

Supplementary Information

A Framework for Defining Spatially Explicit Earth Observation Requirements for a Global Agricultural Monitoring Initiative (GEOGLAM). *Remote Sens.* 2015, *7*, 1461-1481

Alyssa K. Whitcraft *, Inbal Becker-Reshef and Christopher O. Justice

Department of Geographical Sciences, University of Maryland, 4321 Hartwick Rd. Suite 410, College Park, MD 20742, USA; E-Mail: ireshef@umd.edu (I.B.-R.); cjustice@umd.edu (C.O.J.)

* Author to whom correspondence should be addressed; E-Mail: alyssakw@umd.edu; Tel.: +1-301-405-0207.

Academic Editors: Bingfang Wu, Anton Vrieling, Clement Atzberger and Prasad S. Thenkabail

Figure S1. For the month of January, the revisit frequency required (RFR) to probabilistically yield a view at least 70% (**top**) or 95% (**bottom**) clear within 8 days over in-season croplands. Cropland mask is from Fritz *et al.* (2015) [1]. Growing season calendar is from Whitcraft *et al.* (2014) [2]. Areas containing cropland out of season are shown in gray. Resolution is 0.05°.

Figure S2. For the month of February, the revisit frequency required (RFR) to probabilistically yield a view at least 70% (**top**) or 95% (**bottom**) clear within 8 days over in-season croplands. Cropland mask is from Fritz *et al.* (2015) [1]. Growing season calendar is from Whitcraft *et al.* (2014) [2]. Areas containing cropland out of season are shown in gray. Resolution is 0.05°.

Figure S3. For the month of March, the revisit frequency required (RFR) to probabilistically yield a view at least 70% (**top**) or 95% (**bottom**) clear within 8 days over in-season croplands. Cropland mask is from Fritz *et al.* (2015) [1]. Growing season calendar is from Whiteraft *et al.* (2014) [2]. Areas containing cropland out of season are shown in gray. Resolution is 0.05°.

Figure S4. For the month of April, the revisit frequency required (RFR) to probabilistically yield a view at least 70% (**top**) or 95% (**bottom**) clear within 8 days over in-season croplands. Cropland mask is from Fritz *et al.* (2015) [1]. Growing season calendar is from Whiteraft *et al.* (2014) [2]. Areas containing cropland out of season are shown in gray. Resolution is 0.05°.

Figure S5. For the month of May, the revisit frequency required (RFR) to probabilistically yield a view at least 70% (**top**) or 95% (**bottom**) clear within 8 days over in-season croplands. Cropland mask is from Fritz *et al.* (2015) [1]. Growing season calendar is from Whitcraft *et al.* (2014) [2]. Areas containing cropland out of season are shown in gray. Resolution is 0.05°.

Figure S6. For the month of June, the revisit frequency required (RFR) to probabilistically yield a view at least 70% (**top**) or 95% (**bottom**) clear within 8 days over in-season croplands. Cropland mask is from Fritz *et al.* (2015) [1]. Growing season calendar is from Whitcraft *et al.* (2014) [2]. Areas containing cropland out of season are shown in gray. Resolution is 0.05°.

Figure S7. For the month of July, the revisit frequency required (RFR) to probabilistically yield a view at least 70% (**top**) or 95% (**bottom**) clear within 8 days over in-season croplands. Cropland mask is from Fritz *et al.* (2015) [1]. Growing season calendar is from Whiteraft *et al.* (2014) [2]. Areas containing cropland out of season are shown in gray. Resolution is 0.05°.

Figure S8. For the month of August, the revisit frequency required (RFR) to probabilistically yield a view at least 70% (**top**) or 95% (**bottom**) clear within 8 days over in-season croplands. Cropland mask is from Fritz *et al.* (2015) [1]. Growing season calendar is from Whitcraft *et al.* (2014) [2]. Areas containing cropland out of season are shown in gray. Resolution is 0.05°.

Figure S9. For the month of September the revisit frequency required (RFR) to probabilistically yield a view at least 70% (**top**) or 95% (**bottom**) clear within 8 days over in-season croplands. Cropland mask is from Fritz *et al.* (2015) [1]. Growing season calendar is from Whitcraft *et al.* (2014) [2]. Areas containing cropland out of season are shown in gray. Resolution is 0.05°.

Figure S10. For the month of October, the revisit frequency required (RFR) to probabilistically yield a view at least 70% (**top**) or 95% (**bottom**) clear within 8 days over in-season croplands. Cropland mask is from Fritz *et al.* (2015) [1]. Growing season calendar is from Whitcraft *et al.* (2014) [2]. Areas containing cropland out of season are shown in gray. Resolution is 0.05°.

Figure S11. For the month of November, the revisit frequency required (RFR) to probabilistically yield a view at least 70% (**top**) or 95% (**bottom**) clear within 8 days over in-season croplands. Cropland mask is from Fritz *et al.* (2015) [1]. Growing season calendar is from Whitcraft *et al.* (2014) [2]. Areas containing cropland out of season are shown in gray. Resolution is 0.05°.

Figure S12. For the month of December, the revisit frequency required (RFR) to probabilistically yield a view at least 70% (**top**) or 95% (**bottom**) clear within 8 days over in-season croplands. Cropland mask is from Fritz *et al.* (2015) [1]. Growing season calendar is from Whitcraft *et al.* (2014) [2]. Areas containing cropland out of season are shown in gray. Resolution is 0.05°.

 \bigcirc 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).