scanned the site during particularly
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low tides during the spring and summer of 2009, 2010, and 2011, when the tides would uncover the site
for 3 h or more.

In order to stabilize the TLS and target poles in the soft, unconsolidated, sediment, we devised
inexpensive platforms. Three “tripod anchors” were constructed of 50 cm lengths of 4-inch nominal
diameter (10.2 cm) Acrylonitrile Butadiene Styrene (ABS) plumbing pipe and closet flanges (Figure 2).
These anchors were driven into the sediment in a configuration that provided three firm resting points
for the TLS tripod feet. Target poles were similarly stabilized with anchors created from 50 cm lengths
of 2.5 cm diameter Poly Vinyl Chloride (PVC) pipe, fitted with an end cap on one side (Figure 2). A
3 mm hole drilled in the end cap held the spike of the target pole when these anchors were driven into
the sediment. Tripod and target anchors could not be left in place between surveys due to hydrodynamic
energy at the site.

50 cm

(a)

(c)

(b)

(d)

Figure 2. Terrestrial Laser Scanner Deployment. Photos of (a) the study site at low
tide; (b) close up of two seagrass species, Z. marina on left and Z. japonica on right; (c)
the Terrestrial Laser Sscanning equipment at the study site; (d) schematic of tripod and
target anchors.

To minimize disturbance to the soft sediments that we mapped, we attempted to approach the survey
location along the same path. Although we undoubtedly had localized impacts on the terrain they were
generally small in scope and not visibly persistent between site visits.

The scanner was leveled with a survey tribrach atop a standard survey tripod placed on our tripod
anchors. The scanner and laptop computer were powered by a portable gasoline generator or batteries.
We utilized the scanner’s dual-axis compensator to ensure that point clouds remained leveled. We
acquired four or more scans at each site visit, and combined these by referencing three reflective
registration targets (Leica Geosystems HDS twin target poles) common to all acquired scans. Twin



Remote Sens. 2015, 7 3042

target poles were leveled atop the aforementioned target pole anchors, which allowed us to rotate the
target poles without altering the location of the reflective target. In 2011, we scanned a larger area
(Figure 1), by incorporating additional scans at this adjacent tideflat.

Global Positioning System (GPS) receivers mounted on the target poles allowed for georeferencing of
the point clouds. All scans were georeferenced using a survey-grade Global Positioning System (Javad
Maxor GGD-T) to facilitate the comparison of topography mapped on different dates. In 2009, we used
static GPS observations with carrier-phase differential processing. With this technique, the GPS can
provide sub-centimeter nominal accuracy in horizontal and vertical dimensions [33]. In 2010 and 2011,
we operated a GPS base station on an adjacent upland location, less than 1 km from the study site,
and acquired kinematic GPS locations with GPS rovers. With this technique, the GPS has a nominal
accuracy of 11 mm in the horizontal plane and 16 mm vertically [33]. In our usage, the kinematic
GPS collection performed better than static GPS, but did not achieve the optimal accuracy suggested
by the manufacturer.

Raw TLS point clouds were preprocessed by and georeferenced using Cyclone software (version 7.3,
Leica Geosystems, Aarau, Switzerland), and exported to ArcGIS (version 10.0, ESRI, Redlands, CA,
USA) for further analysis. Preprocessing consisted of visual identification and removal of erroneous
returns, as well as cropping point clouds to exclude points outside of the study area. Because seagrasses
lay flat on the sediment when the tide is out, we did not need to filter out erect vegetation from point
clouds in order to create a bare-earth model. Next, scans from different viewpoints were registered,
and the registered point cloud georeferenced using GPS coordinates from the TLS registration targets.
Finally these registered point clouds were exported as text files to be analyzed in ArcGIS. Point clouds
were used to create terrain feature classes in ArcGIS, which were subsequently gridded to raster DEMs
with a horizontal grain of 10 cm using natural neighbor interpolation. We chose the 10 cm grid resolution
as a compromise between detail and file size.

2.4. TLS Validation

In order to validate the ability of TLS to map intertidal microtopographic relief, we compared
elevations from georeferenced TLS scans to elevations measured with kinematic GPS receivers. We
conducted a GPS survey on 27 July 2011, collecting coordinates at 58 locations in our study site to
compare with TLS scans obtained on 19 and 20 April 2011. TLS scans from other years were not
explicitly validated in this manner. To prevent the GPS monopod from sinking into the sandy sediments
while collecting data, it was placed on thin plastic picnic plate at each survey location. We imported GPS
coordinates into our GIS, and extracted elevation values from TLS-derived DEMs in order to compare
TLS and GPS derived elevation estimates.

