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Abstract: The self-adaptive gradient-based thresholding (SAGBT) method is a simple 

non-interactive coal fire detection approach involving segmentation and a threshold 

identification algorithm that adapts to the spatial distribution of thermal features over a 

landscape. SAGBT detects coal fire using multispectral thermal images acquired by the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. The 

method was detailed by our previous work “Self-Adaptive Gradient-Based Thresholding 

Method for Coal Fire Detection Based on ASTER Data—Part 1, Methodology”. The 

current study evaluates the performance of SAGBT and validates its results by using 

ASTER thermal infrared (TIR) images and ground temperature data collected at the Wuda 

coalfield (China) during satellite overpass. We further analyzed algorithm performance by 
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using nighttime TIR images and images from different seasons. SAGBT-derived fires 

matched fire spots measured in the field with an average offset of 32.44 m and a matching 

rate of 70%–85%. Coal fire areas from TIR images generally agreed with coal-related 

anomalies from visible-near infrared (VNIR) images. Further, high-temperature pixels  

in the ASTER image matched observed coal fire areas, including the major extreme  

high-temperature regions derived from field samples. Finally, coal fires detected by daytime 

and by nighttime images were found to have similar spatial distributions, although fires 

differ in shape and size. Results included the stratification of our study site into two 

temperature groups (high and low temperature), using a fire boundary. We conclude that 

SAGBT can be successfully used for coal fire detection and analysis at our study site.  

Keywords: thermal infrared remote sensing; spontaneous combustion of coal  

seam-validations; simultaneous field measurement; advanced spaceborne thermal emission 

and reflection radiometer (ASTER) 

 

1. Introduction 

Subsurface and surface coal fires have been widely linked to pollution and loss of coal resources [1], 

making the identification and mapping of burning coal areas a critical component in understanding 

coal fire contributions to environmental degradation and to the economy. The occurrence and spatial 

distribution of coal fires are a function of coal properties, including microstructure, chemical 

constituents, and minerals (e.g., particle sizes and surface areas, rank, petrography, and pyrites) [2].  

In particular, Spontaneous Combustion of Coal Seams (SCCS) is promoted by three main coal 

properties (high sulfur content, high thickness and low metamorphic degree) [3]. Environmental 

conditions also play an important role in the distribution of SCCS, including atmospheric, geological 

and mining conditions (e.g., temperature, moisture, barometric pressure, oxygen concentration, 

bacteria, coal seams and surrounding strata, as well as mining operational methods, among others) [3]. 

This study delineates subsurface and surface coal fires and assumes that coal fire distribution is not 

spatially continuous due to the heterogeneous nature of coal fire properties and environmental 

conditions, including the distribution of oxygen conductive tunnels. In addition, because of fissures 

penetrating the sandstone (a poor thermal conductor), associated with the tendency of hot air to 

transport heat vertically more than horizontally, we further assume that temperature should decrease 

sharply near the boundaries of coal fire areas, as one moves away from their center. Our assumptions 

are consistent with previous work by [4], who observed attenuation to cold ground within two meters 

of the edge of fire regions.  

Remote sensing provides data and methods to efficiently monitor burning coal areas, having 

multiple advantages over more expensive and laborious ground-based efforts involving subsurface 

hotspot identification [5,6]. For instance, thermal infrared (TIR) images acquired by orbital sensors 

over multiple dates have been used effectively for coal fire anomaly detection [7]. In our previous 

work [8], we delineated coal fire areas by using TIR images acquired by the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) sensor. The study proposed the Self-Adaptive 
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Gradient-Based Thresholding method (SAGBT) and used the spatial variation of temperature 

(increases or decreases) over the landscape. SAGBT assumes that temperature variation becomes 

greater near the edge of a coal fire area, when compared to the center or outside of the fire area. The 

current study extends our previous investigation and evaluates SAGBT under different irradiation 

intensities by using simultaneous satellite-field observation campaigns on 27 March 2013, and on  

22 June 2013. These dates represent the spring equinox and the summer solstice in the Northern 

Hemisphere, corresponding to medium and high levels of solar radiation intensity, respectively. 

To understand the performance of SAGBT when identifying coal fire thermal patterns and 

separating anomalies, we spatially sampled temperature data using different strategies. Field 

campaigns collected land surface temperature in three blocks representing typical fire zones, six 

transects crossing coal fire areas and ten hotspots or fire boundary spots. These data were used with 

other records of temperature measurements and ASTER images to validate SAGBT in a variety of 

ways: (1) block samples were used with a hypothesis test; (2) temperature measurements along 

transects were compared with temperature profiles from ASTER; (3) measured coal fire spots were 

matched to coal fire areas to verify the accuracy of coal fire locations; (4) ASTER TIR-based coal fires 

were cross validated by using coal fires retrieved from visible-near infrared (VNIR) bands; (5) block 

samples were interpolated into fine-resolution images to validate high-temperature areas using coal 

fires from ASTER; and (6) coal fires were spatially compared, considering nighttime and daytime 

images acquired on the same date. 

