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Abstract: Leaf Area Index (LAI) is an important variable for numerous processes in various 

disciplines of bio- and geosciences. In situ measurements are the most accurate source of 

LAI among the LAI measuring methods, but the in situ measurements have the limitation of 

being labor intensive and site specific. For spatial-explicit applications (from regional to 

continental scales), satellite remote sensing is a promising source for obtaining LAI with 

different spatial resolutions. However, satellite-derived LAI measurements using empirical 

models require calibration and validation with the in situ measurements. In this study, we 

attempted to validate a direct LAI retrieval method from remotely sensed images (RapidEye) 

with in situ LAI (LAIdestr). Remote sensing LAI (LAIrapideye) were derived using different 

vegetation indices, namely SAVI (Soil Adjusted Vegetation Index) and NDVI (Normalized 

Difference Vegetation Index). Additionally, applicability of the newly available red-edge 

band (RE) was also analyzed through Normalized Difference Red-Edge index (NDRE) and 

Soil Adjusted Red-Edge index (SARE). The LAIrapideye obtained from vegetation indices 
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with red-edge band showed better correlation with LAIdestr (r = 0.88 and Root Mean Square 

Devation, RMSD = 1.01 & 0.92). This study also investigated the need to apply 

radiometric/atmospheric correction methods to the time-series of RapidEye Level 3A data 

prior to LAI estimation. Analysis of the the RapidEye Level 3A data set showed that 

application of the radiometric/atmospheric correction did not improve correlation of the 

estimated LAI with in situ LAI.  

Keywords: leaf area index; red-edge band; RapidEye; atmospheric correction; validation;  

time-series 

 

1. Introduction 

Interactions among vegetation, soil, energy fluxes and carbon cycle have profound impacts on the 

climate system [1,2]. Vegetation greatly influences the climatic conditions prevailing in an area through 

modification of the hydrologic fluxes, such as transpiration/evaporation and interception [3]. Therefore, 

indices describing vegetation properties, e.g., Leaf Area Index (LAI), contain important information that 

can be used to characterize vegetation dynamics and evapotranspiration fluxes in climate and 

hydrological models [4,5]. To achieve better agricultural productivity, adequate information on climatic 

variables and physical landscape properties is required which can be provided by remote sensing in a 

timely and operational manner [6] from field scale to regional scale [7]. LAI is an important bio-physical 

variable [8] for various models used in hydrology, climatology and crop growth, and is defined as the 

ratio of total upper leaf area per unit surface area of the ground (m2/m2). Accurate and timely estimates 

of LAI are useful for production estimation and stress evaluation of crops and environmental  

changes [9]. There are several methods for measuring LAI whereby in situ measurements are the most 

reliable. However, in situ measurements of LAI are labor intensive and site specific so that an 

extrapolation to regional scale is limited. There are several approaches for estimating LAI from remotely 

sensed data, generally grouped into physical models and empirical models. Physical models include 

canopy reflectance models such as SAIL [10] and PROSAIL [11] to simulate the canopy reflectance as 

a function of canopy variables (including LAI). For instance, Haboudane et al. [12] simulated leaf and 

canopy reflectance spectra using PROSAIL to estimate LAI. Empirical models relate in situ LAI 

measurements to remotely-sensed vegetation indices using statistical transfer functions [13–18]. 

Atzberger et al. [19] analyzed two full spectrum methods using hyperspectral data (i.e., principal 

component regression (PCR) and partial least square regression (PLSR)] based on a leave-one-out 

(LOO) approach [20,21] to derive chlorophyll content in winter wheat. Despite requiring significant 

computational resources, models simulating the physical processes are preferred for accuracy and 

transferability [22]. Sometimes, they even outperform empirical approaches (e.g., NN, neural network 

approach) [23]. Asrar et al. [24] established a procedure to estimate LAI and FPAR (fraction of 

photosynthetically active radiation) from spectral reflectance. LAI and spectral reflectance are 

interrelated [24,25] and many relationships have been developed between vegetation indices 

(combination of reflectance) and various vegetation parameters e.g., LAI, FPAR, chlorophyll 

concentration and biomass etc. [12,25]. Deng et al. [22] used the simple ratio (SR) and the reduced 
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simple ratio (RSR) to retrieve global and regional LAI maps. According to Walthall et al. [17], using 

scaled NDVI (Normalized Difference Vegetation Index) without site specific calibration measurements 

is an efficient method to retrieve LAI. Areas of green leaves exhibit more spatio-temporal variability 

and have more influence on the red and near infra-red radiation in the canopy; therefore, many studies 

have incorporated reflectance data in these spectral regions to estimate LAI for large areas [9]. Several 

VI have been developed, but we selected the most widely used indices i.e., the NDVI [26] and its 

modified form to correct for soil reflectance the SAVI [27] along with their red-edge based modifications.  