GPS elevations from the 2011 validation survey averaged 2.7 cm (±2.8) cm SD, n = 58) lower
than TLS surveys that season, regardless of whether validation points were on pools or mounds (Welch
2 sample t-test, df = 44, p = 0.38). TLS point clouds provided usable terrain data to a range of
approximately 50 m from the scanner. At ranges fewer than 10 m from scanner locations, detailed
point clouds could easily resolve foot prints and our vegetation sampling quadrats constructed of 2.5 cm
diameter PVC tubing.
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Using the standard deviation of the error from the validation survey following Brasington et al. [34],
Lane et al. [35] and Milan et al. [19], we estimated the Limit of Detection (LoD) for vertical change
between our TLS scans. We assumed similar error among our scans, and so estimated a combined
uncertainty for a two-scan comparison following [19] by:

LoD = t

q
(�2

1 + �

2
2)

where t is value of the t-distribution for the desired level of certainty, �1 and �2 are the standard deviations
of the errors for each DEM. This yielded a LoD with 95% confidence of approximately 8 cm. We treat
this LoD as a rough estimate, as we did not incorporate error variability across our DEMs [36].

2.5. Terrain Analysis

We characterized topographic patterns at the site through semivariogram analysis, Bathymetric
Position Index (BPI) mapping, and comparison of DEMs among years. We limited these analyses to
the area that was scanned in all three years (Figure 1) We visually examined empirical semivariograms
of TLS-derived DEMs to assess the scale of topographic patterns at the site. We first detrended DEM
data to account for the overall slope at the site, and then calculated anisotropic empirical semivariograms
with a 1 m lag size using the Geostatistical Wizard in ArcGIS 10.1 [37]. We then calculated the slope
and the BPI across the site. BPI is the difference of the elevation at a focal point and the mean elevation
in a user-specified surrounding neighborhood [38]. Positive values of BPI, thus indicate high points or
ridges, negative values depressions, and very small values either flat or uniformly sloping surfaces. By
varying the size of the neighborhood, a researcher may inspect the influence of topographic position at
multiple scales. Based on our semivariogram inspection (Figure 3), we calculated BPI with 5 and 10 m
neighborhood radii.

2.6. Vegetation Distribution

In July 2011, we surveyed vegetation at the study site. Random survey locations were generated in
a ArcGIS 10.0, and located in the field to the nearest 5 cm with kinematic GPS. At each survey site we
counted all shoots of Z. marina and Z. japonica in a 0.25 m ⇥ 0.25 m quadrat and noted the presence of
standing water.

These data were combined with TLS generated DEMs and BPI maps to assess the influence of
microtopographic context on the presence and density of Z. marina and Z. japonica. We extracted
elevations and BPI values at each vegetation sampling location to use as independent variables in our
models. The count data were zero-inflated, so we modeled the number of vegetative and generative
shoots using a non-parametric, distance based linear modeling technique, DistLM [39,40]. Because we
used only a single response variable, and Euclidean distance measurement, the modeling and statistical
test is equivalent to a linear model, but p-values are determined via permutations. When multiple
predictors were tested, we present r2 values and F-tests for each predictor with all other terms (not
including interactions) in the model. For each species we tested the predictive value of the shoot density
of the other species, elevation, change in elevation between 2010 and 2011, and BPI from 2009 and 2011.
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Figure 3. Semivariograms of Terrestrial Laser Scanning elevations from the May 2010
survey. Light blue circles show the complete semivariogram, and dark symbols show the
semivariance in the direction of the finest scale detected spatial pattern (minor range) and
perpendicular to that (major range).

3. Results

3.1. Terrain Analysis

The monitoring site elevations ranged from 0.22 to 0.78 m above MLLW (Figure 4). The overall
slope of the site varied from 0.30% to 0.28% during the course of the study and the overall aspect of
the site was southwest, at 210 degrees. Semivariograms revealed directionality of topographic patterns
at the site. Perpendicular to the overall slope, semivariance indicates strong spatial patterns at a scale of
6–10 m (Figure 3), but parallel to the slope, patterns were less apparent. Mounds and depressions were
generally elongate with their major axis oriented down the slope.