2. Materials and Data 

2.1. Regional Geographical and Geological Overviews 

The Wuda coalfield is an “ear-shaped” asymmetric syncline located in the western suburbs of 

Wuhai city, an industrial coal-mining city located in the Inner Mongolia Autonomous Region, China 

(upper part in Figure 1). The coalfield is bounded by the following coordinates: 39°28ʹ21.15ʺN,  

106°36ʹ21.83ʺE, 39°34ʹ6.01ʺN, 106°39ʹ15.53ʺE and has elevations ranging from 1090 m to 1380 m 

above sea level. The area is located in the northern edge of the Helan Shan mountain range and is close 

to the Ulan Buh Desert. The climate of the area is arid. The field has three active coalmines, Suhaitu, 

Huangbaici, and Wuhushan, which are operated by the largest coal company in Wuhai, the Wuhai 

Energy Company (WEC). 

The Wuda coalfield is a primary source of cooking coal in Northern China. The field consists of 

coal-bearing strata of the Pennsylvanian Taiyuan Formation (C3t) in the Upper Carboniferous System; 

the Shanxi Formation (P1s) in the Permian system; the Early Permian Xiashihezi (P1x) formations, and 

the Late Permian Shangshihezi Formation (P2sh). P1s and C3t are the major coal-bearing formations in 

the region, consisting of sandstone, limestone, mudstone, and mineable coal beds [9]. Five broad, 

stable, and minable coal seams, No. 1, 2, 4, 6 and 7, are located in P1s, and coal seam No. 9 is in the 

coal-bearing stratum C3t [10]. At the end of the Mesozoic era, due to the effect of Yanshan movement, 

a series of near north-south structure lines were formed parallel to the strata strike. Then, affected by 

the Cenozoic Himalayan orogeny, east-west tectonic lines cut off the structure lines perpendicularly. 

These latter movements created the fissures observed in the coalfields. Figure 1 (bottom) presents a 
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geological section of the area, showing the coalfield situated in an asymmetric syncline basin with 

relative flat west wing and steep east wing that was cut by a nearly 9 km length over-thrust fault [10]. 

Strata in the northern part of this basin have a NE-SW strike direction and are flatter and wider than 

those found in the southern part [9]. The lowest coal seam outcrop (Figure 1a) and the over-thrust fault 

line (Figure 1b) enclose the outer boundary of the coalfield on the surface. Underneath this area, there 

are coal-bearing strata (Figure 1c), and the area is considered a fire risk. Coal fires in Wuda are 

accompanied by features on the surface, such as large-scale oxygen conductive tunnels (cracks and 

vents, Figure 1d), coal tar precipitation spots (Figure 1e) and released smoke/steam (Figure 1f). Some 

waste laneways (Figure 1g) also form oxygen conductive tunnels. 

 
Figure 1. Location of the study area (Wuda coal field) and geology of the field. Top: coal 

fires are shown for three active coalmines in the field with coal fire polygons (red) 

depicting fires for 22:58 22 June 2013, mapped using self-adaptive gradient-based 

thresholding (SAGBT) (local time = UTC + 8); Bottom: east-west geological section along 

the southern part of the field and including: (a) coal seam outcrops; (b) thrust fault line; (c) 

coal seams; (d) cracks and vents; (e) coal tar precipitation spots; (f) mining laneway 

system; (g) smoke and steam; and (h) sandstone. 
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2.2. Land Use and Land Cover 

The study area encompasses relatively homogeneous, wind eroded sands and coal dust, which are 

widely distributed over the region. Work by [5] produced a classification of the Wuda coalfield and its 

surrounding area into 12 land cover classes. Then, we used the constraint of the coalfield boundary, 

and several non-vegetation classes (e.g., sandstone, limestone, metamorphic, mixed sandstone with 

shale, coal and coal dust, bare land, and Gobi desert) were included in the ear-shaped syncline. Values 

of the Normalized Difference Vegetation Index (NDVI) derived from ASTER images acquired on  

22 June 2013 (summer solstice) indicate reduced vegetation (mean = −0.13; max = 0.25; standard 

deviation = 0.02). NDVI calculated for other seasons confirms these results: 27 March 2013  

(mean = −0.09; max = 0.05; standard deviation = 0.01); 26 September 2013 (mean = −0.09;  

max = 0.25; standard deviation = 0.02); and 23 December 2013 (mean = 0.02; max = 0.07;  

standard deviation = 0.01). The Wuda field has very sparse vegetation, resulting in an almost bare 

landscape. The reduced vegetation cover creates ideal conditions for coal fire detection using the 

spatial variability of ground temperature. 

2.3. Thermal Remote Sensing Data 

We used nine 90-m resolution TIR bands from ASTER (bands 10 to 14, from 8.125 to 11.65 μm) as 

input to a temperature emissivity separation, maximum minimum difference method (TES-MMD) [11]. 

TES-MMD was used to retrieve temperature and spectral emissivity during coal fire detection and 

validation and included the processing of nine ASTER Level-1B scenes (Table 1), acquired on  

21 September 2002; 29 November 2007; 26 March 2010; 27 March 2013; 22 June 2013; and on  

26 September 2013. 

Table 1. ASTER and Landsat 8 data used in this study, including acquisition date and 

period of acquisition (day or night). 