Presently, several remote sensors are operational that provide vegetation-related information with 

different spatial and temporal resolutions. Multispectral optical remote sensing techniques give more 

direct estimates of vegetation characteristics using the unique spectral reflectance [28], whereas 

microwave methods provide more information on the structural characteristics of vegetation [29]. Some 

of the remote sensing based data sources for vegetation monitoring include: AVHRR (Advanced Very 

High Resolution Radiometers [30]), Landsat [18,31–35], MODIS (Moderate Resolution Imaging 

Spectroradiometer), MISR (Multi-angle Imaging SpectroRadiometer), VIIRS (Visible/Infra-red Imager 

Radiometer Suite), SPOT-VEGETATION (Systeme Pour l’Observation de la Terre), multispectral  

EO-1 Hyperon [36] and airborne multispectral HyMap [37]. In this study, we have used the relatively 

new satellite system, RapidEye. To analyze the performance in estimating LAI time-series, we  

used RapidEye’s high spatio-temporal resolution and its newly available red-edge spectral band  

(RE (0.690–0.730 µm)]. Here, we have attempted to validate the methodology previously used for MODIS 

LAI [38–40] to directly map LAI on high spatial resolution (5 m) satellite imagery from RapidEye. 

RapidEye’s satellites are the first commercial satellites to include a high spatial resolution red-edge 

band, representing the wavelength region that exhibits rapid change in the reflectivity of vegetation from 

red (more absorption/low reflectance) to near infra-red (NIR, maximum reflectance) [9,41]. Numerous 

studies have been carried out using the red-edge spectral information. Darvishzadeh et al. [42] derived 

LAI from (ground based) hyper-spectral vegetation indices and red-edge inflection point (REIP),  

but the REIP showed very poor correlation with LAI. Vuolo et al. [23] used multispectral RapidEye  

images to estimate LAI, canopy chlorophyll content (CCC) and leaf chlorophyll content (LCC).  

Ehammer et al. [43] used RapidEye images to determine the fraction of incident photosynthetically active 

radiation (FPAR) and LAI of cotton and rice using the red-edge spectral information in calculating 

vegetation indices, but use of the red-edge band did not improve the vegetation indices. Eitel et al. [44] 

studied early stress detection by examining utility of the red-edge and non-red-edge vegetation indices 

calculated on a time-series of 22 RapidEye images of a piñon-juniper woodland in central New Mexico. 

Schuster et al. [45] investigated the improvement of land use classification, especially in vegetation 

classes, using a RapidEye scene from July 2009 of a study site in Berlin (Germany). Filella and  

Penuelas [46] have confirmed high sensitivity of the red-edge spectral band to chlorophyll content of 

vegetation. Previous studies using RapidEye images [23,43,47] did not discuss the benefits of the  

multi-temporal red-edge spectral band from RapidEye [48]. Asam et al. [48] derived LAI for grassland 

in Bavarian alpine upland (Germany) on RapidEye imagery. Here, we investigate the retrieval of LAI 

time-series from vegetation indices with the red-edge spectral band, and correlate with in situ vegetation 

observations covering various stages of winter wheat growth. 

Radiation from the earth surface interacts strongly with the atmosphere [49]. This interaction affects 

in particular the time-series of vegetation observations under different atmospheric conditions. 
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Variations in atmospheric conditions, sun-target-sensor geometries and illumination conditions lead to 

variations in satellite images acquired on different days of the year. Two approaches have been described 

in the scientific literature to account for these differences: absolute and relative correction [50].  

The absolute approach needs in situ optical properties of the atmosphere at the time of image  

acquisition [51]. In the relative method, one image (target) is radiometrically normalized with another 

image (reference) acquired under the best optical properties of the atmosphere [50]. In this study, effect 

of both the absolute and relative atmospheric correction on a time-series of RapidEye imagery was 

evaluated by the performance of the LAI estimation. 

The objectives of this study are: (i) to evaluate the usability of RapidEye to derive LAI time-series 

for winter wheat; (ii) to investigate the need for absolute and relative atmospheric/radiometric correction; 

(iii) to analyze the role of the red-edge band in LAI estimation; and (iv) to evaluate the impact of soil 

contribution on LAI time-series using SAVI as vegetation index.  

2. Study Area 

The area under investigation in this study is the Rur catchment (Figure 1), located in the  

Germany-Belgium-Netherlands border area, near the city of Aachen [52,53]. The TERENO-initiative 

(Terrestrial Environmental Observatories [54] has established several test sites at different locations 

within this catchment covering cropland (Selhausen and Merzenhausen in Figure 1), grassland 

(Rollesbroich in Figure 1) and forests (Wuestebach in Figure 1) [55,56]. The southern part of the 

catchment is covered by the bedrock of the Eifel Mountains with a high annual precipitation and a 

moderate potential evapotranspiration, while the northern part receives relatively low annual 

precipitation and higher potential evapotranspiration [57]. Winter wheat and sugar beet are the main 

crops cultivated in the area.  

The Selhausen test field (area ≈ 0.8 hectare) is located in the southern part of the Lower Rhine 

Embayment, in the vicinity of the Rur river (near Dueren city) [58]. The area is covered with Quaternary 

sediments, mostly fluvial deposits from the Rhine/Maas River and the Rur river system [59]. They form 

the underlying sediments, whereas floodplain sediments belong to Pleistocene and Holocene sediments. 

Weakly inclined (<4°) in the east-west direction, high gravel content is present in the upper (eastern) 

part of the site [60]. Due to the specific geomorphology and textural properties, the soil surface water 

content is highly variable in space [60]. 

The other test area, Merzenhausen (area ≈ 7 hectares), is located approximately 12 km from the 

northwest of the Selhausen test site, near Juelich (Germany). Geomorphologically weakly inclined and 

structured on a high terrace of the Rur river, the area is composed of fluvial deposed loess of 

Pleistocene/Holocene and with small gravels up to a depth of 165 cm [61]. 