At the site scale, elevation changes between 2009 and 2010 were minimal (Figure 4). The mean
difference between 2009 and 2010 DEMs was a loss of just over 2 mm of elevation, this value is
more than an order of magnitude smaller than our estimated LoD (8 cm), so we were unable to detect
a change at this scale. At the scale of meters, however, elevation changes appeared to be related to
microtopographic setting. Elevation change between 2009 and 2010 was inversely correlated with BPI
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(Pearson’s r = �0.52), such that mounds were more likely to decrease in elevation and pools more likely
to increase in elevation, leading to a less topographically variable site.
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Figure 5. Bathymetric Position Index (BPI) at two different scales for 2009–2011. The top
row maps BPI calculated with a 5 m annulus and the bottom row maps BPI calculated with a
10 m annulus. Positive values of BPI (brown in images) indicate local high-points or mounds
and negative values of BPI (blue in images)indicate local depressions or pools.
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These changes were apparent when examining BPI in 2009 and 2010 (Figure 5). The topographic
features were less distinct in 2010, although their shape and placement was very similar. BPI in 2010
was positively correlated with BPI in 2009 (Pearson’s r = 0.66), but the slope of the best fit line of 2010
BPI as a function of 2009 BPI was 0.48 ± 0.02, corroborating the decrease the magnitude of topographic
relief between 2009 and 2010.
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Figure 6. Bivariate relationships between (a) shoot densities Z. marina and Z. japonica,
(b) Bathymetric Position Index (BPI) in 2009 and 2011, (c) Z. japonica shoot density and
BPI, and (d) Z. marina shoot densities and BPI.
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Elevation changes between 2010 and 2011 were again less than our LoD. Localized patterns in
elevation change were far less apparent than during the 2009–2010 interval. Elevation change was again
negatively correlated with BPI, but less so (Pearson’s r = �0.26). BPI was more correlated between 2010
and 2011 (Pearson’s r = 0.76) than between 2009 and 2010, and the slope of the best-fit line for 2011
BPI as a function of 2010 BPI was closer to one (0.76 ± 0.02).

3.2. Vegetation

Z. marina and Z. japonica were strongly segregated at the study site, with the highest shoot densities
of each species occuring where the other species was sparse or absent (Figure 6). Z. marina tended to be
more abundant in locations with negative BPI, and Z. japonica more abundant in locations with positive
BPI (Figure 6).

A model with only 2009 BPI explained 35% of the variation in Z. marina shoot density. Z. marina was
less dense in areas with higher BPI in 2009 (DistLM, n = 22, 9999 permutations, p = 0.003, r2 = 0.35)
and 2011 (DistLM, 9999 permutations, n = 39, p = 0.01, r2 = 0.11). A model with elevation, Z. japonica
shoot density, and 2009 BPI explained 59% of the variation in Z. marina shoot density (DistLM, n = 22,
9999 permutations, r2 = 0.59), predicting increased shoot density with lower BPI (r2 = 0.13, p = 0.03)
and lower Z. japonica shoot density (r2 = 0.20, p = 0.006).

A model with only BPI explained only 11% of the variation in Z. japonica shoot densities, predicting
lower densities where BPI was lower in 2011 (DistLM, 9999 permutations, n = 39, p = 0.04, r2 = 0.11).
A model with elevation, 2011 BPI, and Z. marina shoot density explained 50% of the variation in Z.
japonica shoot density (DistLM, 9999 permutations, n = 39, r2 = 0.50). Z. japonica grew more densely
where Z. marina was less abundant (p = 0.004, r2 = 0.29), and where BPI was greater (p = 0.15, r2 = 0.03).

4. Discussion

4.1. Effectiveness of TLS

We report one of the first uses of TLS on tideflats, and to our knowledge, the first use of TLS to
map habitat in this environment. Despite the logistical challenges of deploying TLS equipment in soft
sediment intertidal environments, we believe that TLS data are well-suited to the study of patterns and
processes in tideflat environments. Topography in these environments is subtle, but due to the influence
of tidal inundation, even subtle topography can have profound impacts on resident organisms. Few
technologies can successfully capture subtle tideflat topography, with either the resolution or extent
of TLS. We succeeded in mapping terrain with sub-decimeter precision and related species cover to
centimeter-scale topographic relief at the site, but quantification of temporal change in microtopography
proved more difficult.