Sensor Date and Time of Acquisition (Time is Local Time = UTC + 8) Day/Night 

ASTER 

22:54:22 21 September 2002  Night 

11:54:17 29 November 2007  Day 

22:58:56 29 November 2007  Night 

11:54:35 26 March 2010  Day 

11:48:38 27 March 2013  Day 

22:53:17 27 March 2013  Night 

11:54:43 22 June 2013  Day 

22:59:22 22 June 2013  Night 

11:54:34 26 September 2013  Day 

TIRS (Landsat 8)  22:38:14  23 December 2013 Day 

In addition, 15-m resolution VNIR bands from ASTER were used to compute NDVI; to identify 

coal fires using a false color composite, and to geocorrect the spatially coarser TIR bands. TIR bands 

are acquired during daytime and nighttime, as opposed to VNIR bands that are acquired only during 

the day. We used day/night image pairs for 27 March 2013, and 22 June 2013 with data measured in 

the field to verify our fire detection method. Nighttime images acquired on 27 March 2013 and on  
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22 June 2013 were used as cross validation scenes for daytime coal fire areas. An additional image pair 

acquired on 29 November 2007 was used to compare daytime and nighttime results during winter. 

Three ASTER VNIR scenes for 27 March 2013, 22 June 2013 and 26 September 2013 and one scene 

from Landsat 8 VNIR bands for 23 December 2013 were used to calculate NDVI for spring, summer, 

fall and winter. SAGBT validation also included one thermal image from Landsat 8 TIRS sensor, 

acquired on 23 December 2013. TIRS has two thermal infrared bands (10.3–11.3 μm and 11.5–12.5 μm) 

and has spatial resolution (100 m) similar to ASTER TIR bands. ASTER images acquired on 21 September 

2002 and on 26 March 2010 were used as cross validation scenes for coal fire areas from other coal fire 

detection methods. 

2.4. Field Data 

Ground control point (GCP) collection in Wuda used a GPS receiver and considered coordinate 

acquisition at regular time intervals; at road intersections; bridges; and land use boundaries. GCPs 

were later used as reference during image geocorrection and during the spatial matching of VNIR and 

TIR images. The horizontal accuracy of GPS (<10 m) was considered to be adequate for this 

application. A handheld thermal infrared thermometer was used with the GPS receiver to collect more 

than 600 land surface temperature (LST) samples over the Wuda field.  

3. Methods 

3.1. Geometric Correction 

Positional mismatches occur between images acquired at different dates/times, resulting from changes 

in satellite track and attitude, rectification algorithms and resampling procedures. We observed a 2-pixel 

to 5-pixel registration offset (90 to 450 m on the ground) for the ASTER images analyzed and 

registered images to GPS coordinates to allow for image overlay and analysis. To match TIR images to 

GPS points we used a two-step geocorrection approach, which included image-to-map and image-to-image 

registration. During image-to-map registration, VNIR images were geocorrected using GPS tracking 

points for the Wuda coalfield and for Wuhai city, as well as GCPs representing street corners and 

intersections. We then super-sampled TIR images to VNIR spatial resolution and used an image-to-image 

approach to register super-sampled TIR images to VNIR images. During registration, we used stream 

crossings, river islands, and industrial chimneys as GCPs. Figure 2 shows the distribution of GCPs 

used by these two registration strategies. 

Nearest neighbor interpolation was used for image resampling to minimize changes in the original 

radiation values. Following the two-step geocorrection procedure, we registered the TIR images to 

VNIR images (average RMSE = 25.78 m, Table 2) and registered the VNIR image to GPS points 

(RMSE = 31.29 m, Table 3). These average errors correspond to less than 50% (45 m) of the spatial 

resolution of the TIR images. 
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Figure 2. Ground control points (GCPs) selection during geometric correction. Green 

crosses are GCPs used in the registration of TIR to VNIR images (points have stable and 

high temperature contrast). Red crosses mark the GCPs used for registration of VNIR 

images to GPS data (points were selected at intersections or at street corners). Linked blue 

dots are GPS tracking points. 

Table 2. Error values for TIR to VNIR images registration. 

Sensor Date and Time of Acquisition (Time is Local Time = UTC + 8) Day/Night Error (m) 

ASTER 

11:48:38 March 27, 2013  Day 14.85 

22:53:17 March 27, 2013  Night 64.36 

11:54:43 June 22, 2013  Day -- 1 

22:59:22 June  22, 2013  Night 23.92 
1 This VNIR image matches the TIR image accurately. Thus, no geo-registration was applied. 

Table 3. Error values for VNIR images to GPS points registration. 

Sensor Date and Time of Acquisition (time is local time = UTC +8) Day/Night Error (m) 

ASTER 
11:48:38 27 March 2013  Day 29.21 

11:54:43 22 June 2013  Day 33.37 

3.2. Coal Fire Detection 

We used five ASTER TIR bands as input to a TES-MMD algorithm, which has been demonstrated 

to produce 90-m spatial resolution temperature images (Figure 3a) with inversion error of 0.3 K [11]. 