3. RapidEye and In Situ Measurements 

3.1. RapidEye Data 

RapidEye data are available in five different spectral bands (Figure 2), i.e., blue (0.440–0.510 µm), 

green (0.520–0.590 µm), red (0.630–0.685 µm), red-edge (0.690–0.730 µm) and near infra-red  

(NIR (0.760–0.850 µm)). With a constellation of five identically constructed satellites, RapidEye is able 
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to provide daily multispectral imagery in 6.5 m spatial resolution. During orthorectification to a map 

projection, the pixel size of 6.5 m with 77 km swath width [43,47] has been resampled to 5 m and 

provided as Level 3A data. These Level 3A (standard L3A) products were already radiometrically 

corrected through sensor calibration based on the statistics from all incoming imagery data, absolute 

ground calibration campaigns and image acquisitions over selected temporal calibration sites located 

worldwide [62]. In total, 24 scenes were available for 2011 and 2012 covering two winter wheat growing 

seasons. For validation purpose, we considered only those images for which in situ LAI measurements 

were taken. When the in situ and satellite acquisition date did not coincide, a nearest available image 

(date wise) to the in situ measurement was used (Table 1). 

 

Figure 1. The Rur Catchment (Germany), as seen by RapidEye on 27 June 2011. Individual 

test sites at Selhausen and Merzenhausen are shown with sampling points. 

3.2. In Situ LAI Measurements (LAIdestr)  

In situ LAI measurements were taken at several points within the winter wheat fields using destructive 

method, LI-COR LI 3100C (LAIdestr). Destructive methods (LAIdestr) produce more reliable results and 

provide a reference for the calibration of non-destructive measurements [63] including in situ LAI  

(non-destructive) and remotely sensed LAI. The destructive methods involved physical removal of 

above ground vegetation within a defined area. Eight and seven collection points were selected for  

Merzenhausen

Selhausen

Germany 
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in situ measurements inside the Selhausen and the Merzenhausen test fields, respectively. The in situ 

LAI collection points were evenly distributed within the test fields (Figure 1) and remote sensing based 

LAI was acquired from the same points within the test fields. In the study area, winter wheat is usually 

sown mid November and harvested at the end of July or start of August. Each year, the measurement 

campaign was started in March and carried out until the harvest time (July/August). The in situ data were 

collected twice a month during the growing season (March–July/August) of 2011 and 2012 [64]. The 

time-series of LAI calculated on RapidEye images (LAIrapideye) were correlated with the time-series of 

destructive LAIdestr. Table 1 shows the availability of in situ LAI (LAIdestr) data along with the date and 

time of acquisition of RapidEye. To compare in situ LAI (measured in a 1 × 1 m space) to satellite 

derived LAI (on 5 m spatial resolution), field averages were calculated.  

Table 1. In situ Leaf Area Index (LAI) and RapidEye time-series available for this study at 

both test fields. 

Selhausen Merzenhausen 

RapidEye 

RapidEye  

Acquisition Time 

(UTC) 

Destructive  

LAI  
RapidEye 

RapidEye  

Acquisition 

Time (UTC) 

Destructive 

LAI 

2011 2011 

07 April 11:42:30 07 April 02 April 11:37:42 29 March 

24 April 11:42:04 18 April 07 April 11:42:27 15 April 

10 May 11:34:49 03 May 02 May 11:28:02 04 May 

21 May 11:44:59 18 May 21 May 11:44:56 23 May 

30 May 11:34:32 03 June 01 June 11:39:51 11 June 

27 June 11:43:00 27 June 27 June 11:42:57 20 June 

01 September 11:28:44 30 August 

 

2012 

03 April 11:39:35 30 March 

25 May 11:30:21 25 May 

08 June 11:47:27 12 June 

26 July 11:32:19 24 July 

4. Approach/Methods 

The main objective of this study was to derive an accurate and reliable time-series of LAI on  

multi-temporal RapidEye images for the two intensively investigated winter wheat fields in the Rur 

catchment. For this purpose, LAI was estimated through a logarithmic relationship between LAI and 

respective vegetation indices (e.g., NDVI, SAVI, and their respective red-edge based modifications) 

calculated on RapidEye images. The LAI time-series (LAIrapideye) obtained from RapidEye images was 

then validated with the time-series of destructive LAI measurements (LAIdestr) in order to choose  

a more optimized vegetation index. Validation results of the LAI calculated on RapidEye imagery 

(standard L3A and processed images (atmospheric/radiometric correction)) with destructive LAIdestr 

were mutually compared. A flowchart (Figure 3) summarizes different vegetation indices and various 

approaches adopted for this study.  
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Figure 2. Spectral Reflectance Curves for various features of the land surface plotted against 

different RapidEye’s spectral channels. Vertical bars represent spectral bands of the 

RapidEye imagery. (Source for the reflectance data is ASTER Spectral Library). 

4.1. The Need for Radiometric/Atmospheric Correction 

In this study, LAI computation on RapidEye imagery is based on several vegetation indices  

(NDVI, SAVI, NDRE and SARE). These indices are already normalized where difference of two 

spectral bands is normalized by the sum of the same spectral bands. Different atmospheric conditions 

affect the absolute reflectance of each band. Therefore, the necessity for absolute and relative 

radiometric/atmospheric correction needs to be analyzed. Here, we focused on the correlation between 

in situ LAI (LAIdestr) and three processing levels for considering the radiometric/atmospheric conditions: 

(i) relative radiometric normalization; (ii) specific absolute atmospheric correction; and (iii) standard 

RapidEye Level 3A delivery without further processing.  