To maximize the potential of TLS in tideflat studies, it can be integrated with other data collection
techniques. Collecting TLS data at the sites of existing topographic monitoring installations, such as
SETs , could provide rich spatial context to these fine-scale monitoring techniques. In our application,
TLS data could be leveraged by using it to calibrate lower resolution, higher extent data. Based on our
semivariogram analysis, imagery with 1–2 m resolution could capture the dominant microtopographic
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patterns of our study. As such, there is potential to use TLS surveys to calibrate aerial photography or
satellite imagery, such as Worldview-3 to expand the extent of mapped habitat. Mobile TLS platforms,
operated either from a boat or an unmanned aerial vehicle, could extend the spatial extent of mapping
while maintaining high data density.

Our TLS deployment techniques generally performed well at our study site. We saw no evidence of
TLS instability affecting our results. Because the TLS operates on a rotating head, if the scanner sunk
or shifted during data collection, we would anticipate misalignment artifacts where the start-point and
end-point of a scan met. No such artifacts were observed. The Scanstation II incorporates a dual-axis
compensator, which was enabled during scanning. This compensates for small deviations from level,
and suspends scanning if the scanner shifts far enough that the compensator cannot adjust. For sites with
muddier sediment, larger anchors or different stabilizing techniques may be required.

TLS data acquisition may be limited by characteristics of the landscape, and by characteristics of
the instrument. Intertidal mudflats are characteristically wet, and periodically submerged. Although
saturated sediments did not inhibit data acquisition in this study, standing water did. Pools of
standing water greatly reduced TLS return density, and introduced occasional reflection artifacts. This
phenomenon has been described in TLS studies of river beds [41], and even capitalized upon to map the
water surface in such studies [42]. Point return density may be useful in classifying the TLS image into
pools and mounds, particularly by using object-based image analysis to delineate distinct contiguous
regions of low point density. TLS has successfully mapped stream bottoms through as much as 20 cm of
water [41], but these studies have been limited to small extents within a few meters of the scanner.

One characteristic of our study site, standing water in pools, likely influenced the measured elevations
and calculated Bathymetric Position Index. Refraction at the water surface could reduce the accuracy of
measured pool bottom elevations. Refraction effects can be corrected [41], but in this study site standing
water would first have to be delineated. Pool elevations may have been overestimated by 2–5 cm if
TLS returns did not penetrate the water surface due high density of seagrass leaves floating at the pool
surface occluding pool bottoms. This would lead to a positive bias in BPI in pools, and a negative bias in
BPI on mounds at neighborhood scales large enough to incorporate both water surface and exposed
sediment. Although pools at the study site retained water throughout the course of a low tide, we
observed that the water level decreased in most pools during low tide exposures. This phenomenon
would induce measurement inconsistencies between scans obtained after different durations of low-tide
exposure. Such inconsistencies were unlikely to have major impacts on inferences about the influence of
microtopographic patterns vegetation distribution, but they add to the challenges of detecting temporal
changes in microtopographic relief.

Because of the challenges posed by standing water, our approach to TLS would not be advisable for
studying subtidal seagrasses. Bathymetric ALS and acoustic approaches are more promising. While
neither are likely to offer the level of detail provided by TLS, subtle microtopography is likely to be
less influential in subtidal environments, because ecological importance of tidepools is irrelevant in a
continually submerged environment.

A common instrument-specific limitation of TLS is its stationary tripod mount. Due to the fixed
vantage point, scanner height limits data acquisition. Because the vertical and horizontal angle between
successive scan lines is fixed within a scan, data-point spacing increases as target range increases.
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This limited our useful scan radius to approximately 50 m. Our implementation of TLS afforded
sufficient mapping extent to address the questions of our study, but would not be suitable for larger
mapping projects. Some researchers have extended the useful range of scans by elevating the scanner
to considerable heights above the sediment surface, e.g., [24], and recently, by developing mobile TLS
platforms, e.g., [43].

Another challenge presented by the TLS vantage point is shadowing created by topography or erect
vegetation. To overcome this challenge, the researcher may increase the point density of scans in order
to penetrate more vegetation gaps, and scan from multiple vantage points. Seagrasses at our study site lie
flat on the sediment when the tide is out, and so do not raise more that 2 cm above the sediment surface.
Although shadowing was nonexistent in our application due to the gentle nature of site topography and
the lack of erect vegetation, it could pose a serious challenge in densely vegetated sites [24].