Resulting temperature images were used with our gradient thresholding coal fire detection method to 
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identify surface temperature gradients, assuming the rapid decrease of LST towards the edge of a coal 

fire. This identification of extreme temperature gradient pixels and the connection of these pixels in 

space are key workflow elements for the delineation of coal fire areas. The use of ASTER TIR scenes 

acquired during different seasons precludes the use of a fixed threshold for segmenting temperature 

images. We previously addressed this limitation and proposed a method (SAGBT) that can be applied 

to multiple ASTER TIR scenes in a consistent and uniform way [8]. SAGBT defines coal fire areas as 

regions with temperature anomalies bounded by sharp decreases in LST, from central high temperature 

anomalies to low background temperature. The algorithm flags coal fire pixels with temperature 

greater than a threshold, calculated as the mean temperature of extreme gradient points (green, orange 

and red pixels in Figure 3b). Redundant potential high temperature buffers limited by temperature 

values greater than 1.0 σ from the mean are later created to prevent cold temperatures from being 

flagged (false positives) in relatively cold areas. Next, considering the gradient image, one pair of 

segmented bounds, a lower bound in the range of 0.5 σ–1.0 σ and an upper bound 3.2 σ, for an 

extremely high gradients image are considered as a potential boundary image for coal fires. Then, a 

thinning morphological operation skeletonizes extremely high gradients into a binary image with  

one-pixel wide extreme gradient lines (blue lines in Figure 3c). We observed that these extreme 

gradient lines maintain topological properties and connect high gradient pixels in the gradient image 

and surrounding high temperature areas in the temperature image. Masked within the fire risk area that 

is closed by the outer boundaries of the coal-bearing strata, an intermediate threshold was retrieved by 

reading an average temperature along the thinned extremely high gradient lines from the potential high 

temperature image (high temperature image showed in Figure 3a) [8].  

 
(a) (b) (c) 

Figure 3. Gradient-based thresholding method, (a) daytime temperature image for 27 

March 2013; (b) gradient image generated by an extended Sobel filter; (c) thinned extreme 

gradient lines (blue lines) and coal fire areas (red pixels) segmented by the final threshold. 
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In the fine-tuning process, the final threshold was selected as the mean value of multiple 

intermediate thresholds generated by eleven line sequences resulting from thinned extreme gradient 

images. These sequences were generated by changing the lower segment bounds of the extremely high 

gradient images from 0.5 σ to 1.5 σ (step = 0.1 σ). We observed stability in intermediate threshold 

values when extremely high gradient images changed, resulting in stable coal fire areas despite 

significant variation in binary images of extreme gradient lines. This final temperature is used to 

isolate coal fire areas. SAGBT is mainly based on the thermal spatial distribution of a TIR image itself. 

Figure 4 shows a coal fire map resulting from the method above and depicting coal seam outcrops and 

coalfield borders [8]. 

 

Figure 4. Coal fires extracted by our self-adaptive gradient-based thresholding (SAGBT) 

method mapped with coal seam outcrops. Orange areas indicate daytime coal fires for  

27 March 2013. Black lines are coal seam outcrops. 

3.3. Experiment Design and Validation Strategy 

We tasked the ASTER sensor and acquired two pairs of daytime/nighttime cloud-free images over the 

study area. Images were acquired on days field surveys were carried out. Method validation used three 

strategies for field data collection, which included: (a) visually identified coal fire-induced hot spots 

(open burning coal seams, hot cracks/vents, and burning coal waste piles); (b) transect lines throughout 

the coal fire area; and (c) intense sampling block areas. We sampled 34 fire initiation sites (Figure 5, star 

symbol), aiming to verify the accuracy of SAGBT-derived coal fire locations. Measurements included 

six transects longer than 200 m (crossing more than three pixels) that extended across the burning area 

and represented individual fires (Figure 5, upper right window). Temperatures were measured at 25 to 

30-m intervals and were later used to generate a temperature profile for validating SAGBT results. 

Intensive sampling was conducted on three dates, as shown by Figure 5: 6 October 2012 (block A, with 

0 1000 2000 3000 4000
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blue dots), 27 March 2013 (block B, with green dots) and 22 June 2013 (block C, with orange dots). Data 

collection for block A included intensive sampling along lines following an east-west orientation. In 

block B, three sub-blocks wider than 200 m were selected to represent burning areas, transitional areas, 

and background areas. In these sub-blocks, LST was measured in regular grids. In block C, only two  

sub-blocks were defined (burning area and background) due to difficulties in discriminating the 

transitional area. Due to unsafe conditions and lack of field personnel on 22 June 2013, data were 

collected in an approximate zigzag pattern over the sampling area. Temperature and coordinates recorded 

for every sampling block were used to generate fine resolution temperature images to validate the  

high-temperature relatively coarser pixels from ASTER. Samples were also used to test the hypothesis 

that temperatures in the delineated fire areas were warmer than background temperatures, for images 

acquired on 27 March and on 22 June 2013. In addition, we assessed the delineation of coal fires derived 

from daytime and nighttime ASTER TIR images, and compared coal fire induced thermal patterns 

identified by using ASTER TIR and VNIR images. 

 

Figure 5. Field measurement strategies including three blocks and six sampling lines. Field 

surveys were conducted on 6 October 2012 (block A, blue dots), 27 March 2013 (block B, 

green dots), and 22 June 2013 (block C, orange dots). Blocks A, B and C included burning 

areas, coal fire edges, transitional areas and background. 
  



Remote Sens. 2015, 7 2612 

 

4. Results and Discussion 

4.1. Hypothesis Test Result  

To test the accuracy of coal fire delineation by SAGBT, we analyzed 256 temperature 

measurements collected at our sampling blocks. Our null hypothesis was that temperatures inside a 

coal fire area are not significantly higher than the temperatures outside the area. Considering the size 

of our sampling population, we assumed that measurements inside (group 1) and outside (group 2) coal 

fire areas were normally distributed. We then used Student’s t-test to determine whether these data 

groups were significantly different from each other. Figure 6 shows the spatial distribution of points 

tagged as high temperature (group 1) or low temperature (group 2) by SAGBT. Two sets of samples 

were analyzed, corresponding to two different dates: 27 March 2013 (spring) and 22 June 2013 

(summer). Coal fires retrieved from nighttime and daytime images were used to further divide the 

samples into high and low temperature groups. 