 

Figure 3. Flowchart description of the study. 
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The method used for relative radiometric normalization was the Iteratively Reweighted-Multivariate 

Alteration Detection (IR-MAD) [65,66]. The band-wise IR-MAD transformation was applied to a set of 

bi-temporal satellite images (all five bands) to select invariant pixels from the two dates, i.e., reference 

image and target image. Satellite images acquired under the most appropriate atmospheric and 

illumination conditions were taken as reference to normalize the target. Generally, the satellite image 

acquired on 27 June 2011 was used as the reference image in this study. If there was a large time gap 

between reference image and target images, it became difficult to find enough pseudo-invariant pixels 

for adequate normalization. Then, a temporally close, already normalized image (April) was selected as 

the reference image. The resultant normalized target image should appear as if it were acquired with the 

same sensor and atmospheric conditions of the reference image [51].  

For absolute radiometric/atmospheric correction, the Atmospheric Correction Algorithm,  

ATCOR-2 [67,68] was applied to the time-series of RapidEye imagery. The ATCOR-2 incorporates 

image center (nadir)-based date, season and landuse-based atmospheric visibility, aerosol types  

(i.e., rural, urban, desert, maritime, spring, summer and winter etc.), spacecraft view angle, illumination 

azimuth angle and illumination elevation angle for the respective RapidEye image. Typically,  

ATCOR-2 is applied to flat terrains, which is given for the agriculturally intensively used region under 

investigation with 60 m average elevation. 

4.2. Estimation of LAI Time-Series from RapidEye 

First, NDVI (Normalized Difference Vegetation Index) was calculated. NDVI is the difference of the 

reflectance at near infra-red (NIR) and Red (RED) spectral bands normalized by the sum of the 

reflectance at these spectral bands (Equation (1)).  

 (1)

NDVI [26] has wide applications providing information about vegetation and chlorophyll content in 

leaves. NDVI has good potential to extract useful information regarding dynamic changes in different 

vegetation types, making it a good indicator for investigating such changes temporally [28,69].  

Beck et al. [70] presented a double logistic function for modeling time-series of MODIS NDVI for higher 

latitude environments. Based on NDVI, the fractional vegetation cover (FVCNDVI (Equation (2)))  

was derived: 

 (2)

as used by Zeng et al. and Xiao and Moody [71–73]. Here, NDVIs represents the NDVI values for bare 

soil while NDVIv represents the NDVI values at full vegetation cover in respective images of the  

time-series. The FVC was calculated to avoid mixed signals in satellite data [73]. For this purpose, NDVI 

was scaled between lowest NDVIs (bare soil) and highest NDVIv (dense vegetation) to calculate 

fractional vegetation cover (Equation (2)). For this model, NDVIs and NDVIv were selected through 

histogram evaluation. Subsequently, LAI was calculated through a given logarithmic relation (Equation (3)) 

between respective FVCNDVI and LAI [38,74]. 

log 1
 (3)
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Here, k(θ) is the light extinction coefficient for a given solar zenith angle. The solar zenith angle (θ) 

depends on terrain geometry, solar declination, solar elevation angle, latitudinal location and day of the 

year [40]. The light extinction coefficient is a measure of attenuation of radiation in the canopy.  

The model parameter, k(θ), was calibrated with in situ LAI (also see Section 5.2). Here, the aim  

was first to find a good correlation (r), whereas the estimated LAI magnitudes may not be in line  

with in situ LAI in terms of absolute prediction accuracy i.e., Root Mean Square Deviation (RMSD 

(Equation (4))). Number of observations “n” were different for both test sites under investigation  

(“n = 11” for Selhausen and “n = 6” for Merzenhausen (Table 1)). Second, the subsequent selection of 

adequate k(θ) will focus on the improvement of the RMSD. The extinction coefficient was optimized to 

reduce error between in situ LAI (LAIdestr) and LAIrapideye (LAI derived from vegetation spectral indices 

e.g., LAINDVI).  

	 (4)

A spatial separation into a calibration and a validation data set is performed in order to independently 

optimize k(θ) and validate the LAIrepideye results. Three points per field were selected for validation, 

whereas the point combination with the maximum distance sum was selected to adequately cover the 

within-field heterogeneity. The residual points were used for k(θ) calibration.  

4.3. Impact of the Soil Contribution on LAI Calculation 

The soil contribution to the reflectance in crop fields can be relatively high, especially in the early 

stages of crop growth, which can cause inaccurate estimates of LAI. To account for this, we also utilized 

the Soil Adjusted Vegetation Index (SAVI), developed by Huete [27], as vegetation index for LAISAVI 

estimation. The SAVI algorithm (Equation (5)) [27] has the same structure as NDVI with a modification 

to correct for the influence of the soil brightness of bare soils or soils with low vegetation.  

1  (5)

where L stands for soil brightness correction factor and its value is 0 for dense vegetation and 1 for bare 

soil [27]. Here, L = 0.25 was used keeping in view the status of vegetation availability during the in situ 

measurement campaign. Like NDVI, SAVI was also used for LAI calculation using Equation (3), 

however, unlike NDVI, SAVI is directly used in Equation (3) without FVC calculation. SAVI reduces 

the impact of soil reflectances by incorporating the soil brightness correction factor (L). Therefore 

calculation of FVC before LAI estimation was not considered here.  