Quantification of temporal change requires the spatial alignment of scans from different dates. This
may be done by scanning persistent, stable landmarks in the study area that can be referenced at
different survey dates, or by georeferencing scans from different dates with GPS, as we did. Others
have performed TLS surveys of tideflats from adjacent stable, upland areas, e.g., [28]. This approach
facilitates the referencing of scans to landmarks, but limits data collection to areas adjacent to stable
uplands. GPS allowed us to operate the scanner further from shore, but limited the positioning accuracy
that we could achieve.

GPS was the greatest source of positional error in our workflow. Between the first and second year
of TLS surveying, we were able to partially mitigate the GPS error with several changes to GPS data
collection. In the first year of TLS surveys, a single GPS receiver was available, so scan target locations
were obtained by static observations corrected by carrier-phase differential processing. In subsequent
years the availability of a second receiver allowed the installation of a base station at the study site
during surveys. Scan target locations were obtained by kinematic observations referenced to the nearby
base station. Despite the considerable improvement in GPS error afforded by kinematic observations,
vertical RMS error of GPS locations was still on the order of centimeters. This level of precision was of
a similar scale as observed changes in elevations from year to year, hindering most interpretation of the
temporal dynamics of site microtopography and their influence on vegetation. Installation of multiple
stable, permanent monuments at the study site would improve precision in future studies. The dynamic
nature of an intertidal environment makes this challenging, although approaches developed for SETs [10]
could be adapted for this purpose.

Table 1. Summary of errors affecting TLS data collection.

Source Magnitude, Direction Possible Mitigation Strategies

Pool surface, leaf reflection up to +5 cm Scan in winter, increase incidence angle
GPS georeferencing ±3 cm SD Install stable monuments
Vegetation on mounds up to +5 cm Scan in winter
Tidepool drainage up to 5 cm Measure tidepool water depth
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4.2. Does Microtopography Predict Seagrass Distribution Patterns?

Microtopographic context was an important predictor of both Z. marina and Z. japonica shoot
densities, and shoot densities of each species were inversely correlated. As such, congener shoot density
and microtopographic context explained much of the same variance in the models. BPI measurements
from 2009 had greater explanatory power than 2011 BPI measurements for both species, but only 2011
measurements were significant for Z. japonica, likely a result of the smaller sample size in 2009 models.
This was due to lower TLS return density in 2009, resulting in some ’no data’ cells in BPI maps for
that year. The greater explanatory power from the earlier year could be indicative of temporal carry-over
effects, but may be due to the greater topographic amplitude in 2009.

Some of the uncertainty in model estimates can be attributed to BPI’s performance as a predictor of
mound and pool habitat. BPI is a useful but imperfect predictor of where water will be retained in an
intertidal mosaic. A more mechanistic model of water flow off of the tideflat would likely offer better
prediction of water retaining sites. Modeling techniques for very low gradient, low relief landscapes
such as the study site are less well developed than for higher gradient terrestrial watersheds [44], and
would likely require an understanding of subsurface water movement.

Z. marina’s exclusion from sites with high BPI is congruent with observations by Shafer [6],
that Z. marina occupies depressions that retain water, and Z. japonica occupies mounds that drain
during a low tide. The uncertainty in 2011 BPI coefficient estimates for Z. japonica density may
be indicative of a broader microhabitat tolerance at these intertidal elevations. Furthermore, the best
predictor of Z. japonica presence, was low shoot densities of Z. marina. Both patterns could result from
topographically mediated competitive limitation of Z. japonica to mounds by Z. marina documented
by [8].

5. Conclusion

We have demonstrated the potential for Terrestrial Laser Scanner (TLS) mapping of habitat-relevant
microtopography in a soft sediment intertidal environment. Furthermore, we have shown the direct
relevance of our results for two species of management concern: an invasive seagrass and its
native competitor.

Our TLS deployment techniques permitted the mapping of cm-scale topographic relief in an intertidal
setting. Despite positioning uncertainty resulting from GPS georeferencing of TLS data we achieved
sub-decimeter vertical accuracies. Applying a simple topographic index to TLS-derived digital elevation
models revealed that microtopographic patterns at our study site were relatively stable during the three
years of study. Installation of stable monuments for georeferencing should yield a far more sensitive
change-detection approach.

TLS-derived topographic metrics explained 35% of the variation in shoot density of a native seagrass
in an intertidal mixed-species mosaic. Combining TLS-derived elevation, topographic metrics, and shoot
densities of the competing species, we could model 59% of the variation in the native seagrass shoot
density and 50% of the variation in the invasive seagrass shoot density. With improved change detection
ability, TLS could yield insights into the responses of each species to sediment disturbances.
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