(a) (b) 

Figure 6. Hypothesis testing layout showing sets of points from (a) 27 March 2013 and  

(b) 22 June 2013. Points were measured inside the coal fire area (high temperature group) 

and outside the fire area (low temperature group). 

No significant difference was found for distribution variances of the two groups and dates 

considered (significance level = 0.05). A test of temperature differences by using the “pooled” method 

with the t-test showed that the null hypothesis was rejected for the March and the June sets (Table 4). 

It is noteworthy that, when using nighttime coal fire boundaries, two groups (inside and outside of coal 

fires) were observed to have a larger difference in mean temperatures. Additionally, confidence 

intervals are less overlapping for the March and June data sets (95% CI in Table 4). 

Histograms of LST (Figure 7) indicate that normality can be assumed for groups of field temperature 

measurements segmented by daytime fires and by nighttime fires. In addition, low and high temperature 

groups show different mean values, indicating that SAGBT can separate coal fire areas from cold 

background. Coal fires retrieved from nighttime images allowed for better separation of samples into 
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high and low temperature groups, as shown by the t-test results. A two-way analysis of variance (not 

shown) also revealed that the use of nighttime images significantly affects coal fire delineation. 

Table 4. Hypothesis test output. 

Season Day/Night Area N Mean Std Dev 95% CI 
t-test Results 

DF t Value Pr > |t| 

Spring  

(27 March 2013) 

Day 
high 36 299.7 6.5983 (297.4, 301.9) 

118 1.47 0.144 
low 84 297.8 6.555 (296.3, 299.2) 

Night 
high 63 300.2 6.1205 (308.1, 315.3) 

118 3.41 0.0009 
low 57 296.3 6.5394 (305.7, 310.4) 

Summer  

(22 June 2013) 

Day 
high 57 311.7 13.7217 (308.1, 315.3) 

113 1.68 0.0964 
low 58 308.1 9.0240 (305.7, 310.4) 

Night 
high 34 313.9 11.9453 (309.8, 318.1) 

114 2.48 0.0146 
low 82 308.2 11.1441 (305.7, 310.6) 

Surface temperatures measured along six transects in the field were compared to temperatures from 

the corresponding pixels from temperature images. Figure 8 shows the spatial arrangement of those 

transects and their IDs. 

  
(a) (b) 

(c) (d) 

Figure 7. Distribution of temperature points for sets: (a) March (daytime); (b) March 

(nighttime); (c) June (daytime); and (d) June (nighttime). Points inside coal fire areas were 

identified as high-temperature. Points outside the fire area were identified as having  

low temperature.  
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Figure 8. Spatial arrangement of six temperature-sampling transects measured on  

27 March 2013 (L1 and L2) and on 22 June 2013 (L3, L4, L5 and L6). Circles are 

measurement locations. ASTER TIR pixels are shown in the background. 

4.2. Comparisons Along Transects 

Figure 9 shows temperatures sampled along field transects and from ASTER TIR images. All plots 

in Figure 9a–f show larger fluctuations in measured temperature, compared to image-based profiles. 

Because pixel values result from the integration of energy traveling within the field of view of the 

sensor, we expected relatively reduced variability in LST from remote sensing at this spatial resolution. 

(a) (b) 

Figure 9. Cont. 
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(c) (d) 

(e) (f) 

Figure 9. (a–b) Profiles of surface temperature values measured along transects (blue) and 

calculated from images (orange). Note: scale changes between graphs. 

4.3. Comparisons between Measured Fire Spots and Coal Fire Areas 

Sixteen fire spots measured on March 2013 were overlaid to coal fire areas identified by SAGBT 

(Figure 10a). A temperature image resulting from solar irradiation removal (DEM source: ASTER,  

15 m resolution) is shown as background. Eleven fire spots (68.75% of total) matched fire areas from 

SAGBT (blue crosses in Figure 10a). A proximity analysis showed that 87.5% of the measured fire 

spots are within one pixel from SAGBT coal fires, including three of the mismatched spots in the 

southern part of the coalfield. Outside spots near coal fire areas may indicate that these are scattered 

fires or fires in the process of being extinguished. The two other mismatches (one located at the center 

sandstone plateau in the northern part of the coalfield and the other adjacent to coal fires) were tagged 

as missed fire spots. Results indicate that SAGBT can miss small fire spots that are not large, nor hot 

enough to create enough contrast between the fire pixel and its surrounding pixels (background).  