4.4. Role of the Red-Edge Band 

The red-edge spectral band represents portion of the spectral reflectance where rapid changes occur 

in the reflectivity of vegetation (Figure 2). We have evaluated this portion of the solar spectrum (captured 

by RapidEye system) for vegetation by incorporating it into the vegetation indices for LAI calculation 

(i.e., LAINDRE and LAISARE). Red-edge based vegetation indices i.e., the Normalized Difference  

Red-edge index (NDRE (Equation (6)) [75–77]) and the Soil Adjusted Red-edge index (SARE  
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(Equation (7))), are calculated by replacing the red spectral band (0.630–0.685 µm) with the red-edge 

(RE) spectral band (0.690–0.730 μm) in Equation (1) (NDVI) and Equation (5) (SAVI). The RE spectral 

band is more sensitive towards vegetation than the RED spectral band (Figure 2). The modified form of 

Equations (1) and (5) for RE are shown as Equations (6) and (7).  

 (6)

1  (7)

The new RE-based indices were renamed as Normalized Difference Red-edge index (NDRE) and 

Soil Adjusted Red-edge index (SARE) for NDVI and SAVI, respectively. 

5. Results and Discussion 

5.1. Impact of the Absolute and Relative Atmospheric/Radiometric Correction 

One example of an additional atmospheric correction to the L3A data set is presented in Figure 4. 

Here, it shows the difference in the visual appearance (i.e., natural color composite display) of standard 

L3A RapidEye (A), and IR-MAD corrected (C) images from the mosaic, while part B represents the 

reference image for IR-MAD normalization. In Figure 4, part A and C were acquired on 2 April 2011 

while part B was acquired on 24 April 2011. Due to the normalization procedure, part C compares well 

to part B. This improvement needs to be verified statistically. Changes due to the phenological cycle are 

visible from B to C.  

 

Figure 4. Part of the standard L3A RapidEye image from 2 April 2011 (A); The reference 

image dated 24 April 2011 (B); IR-MAD processed image (C). RGB band combinations are 

3-2-1. 

For a single date, the results of different atmospheric correction strategies are highly correlated. 

However, the regression slope is different for each date, which affects the time-series analysis for  

a single pixel. Therefore, the analysis of different atmospheric correction strategies is mandatory prior 

to LAI time-series analysis. Before deriving LAI, different vegetation indices (i.e., NDVI, SAVI, NDRE 
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and SARE), based on the standard L3A, IR-MAD and ATCOR processed RapidEye imagery were 

directly compared to LAIdestr (Table 2). Table 2 shows higher correlation coefficients for standard L3A 

RapidEye spectral indices with LAIdestr than the IR-MAD processed vegetation indices at both test sites. 

However, ATCOR works well at the Merzenhausen site and presents higher correlations than L3A and 

IR-MAD except for red-edge based indices (NDRE and SARE) where “r” is similar for L3A and 

ATCOR imagery. All correlations are statistically significant (p < 0.05) except the NDVI and SAVI  

(IR-MAD processed) at the Merzenhausen winter wheat field.  

Table 2. Direct comparison of different spectral vegetation indices calculated on RapidEye 

L3A, IR-MAD and ATCOR processed RapidEye data with LAIdestr for winter wheat at  

two different locations. Top numbers in each cell represent the r for the Selhausen field  

(2011–2012), the bottom numbers in each cell represent the Merzenhausen field (2011), in 

brackets the significance level (p-value) is given. 

Spectral Vegetation Index 
Atmospheric Correction Methods 

L3A IR-MAD ATCOR 

NDVI 
0.85 (0.0005) 

0.85 (0.033) 

0.72 (0.0077) 

0.77 (0.075) 

0.60 (0.040) 

0.90 (0.012) 

NDRE 
0.90 (0.0001) 

0.92 (0.009) 

0.70 (0.0104) 

0.83 (0.040) 

0.68 (0.014) 

0.92 (0.007) 

SAVI 
0.85 (0.0005) 

0.85 (0.033) 

0.72 (0.0081) 

0.77 (0.075) 

0.60 (0.040) 

0.90 (0.012) 

SARE 
0.90 (0.0001) 

0.92 (0.009) 

0.70 (0.0121) 

0.83 (0.040) 

0.68 (0.014) 

0.92 (0.007) 

As the overall correlation relationship between the different spectral vegetation indices is similar, and 

for simplification, the following analysis about the need for atmospheric correction for LAI derivation 

is based on NDVI-related spectral analysis only. For validating RapidEye-derived LAI, we used a 

general k(θ) = 0.25 in Equation (3) for both test fields. Results are listed in Table 3. For these  

NDVI-based LAI (LAINDVI), ATCOR produced almost similar results like IR-MAD, whereas L3A was 

better correlated with in situ LAIdestr. Similar to direct comparison, LAINDVI derived from ATCOR 

processed imagery gave better correlation results for Merzenhausen (r = 0.89, RMSD = 2.30). ATCOR 

processing works differently for two separate fields with different levels of surface heterogeneity in 

terms of vegetation health/density. However, with respect to lower RMSD and consistency of better 

validation results for two separate sites, the L3A RapidEye imagery is preferred. It is evident from the 

temporal sequence (Figure 5) and scatter plot (Figure 6) that the LAINDVI (L3A) data have comparatively 

less uncertainty. The LAINDVI after ATCOR and IR-MAD processing are more scattered as compared to 

the LAINDVI from RapidEye L3A imagery (Figure 6). The same scatter is visible in the temporal sequence 

(Figure 5) for LAINDVI calculated on IR-MAD/ATCOR processed imagery. However, all the correlations 

are statistically significant (p < 0.05), except the IR-MAD processed LAINDVI (p = 0.138) at 

Merzenhausen (Table 3), which is not significant (p > 0.05). The LAINDVI calculated on the standard 

RapidEye L3A imagery show better correlation with the destructive LAIdestr (r = 0.82 and 0.78 for 

Selhausen and Merzenhausen, respectively (Table 3)). 
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Table 3. Comparison of the LAINDVI (RapidEye standard L3A, IR-MAD and ATCOR 

processed) with LAIdestr, in winter wheat fields at Selhausen and Merzenhausen test sites. 