For cross validation, we used SAGBT with a subset of a Landsat 8 TIRS scene corrected for solar 

irradiation. A comparison between output fire areas and measured fires (Figure 10b) showed that the 

majority (82.9%) of fire spots were within one pixel from fire areas. Exceptions were four fire spots 

adjacent to fire areas and two missed fires, including a spot over the center sandstone plateau in the 

northern part of the image subset. We assumed that due to the near axial part of the syncline the 

overlaid thick strata insulates heat from deep burning layers, although small hot spots can be observed 

at some coal fire vents. 
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(a) (b) 

Figure 10. Spatial distribution of measured fire spots (blue crosses and green circles) and 

coal fire areas (orange) from our self-adaptive gradient-based thresholding (SAGBT) 

method. Blue crosses are matches between fire spots and fire areas. Green circles indicate 

fire spots in the proximity of fire areas. Temperatures (K) are presented for each spot. (a) Coal 

fires extracted from ASTER TIR image acquired on 27 March 2013; (b) Coal fires extracted 

from Landsat 8 TIRS acquired on 23 December 2013. 

A field survey in July 2013 identified landscape features indicative of fire boundaries (e.g., edges of 

coal waste piles and outcrops in the coal fire area). Figure 11 shows that these boundaries (blue 

crosses) were close to fire areas or were on the edge of fire areas, as identified by SAGBT (ASTER 

TIR images from 22 June 2013). The average distance between fire spots and their nearest retrieved 

fire boundary (32.44 m) is less than one TIR pixel (90 m), supporting the conclusion that the offset 

between detectable coal fire boundaries and the retrieved fire area is less than the resolution of an 

ASTER image.  
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Figure 11. Locations of landscape features indicative of coal fire boundaries (blue crosses) and 

coal fire areas (orange) from our self-adaptive gradient-based thresholding (SAGBT) 

method. ASTER TIR image (22 June 2013) is used as background. 

4.4. Comparisons between Optical Images and Coal Fire Areas 

In addition to temperature, other landscape features are associated with coal fire areas and can  

be visually detected, including coal tar precipitation spots, fissures, burnt rocks and locations where 

fire extinguishing practices have been conducted. These features offer additional opportunities  

to validate SAGBT using optical bands. Figure 12 depicts coal fire areas in Wuda (Figure 12a,b), as 

well as results of coal fire detection using TIR overlaid to ASTER VNIR (15 m), both acquired  

during daytime. 

 
(a) (b)

Figure 12. Cont. 
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(c) (d) 

Figure 12. Ground and orbital views of areas affected by fire in the Wuda field:  

(a) excavation area for fire extinguishing in Coal Fire Zone No. 11; (b) excavated coal fire 

area in Coal Fire Zone No. 11; (c) Coal Fire Zone No. 11 (center polygon), overlaid to a 

high-reflectance area, as shown by ASTER VNIR; (d) similarities in spectral responses 

between a coal fire extinguishing area and a residential area in Wuhai city. 

High reflectance areas (light areas) delineated by coal fire polygons likely result from rocks that were 

recently exposed due to fire extinguishing operations involving explosions and excavations (Figure 12a). 

Work to extinguish fires results in large areas of excavated and exposed rocks (Figure 12b) and these 

areas are shown as light tones by ASTER VNIR (Figure 12c). Reflectance values for these areas are 

similar to those observed for residential areas and concrete buildings in Wuhai city (Figure 12d). 

Conversely, low reflectance areas (dark areas) indicate coal waste piles or opencast mining areas. Fire 

occurrence in coal waste piles has been widely reported in the Wuda field. 

4.5. Comparison between Interpolated High-Resolution Thermal Images and Coal Fire Areas 

Retrieved from ASTER 

Field temperatures from 6 October 2012 and field temperatures collected during an ASTER overpass in 

2013 were interpolated to create two-meter resolution images. The interpolated images were masked using 

boundaries of sampling blocks and the resulting surfaces were compared to coal fire areas identified using 

ASTER daytime collections from 27 March 2013 and from 22 June 2013.  

We have previously observed that SAGBT-derived coal fire areas match high-temperature pixels in 

ASTER images, and that these areas include major high-temperature regions from field samples.  

Figure 13a shows general agreement between coal fire boundaries (polygon lines) from SAGBT and  

high-temperatures from an interpolated surface. A stronger match is observed for thermal anomalies in the 

northwest of the region. In Figure 13b, a fire boundary crosses a transitional area with a sharp decrease in 
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temperature. Most of the high-temperature centers are encompassed or crossed by coal fire boundaries, 

except for a western center in Figure 13b. Thermal anomalies from field measurements collected 

approximately six months before image acquisition (27 March 2013) share similarities in the spatial 

distribution of coal fires and show strong heat in the east and northwest (Figure 13c). Past measurements 

were used to investigate changes in the study area and to test the sensitivity of SAGBT to those 

changes. Despite the six-month difference between field data acquisition and image collection, we 

observed that sampling points matched the coal fire area retrieved from the ASTER image on  

27 March 2013. Results revealed that coal fire in the area was relatively stable during that period.  

(a) (b) 

(c) 

Figure 13. Coal fire polygons from SAGBT, overlaid on interpolated temperature 

measurements (color insets) for (a) 27 March 2013 and (b) 22 June 2013. A similar map 

(c) has SAGBT polygons for 27 March 2013 overlaid on interpolated measurements from  

6 October 2013. ASTER TIR pixels are shown in gray.  
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4.6. Comparison between Coal Fires Retrieved from Images Acquired During Daytime, Nighttime and 

in Different Seasons 

Coal fire areas retrieved from daytime-nighttime image pairs acquired on the same date were overlaid 

and compared (Figure 14). In addition, we addressed potential seasonal variability in fire identification by 

SAGBT by investigating fires detected in spring/fall, summer and winter. The daytime-nighttime image 

pair acquired in spring (Figure 14a) showed lower spatial agreement when compared to fire areas derived 

from summer (Figure 14b) or winter images (Figure 14c). A closer inspection of thermal anomaly values 

indicated increased anomalies during winter when the nighttime image was used (hypothesis test not 

shown). Fire areas identified by SAGBT in winter were 177.7 hm2 (nighttime) and 145.7 hm2 (daytime). 