(Numbers in bold represent the best correlation in a column while underlined numbers 

represent the insignificant correlation). 

LAIrapideye vs. LAIdestr  

for Winter Wheat 

Selhausen (2011–2012) Merzenhausen (2011) 

r p-value RMSD r p-value RMSD 

LAINDVI (L3A)  

(k(θ) = 0.25) 
0.82 0.0010 0.99 0.78 0.05 1.09 

LAINDVI (IR-MAD)  

(k(θ) = 0.25) 
0.71 0.0093 0.89 0.68 0.138 1.70 

LAINDVI (ATCOR)  

(k(θ) = 0.25) 
0.68 0.014 0.91 0.89 0.016 2.30 

The preceding multispectral index of LAI (i.e., NDVI) is already normalized (difference of  

two spectral bands is normalized by the sum of the same spectral bands). This normalization could be  

a possible reason why absolute and relative atmospheric/radiometric corrections (normalization) do not 

satisfy our basic assumption for using them. The absolute and relative atmospheric/radiometric 

corrections normalize satellite images to the best atmospheric and illumination conditions in an absolute 

and relative way, respectively. They remove or minimize the influence of varying atmospheric and 

illumination conditions [68]. Use of additional radiometric correction may generate some unavoidable 

uncertainties in the remote sensing data [78] which is also evident in this study for ATCOR/IR-MAD 

processed LAINDVI with LAIdestr (Figures 5 and 6). The effect of additional noise due to additional 

absolute and relative radiometric/atmospheric processing may be more prominent when bare soil 

reflectance is dominant over vegetation (Figure 5). Moreover, the reduced sunlight during Northern 

hemisphere winter (Figure 5) firstly increases the noise-to-signal ratio at a passive sensor and secondly 

the different light characteristics during winter cannot be completely considered with the ATCOR and 

IR-MAD methods. Decrease in the correlation coefficients (r) for ATCOR/IR-MAD processed indices 

in Table 3 (except for ATCOR at Merzenhausen) is additional evidence of uncertainties in LAI 

estimation after the application of atmospheric/radiometric correction. Factors such as radiometry, the 

atmosphere, topography, sun glint effect and adjacent pixel influences, necessary for radiometric 

correction, are not fully corrected [79], and inappropriate use (or unavailability) of these variables makes 

the radiometric correction more challenging [78]. According to Qi et al. [80], the effect of atmospheric 

correction is not significant on remote sensing based estimation of vegetation variables. Comparison of 

the standard L3A and ATCOR/IR-MAD processed LAINDVI (Table 3 and Figures 5 and 6) with LAIdestr for 

both test sites make atmospheric/radiometric correction (ATCOR & IR-MAD) unnecessary for this 

validation study for winter wheat based on RapidEye Level 3A images. During on-ground processing, 

radiometric and sensor calibrations/corrections are applied to the Level 3A RapidEye imagery [62]. Our 

results show that these calibrations (see Section 3.1) provide satisfying LAI estimates, and there is no need 

to apply any further calibration/normalization like ATCOR and IR-MAD. The following analyses are 

therefore based on the L3A product without further atmospheric correction. 
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Figure 5. Temporal sequence of field-average destructive LAIdestr with remote sensing based 

LAINDVI (RapidEye L3A imagery, IR-MAD and ATCOR processed) at Selhausen winter 

wheat field for 2011–2012. 

 

Figure 6. Scatter Plot of the LAINDVI (RapidEye standard L3A, IR-MAD and ATCOR 

processed) with LAIdestr for winter wheat field at Selhausen for 2011 and 2012 (blue) and at 

Merzenhausen for 2011 (red). 

5.2. Estimation of LAI Time-Series from RapidEye 

The ability of RapidEye data to adequately map in situ LAI is based on the adequate selection  

of the light extinction coefficient, k(θ), in Equation (3). We evaluated a range of k(θ) from 0 to 1 in 
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Equation (3) for several vegetation indices of winter wheat (Figure 7). It was found that the value of k(θ) 

has no effect on the correlation coefficient, it only affects the RMSD. Figure 7 shows that selecting an 

appropriate empirical k(θ) will reduce RMSD, but to minimize the RMSD for various vegetation indices 

different k(θ) have to be selected. The present analysis showed that the use of a single k(θ) is challenging 

for heterogeneous surfaces due to varying patterns of light transmission [81] and leaf morphology [82]. 

Aubin et al. [81], White et al. [82] and Propastin and Erasmi [40] calculated k values for different 

vegetation types. Aubin et al. [81] reported a mean k value of 0.54 with lowest (0.40) in a mixed forest 

whereas highest (0.98) in open coniferous forest. Propastin and Erasmi [40] calculated the extinction 

coefficient for an agro-forestry area using 30 m Landsat TM with a mean value of 0.45 (lowest 0.32 and 

highest 0.68). Values of k calculated by Propastin and Erasmi [40] were compatible with the k values 

for the same biome by White et al. [82]. Generally, k(θ) is set at 0.50 for all types of canopies (random 

distribution of leaf angles [83]). However, most suitable k(θ) selection needs more experiments for 

different vegetation types and indices in different geographical regions for different spatial resolutions.  

The light extinction coefficient “k(θ)” in Equation (3) has no effect on the correlation coefficient, but 

it was sensitive towards the RMSD. Therefore, a more appropriate k(θ) was selected for different indices 

and test fields in order to get a minimum possible RMSD. To evaluate the applicability of the optimized 

k(θ) for producing robust results, sample points from each test site were split into calibration and 

validation sets. The k(θ) was optimized using the calibration set on the basis of lowest RMSD (Table 4). 

The cross validation was performed based on the validation set using the relevant optimized k(θ) from 

Table 4. This validation produced consistent results as in Table 3. The model used here will generate 

reliable estimates of LAI if applied beyond the under observation test fields on the satellite data used in 

this study. The k(θ) varies with spectral indices used, vegetation type and surface heterogeneity.  

 

Figure 7. Comparison of the light extinction coefficient and RMSD for NDVI, NDRE, SAVI 

and SARE based LAI for the Selhausen and the Merzenhausen winter wheat fields. 
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Table 4. Validation result through splitting the sample set into calibration and validation sets 

for LAI estimates from RapidEye. 

LAIrapideye vs. LAIdestr  

for Winter Wheat 

Selhausen (2011–2012) Merzenhausen (2011) 

k(θ) r RMSD k(θ) r RMSD 

LAINDVI 0.19 0.81 1.05 0.36 0.84 0.91 

LAINDRE 0.12 0.88 1.01 0.22 0.84 0.86 

LAISAVI 0.19 0.81 0.96 0.34 0.84 0.89 

LAISARE  0.12 0.88 0.92 0.21 0.85 0.84 

The LAINDVI and LAISAVI produced identical correlation results (Table 4) for both test sites. The k(θ) 

is also similar for both the LAINDVI and LAISAVI for Selhausen (k(θ) = 0.19); however, the Merzenhausen 

site has higher k(θ) and is slightly different for LAINDVI and LAISAVI (k(θ) = 0.36 and 0.34, respectively). 

Difference in k(θ) is apparently due to the surface heterogeneity (in LAI) at both test sites. The Selhausen 

test field is more heterogeneous [59] as compared to the Merzenhausen site. Vegetation at the 

Merzenhausen test site is more homogeneous, healthier and dense, hence more light is trapped by the 

canopy causing higher k(θ) (Table 4). Table 4 shows that using red-edge band instead of red band, 

reduces the light extinction coefficient, k(θ). For using NDVI, the effect of mixed signals (including soil 

reflection) is minimized by calculating FVC (Equation (2)). In SAVI, the effect of soil reflection is 

reduced by incorporating soil brightness correction factor, L (Equation (5)). However, identical results 

for NDVI and SAVI exhibit the accuracy of the FVC calculation for NDVI and incorporating the soil 

brightness correction factor (L) in SAVI, in order to minimize the effect of bare soil reflections.  

Figure 8 (upper) shows identical temporal sequence for LAISAVI and LAINDVI. Apparently, there was no 

advantage of replacing the NDVI by SAVI in this study. There is no improvement in the correlation 

statistics by correlating remotely sensed LAISAVI with LAIdestr as compared to the LAINDVI with LAIdestr. 

For smaller LAI, soil reflection (in red spectral band) affect LAI, however, for higher LAI, near  

infra-red reflectance from vegetation is dominant [24]. The in situ LAI data were taken from dates when 

there were enough plants in the test fields, i.e., when the need for soil adjustment in a spectral vegetation 

index is already reduced.  

A time-series of the newly available red-edge (RE) spectral band in NDRE, SARE (Section 4.4) was 

analyzed and used for LAINDRE and LAISARE estimation. Correlation results of the LAINDRE and LAISARE 

with LAIdestr are shown in Table 4, and plotted together with LAIdestr (Figure 8 (lower)).  

Ehammer et al. [43] analyzed the effect of incorporating RE in vegetation indices, but in all cases no 

improvement was reported. Our analysis (Tables 2 and 4) showed two different results in correlation 

statistics by using RE for better estimates of vegetation indices. It is evident from Table 2 that NDRE 

and SARE (based on red-edge band) gave better correlation coefficients (r = 0.90 and r = 0.92 for 

Selhausen and Merzenhausen respectively) and higher correlation significance (p < 0.05). Second, LAINDRE 

and LAISARE exhibit better correlation coefficients for Selhausen (r = 0.88), whereas Merzenhausen 

presents identical correlation coefficient (r) for all indices except LAISARE which presents r = 0.85.  

It was already mentioned that for utilizing LAINDRE and LAISARE, a reduced light extinction coefficient, 

k(θ), is optimal. Besides surface heterogeneity, spectral band selection in vegetation indices also affects 

the k(θ) in Equation (3). The LAINDRE and LAISARE is preferable here due to better and more consistent 

correlation results. 
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Figure 8. Temporal sequence of field-average destructive LAIdestr with remote sensing based 

LAINDVI and LAISAVI (upper) and LAINDRE and LAISARE (lower). 