The opposite was observed for image pairs acquired in summer and in spring/fall, as larger areas of coal 

fire were detected when daytime images were used. For the summer solstice image (22 June 2013), the 

daytime-derived fire area (154.8 hm2) was 25.8% larger than the area for the nighttime image (123.1 hm2). 

Differences were even larger in spring, when 29.7% more pixels of coal fires were identified using the 

daytime acquisition (251.7 hm2), when compared to the nighttime image (194.0 hm2). The observed 

variability can be explained by differences in thermal contributions from solar radiation. Due to reduced 

solar irradiation in winter, small areal differences are expected when daytime and nighttime images are 

used. As a result, increased sensitivity and more reliable detection of fires are expected for that season. 

  
(a) (b) (c) 

Figure 14. Coal fire areas retrieved from images acquired during daytime (orange areas) 

and nighttime (blue areas) for different seasons. Image pairs were acquired on (a)  

27 March 2013; (b) 22 June 2013; and (c) 29 November 2007. 
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4.7. Comparison with Other Non-Interactive and in-situ Based Methods 

To understand how SAGBT performs when compared to another non-interactive coal fire detection 

method, we compared the implementations of SAGBT and of the Moving Window algorithm used  

by [12–18]. Considering the importance of thermal anomaly identification and false positive rejection 

in coal fire detection, these steps were selected for method comparison. The Moving Window is an 

established method that incorporates two steps for anomaly identification and one step for false 

positive rejection. First, preliminary anomaly identification is used with moving windows of varied 

sizes to identify pixels that exceed a statistical threshold. This task differentiates anomaly pixels from 

the surrounding background. Then, during false positive rejection, adjacent thermally anomalous 

pixels are clustered based on cluster statistics (minimum, maximum, mean and standard deviation). 

The false positive elimination process in Moving Window uses previous knowledge of potential false 

positive patches to exclude large thermal anomalies, flat temperature areas, and small thermal 

anomalies. The second thermal anomaly identification step segments remaining thermal anomaly 

clusters using a cut-off percentage (70% or 85%) and delineates the final coal fires. SAGBT uses one 

step to identify thermal anomalies and one mechanism to reject false positives. Anomaly identification 

uses morphology thinning to skeletonize extreme gradient buffers to gradient lines, providing a  

self-adaptive thresholding to extract thermal anomalies. Thus, the method uses spatial thresholding to 

resolve temperature gradients associated with coal fires. In a relatively small and homogeneous 

coalfield, we used potential high temperature buffers and coalfield boundaries to limit the temperature 

reading scope of the thinned extremely gradient skeleton, which can be considered as a simple and 

implicit false positive elimination mechanism. Finally, the Moving Window method is driven by 

statistical attributes of coal fires, whereas SAGBT benefits from a computer graphics approach. 

The shape and distribution of our coal fires are similar to results from studies using the Moving 

Window method. For example, the distribution of fine-tuned coal fires in the Wuda field mapped  

by Zhang [12] is similar to results shown in Figure 15a. Kuenzer et al. [14] and Wessling et al. [15] 

mapped coal fire surface anomalies in Wuda for 2003 using in-situ data and a combination of multiple 

coal fire related fields, expert knowledge and a Moving Window method based on thermal bands from 

Landsat. Our SAGBT-derived coal fires for September 2002 (Figure 15a) show similar distribution of 

thermal anomalies when compared to those results. The researchers in the study [16,17] delineated the 

coal fires in the Jharia coalfield in India by using Moving Window method, while it is incomparable to 

our results for the Wuda coalfield. 

Reduced agreement was observed between SAGBT coal fires and results by in-situ methods and by 

approaches based on multiple fire-related factors [14,15,18]. For example, total coal fire areas for 2005 

and for 2011 differ from results based on multi-spectral and panchromatic data from QuickBird 

reported by Kuenzer et al. [18]. For October 2005, we estimated a total coal fire area of 159.57 hm2, 

compared to 112.96 hm2 by the previous study. For 2010, results are closer as SAGBT identified 

199.26 hm2 of coal fires, against the reported 227.08 hm2. Despite total area similarities, the shape of 

our coal fires (Figure 15b) differs from results for early 2010 in Kuenzer et al. [18]. This difference also 

exists when non-interactive methods based on satellite images and results from in-situ data are 

considered [15,18]. Differences most likely result from the definition of coal fires; one was based on 

comprehensive factors and human knowledge, and the other was mainly based on the thermal infrared 
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data and extracted by automatic algorithms. In addition, variability in coal fire identification is expected 

due to the use of images acquired in different dates and to different sensors.  

 
(a) (b) 

Figure 15. Coal fire areas retrieved from (a) nighttime images for 21 September 2002 and  

(b) daytime image for 26 March 2010. Coal fires were compared with results from literature.  