Additionally, the model (with a single k(θ) = 0.25) was applied to the northern part of the Rur 

catchment (on L3A data) to develop a winter wheat LAI map (Figure 9) for 2 April 2011, using Rur 

catchment landuse map for 2011 [84]. The LAINDVI map has a mean LAI of 2.44 with a standard 

deviation of ±1.55, whereas the LAINDRE has a mean LAI of 2.27 with standard deviation of ±1.25. The 

mean LAI (in both cases) for winter wheat seems very reasonable on this date in the growing season. 

Previous studies [44,45,48] reported improvement by using RE in vegetation based studies. 

According to Asam et al. [48], red-edge based vegetation indices i.e., NDVIrededge [76] and red-edge 

ration index 1 [43] improve regression modelling. They declare red-edge band suitable for LAI mapping 

in grassland. Eitel et al. [44] reported improvement in conifer woodland stress detection from satellite 

based red-edge monitoring. According to Eitel et al. [44], NDRE improves the stress detection in conifer 

woodland as compared to the traditionally used NDVI and green NDVI. Schuster et al. [45] reported 

improvement in classification accuracy of the vegetation classes (land use) using RE. Spectral 

reflectance in RE is comparatively higher than in RED, and it represents gradual increase in reflectance 

towards NIR (as shown in Figure 2). Figure 2 shows that the RE band is more sensitive towards 

vegetation (highly sensitive to the chlorophyll content [46]) than the red band. This study has shown that 

incorporating reflectance values captured in RE into various vegetation indices improve the validation 

results (Tables 2 and 4) as compared to the red-based vegetation indices (NDVI and SAVI).  
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Figure 9. Winter wheat LAINDRE map of the northern Rur Catchment for 2 April 2011. 

6. Conclusions and Outlook 

The ability of RapidEye to provide time-series of leaf area index (LAI) for winter wheat was evaluated 

in the Rur catchment, Germany, focusing on two fields where destructive in situ LAI measurements 

(LAIdestr) were available.  

It was found that time-series of various spectral vegetation indices (NDVI, NDRE, SAVI, and SARE) 

were highly correlated to the time-series of LAIdestr, where the red-edge-based indices NDRE and SARE 

provided the best correlations. Three atmospheric correction methods—namely the Standard 

RapidEyeLevel 3A delivery, the additional relative narmalization method IR-MAD as well as the 

additional absolute ATCOR correction—were evaluated according to their correlation to in situ LAI. 

IR-MAD processed imagery shows generally lower correlation than that on L3A images. For ATCOR, 

the direct correlation of the spectral index to LAIdestr is very high for a relatively homogeneous field 

(Merzenhausen), but very low for a relatively heterogeneous field (Selhausen). Further analysis based 

on NDVI-related calculation of LAI found for ATCOR relatively large RMSE, whereas for the standard 
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RapidEye L3A product a moderate RMSE was observed. With these results, we came to the conclusion 

that additional atmospheric correction is not necessary for generating time-series of LAI from RapidEye. 

Therefore, the following analysis was performed on the standard L3A product only. 

In general, the estimation of LAI time-series for the two fields in focus was possible with adequate 

accuracy. The absolute prediction accuracy in terms of RMSD to predict LAIdestr time-series by 

RapidEye was found to be sensitive to the selection of the light extinction coefficient k(θ). In this study, 

the entire valid range (0–1) of k(θ) was optimized for minimizing the RMSD between LAI estimations 

from RapidEye (LAINDVI, LAINDRE, LAISAVI, and LAISARE) and LAIdestr for a calibration data set. For an 

independent validation data set, the optimized k(θ) was used to predict LAI. 

Owing to the surface heterogeneity of the two fields in focus, varying patterns of radiation 

transmission [81] and selection of spectral bands, it was not possible to identify a single k(θ) valid for 

large area LAI mapping. Optimum k(θ) varied between 0.12 and 0.36, where in general it was lower for 

the Selhausen field than for the Merzenhausen field. Incorporating the soil contribution into the LAI 

estimation by the Soil Adjusted Vegetation Index (SAVI) resulted in the same optimum k(θ) and 

correlation coefficient, but it did not significantly improve RMSD. However, the implementation of the 

red-edge spectral band in the LAI estimation by the Normalized Difference Red-edge Index (NDRE) 

and the newly introduced Soil Adjusted Red-edge Index (SARE) reduced the optimum k(θ), slightly 

increased the correlation coefficient and slightly reduced RMSD. Results from the present study suggest 

the use of the red-edge spectral band in NDRE and SARE for better estimates of LAI on RapidEye 

satellite imagery. 

This validation study at hand was exclusively carried out for winter wheat, and further studies are 

needed for other crops and vegetation types (grasslands and forests). The high spatial resolution of 

RapidEye could be used for large scale SVAT (Soil Vegetation Atmosphere Transfer) models by 

providing generalized Plant Functional Type (PFT) parameters for different land cover types. Using 

more precise and high resolution estimates of remotely sensed LAI in hydrological and radiative transfer 

models may improve soil moisture [85] and evapotranspiration retrieval [86]. Remotely sensed fine 

resolution LAI maps identify the field scale variability of vegetation and it could be used to identify the 

subsoil heterogeneity in addition to geophysical methods [59]. Moreover, the analysis of the red-edge 

spectral band impact to LAI estimation provides basic information also for the upcoming Sentinel-2 

mission [87]. 
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