SAGBT can mask subtle thermal anomalies associated with slow combustion in coal waste piles or 

coal storages, as shown by Figure 10a. Due to the lack of studies providing accuracy assessments, we 

make no claim that SAGBT was more accurate than the Moving Window and the field-based  

pixel-integrated methods [19]. For improving SAGBT results, we suggest partitioning the large area 

into relatively homogeneous small regions, considering their geological setting, geomorphology and 

land cover/use. As presented by [13], a fire risk map can be effectively used to mask out false coal 

fires. Future coal fire studies should incorporate statistical characterizations of potential thermal 

anomalies for false positive removal using orbital images and field measurements. Future studies could 

benefit from the incorporation of short wavelength infrared bands (e.g., from Landsat 8 or MODIS) 

and from derived band ratios, as these are presented by [16,17].  

4.7. Uncertainty and Accuracy 

Coal fires extracted by SAGBT divided the Wuda coalfield in high and low temperature areas 

(significance level = 0.05). The average spatial offset of SAGBT coal fires, calculated from measured 

fire spots, was 32.44 m and we estimate the positional error of our results to be less than 50% of an 

ASTER TIR pixel (< 45m). Our comparison between measured fire spots and coal fires from SAGBT 
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showed that approximately 70% of fire spots matched fire areas from ASTER images and that 87.5% 

of fire spots were within one-pixel distance from the coal fire areas. The ability of SAGBT to delineate 

fires using Landsat 8 TIRS data was also validated by coal fire spots. When TIRS data were used, 

82.9% of the observed fire spots were within one-pixel from coal fire areas. A similar study by our 

group [20] showed that the majority of points (84.6%) were located within the detected fire area and 

that 97.5% of the points were within one-pixel buffers around these areas. Thus we estimate the 

matching rate between fire spots and SAGBT-derived coal fires to be in the 70%–85% range. SAGBT 

missed some weak or small coal fires, which were among the 14.8% observed fire spots missed by the 

algorithm. We infer that SAGBT did not perform well in detecting deep coal fires overlaid by thick 

rock strata, resulting from the weak heat signature of those fires.  

5. Conclusions and Vision 

The Self-Adaptive Gradient-Based Thresholding (SAGBT) method for coal fire detection proposed 

in our previous paper [8] was analyzed and validated. This satellite image-based method used ASTER 

thermal infrared images and relied on a coal fire risk area enclosed by the outer boundaries of  

coal-bearing strata to exclude false positives. To validate the SAGBT method, coal fires for nine 

different ASTER scenes were identified and compared in space and time. The analysis was based on 

two field campaigns in the Wuda coalfield, in China, which were conducted during satellite overpass on  

27 March 2013 (spring equinox) and 22 June 2013 (summer solstice). Additional field measurements 

conducted on 6 October 2012 represented the fall season. Spring, summer, and fall images obtained 

from the ASTER sensor were analyzed together with more than 600 simultaneous surface temperature 

records. To match coarse TIR images to GPS points we used a two-step image registration procedure: 

“image-to-map” and “image-to-image”. Image registration used GCPs of road intersections and 

thermal features (e.g., river turns, coal piles and lakes), resulting in errors of less than 45 m (less than 

half of an ASTER TIR pixel). 

Comparison of delineated coal fires with field temperature measurements (points, lines and regions) 

and comparison of coal fire areas with thermal anomalies using sensors with different spectral, spatial 

and temporal resolutions showed the following: 

(1) Extremely high gradient lines delineated by SAGBT generally agreed with coal fire boundaries 

in the field. 

(2) A hypothesis test supported our prediction that coal fire boundaries can be used to segment the 

study site into a high-temperature coal fire area and a cold background, especially when coal 

fires from nighttime TIR images are used. 

(3) About 70%–85% of observed coal fire sites matched coal fire areas from SAGBT. The average 

distance between fire sites and the nearest retrieved fire boundary (32.44 m) was less than half 

the pixel dimension (45 m). Approximately 15% of the observed fire spots were not identified 

by SAGBT. 

(4) Coal fire areas from SAGBT match high-temperature pixels in the ASTER image, and the areas 

include the major extreme high-temperature regions derived from field samples. 
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(5) Similar spatial distribution in coal fire areas was observed for daytime and nighttime images, 

although differences in shape and size of areas occurred. Differences in area between daytime 

and nighttime acquisitions in spring were observed to be more dramatic than in the summer. 

These results suggest that SAGBT has weak dependency on the accuracy of temperature retrieval, 

but the method depends strongly on the distribution of thermal features. Simultaneous observations by 

satellite and in the field offered an opportunity to validate a new proposed coal fire detection method.  

Further research involving orbital remote sensing and simultaneous field measurements should 

focus on developing a solar radiation correction for daytime TIR images. A better understanding of the 

relationships between field temperatures, LST retrieved from daytime/nighttime satellite TIR images, 

and solar irradiation-induced temperature rise should assist in addressing the effects of solar heating on 

coal fire detection. In addition, measurements in fall and winter are expected to produce a four-season 

calibration of the gradient-based threshold method for coal fire detection. Finally, the SAGBT method 

can be applied to other TIR data, such as images from Landsat 8 TIRS and from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) sensor. Applications of SAGBT can be extended to 

other fields, such as volcano monitoring, detection for forest and peat fires, and discovering for 

geothermal phenomena (hot springs, fumaroles, geysers, and mud pots) [21]. 
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