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Abstract: Defense Meteorological Satellite Program/Operational Linescan System  

(DMSP-OLS) nighttime light has proved to be an effective tool to monitor human activities, 

especially in mapping urban areas. However, the inherent defects of DMSP-OLS light 

including saturation and blooming effects remain to be tackled. In this study, the Normalized 

Difference Vegetation Index (NDVI) product of the Moderate-resolution Imaging 

Spectroradiometer/Normalized Difference Vegetation Index 1-Month (MODND1M), the 

temperature product of Moderate-resolution Imaging Spectroradiometer/Land Surface 

Temperature 1-Month (MODLT1M) and DMSP-OLS light were integrated to establish the 

Vegetation Temperature Light Index (VTLI), aiming at weakening the saturation and 

blooming effects of DMSP-OLS light. In comparison with DMSP-OLS nighttime light, this 

new methodology achieved the following improvements: (1) the high value (30%–100%) 

range of VTLI was concentrated in the urban areas; (2) VTLI could effectively enhance the 

variation of DMSP-OLS light, especially in the urban center; and (3) VTLI reached 

convergence faster than Vegetation Adjusted Normalized Urban Index (VANUI). Results 

showed that the urban areas extracted by VTLI were closer to those from Landsat TM images 

with the accuracy of kappa coefficients in Beijing (0.410), Shanghai (0.718), Lanzhou  

 

OPEN ACCESS



Remote Sens. 2015, 7 1423 

 

(0.483), and Shenyang (0.623), respectively. Thus, it can be concluded that the proposed 

index is able to serve as a favorable option for urban areas mapping. 

Keywords: NDVI; urban heat island; urbanization area; landscape ecology; land use;  

land cover 

 

1. Introduction 

Globally, more and more scientific studies have focused on the coupling of human activities and 

natural system [1]. As a main cause of land cover/land use change, human disturbance cannot be ignored. 

Urbanization, in particular, is the most powerful evidence of humans stepping into the nature [2]. Today, 

more than 50% of people around the world live in urban areas [3]. The demand for urban areas greatly 

increases with the rapid growth of urban populations. It has become a hot research topic to measure the 

effect of rapid urbanization on the human-nature system [4–6]. Thus, accurate quantification of rapid 

urbanization is the first critical step in studying the coupling of human-nature system. 

At present, statistical methods and remote sensed extraction are the two mainstream ways to quantify 

urban information [7,8]. Both of them have limitations in that statistical data are difficult to spatialize 

and time-consuming as it is hard to acquire continuously high-quality remote sensed images. However, 

with high temporal resolution, Defense Meteorological Satellite Program/Operational Linescan System 

(DMSP-OLS) nighttime light has the potential to make up for their limitations. The observational data 

provided by the OLS sensor contains dawn, daytime, dusk, and nighttime periods each day. Since 1992, 

three types of product have been invented, including radiation calibration products, stable light products, 

and light intensity products [9–11]. With visible spectral resolution of 6 bit, Digital Number (DN) value 

of stable light product ranges from 0 to 63.  

Nowadays, DMSP-OLS nighttime light has been widely used to monitor human activities [12–19]. 

To accurately measure urban areas by DMSP-OLS data, a threshold of the DMSP-OLS light DN value 

is usually acquired by two main approaches. One relies on auxiliary data, such as administrative 

boundaries, land cover data as well as build-up area [20–22]; the other utilizes the physical property 

changes of light polygons by increasing the detection frequency of DMSP-OLS light [23]. The 

relationship between the DMSP-OLS light DN value and social economic indicators including 

population, Gross Domestic Product (GDP), build-up area, and electricity consumption, were also 

reported [24–37]. Although DMSP-OLS light can detect artificial light at night in clear weather 

conditions, the data value of urban centers is too bright and tends to saturate due to the limitation of 

radiometric range of DMSP-OLS data [10,20]. Additionally, the light scattering effect makes some 

places luminous without light [17].Therefore, the saturation and blooming effects cannot be ignored. Cubic 

regression models were used to correct DMSP-OLS light [38,39], and two popular indices called the 

Human Settlement Index (HSI) and the Vegetation Adjusted Normalized Urban Index (VANUI) were used 

to address the saturation and blooming effects of DMSP-OLS nighttime light. They were both based on 

the rationale that impervious surface area was inversely correlated with vegetation abundance [40,41]. 

However, there are several demerits for HSI and VANUI. By integrating single Normalized Difference 

Vegetation Index (NDVI) factor, HSI and VANUI only increase the inter-urban variability within certain 



Remote Sens. 2015, 7 1424 

 

cities, in which the vegetation health and abundance is negatively correlated with DMSP-OLS light [42]. 

In the areas where the land type is vegetation, and NDVI is equal to 1, HSI is not equal to 0. It indicates 

that urban activities co-occur in heavily vegetated areas, but this is hardly possible in reality [41]. In 

addition, when NDVI is equal to 0, the values of HSI and VANUI are invariant, which means that the 

saturation and blooming effects are not reduced when NDVI is equal to 0. Furthermore, non-vegetation 

land covers, such as bare soils and human settlements, have similar NDVI values. Thus, NDVI images 

are not suitable for directly separating human settlements, as is the case with Beijing [41]. The second 

shortcoming relates to water bodies. As water has weak reflection of light, blooming light affects water 

body extraction. The third problem is that it is hard to interpret the meaning of HSI with complex 

formulas [40]. Additionally, HSI is sensitive to changes in NDVI when the value of DMSP-OLS light is 

high [42]. 

This paper develops a new approach termed the Vegetation Temperature Light Index (VTLI) to 

extract urban information by merging DMSP-OLS light, NDVI, and land surface temperature. It can be 

used to reduce the saturation and blooming effects of DMSP-OLS light based on easily available data, 

such as NDVI product of Moderate-resolution Imaging Spectroradiometer/Normalized Difference 

Vegetation Index 1-Month (MODND1M) and land surface temperature product of Moderate-resolution 

Imaging Spectroradiometer/Land Surface Temperature 1-Month (MODLT1M). The proposed index is 

then applied in four typical metropolises in China including Beijing, Shanghai, Lanzhou, and Shenyang, 

respectively. Our method demonstrates itself as a more favorable tool in capturing urban area.  

2. Materials and Methodology 

2.1. Study Area 

Four cities, including Beijing, Shanghai, Shenyang, and Lanzhou are selected as sampling sites. 

Beijing, as the capital of China, is the center of politics, culture, and technology. Beijing is located 

between 39°26′ N and 41°03′ N latitude and between 115°25′ E and 117°30′ E longitude. It has a north 

temperate monsoon climate and four distinct seasons. Rapid urbanization has taken place in Beijing. The 

permanent population has increased by 43.9% between 2000 and 2010. The urban areas of Beijing cluster 

together with regular rings. Since the government formulated and revised the rules for urban 

afforestation, the green space of Beijing City has increased to 190.2 km2 in 2010 (Beijing Statistical 

Yearbook, 2011).  

Shanghai, the largest city in China, is located between 39°40′ N and 31°53′ N latitude and between 

120°52′ E and 122°12′ E longitude. It has a north subtropical monsoon climate. Spring and autumn are 

shorter than winter and summer. In 2010, the permanent population increased by 40% from 2000. The 

proportion of urban green space increased to 1201.5 km2 in 2010 (Shanghai Statistical Yearbook, 2011). 

Shenyang is one of the central cities in the Northeast China. It is located at 41°48′ N latitude and 

123°23′ E longitude in the south of northeast China and in the center of the northeast Asia economic 

circle. Shenyang has a temperate sub-humid continental climate. Due to the effect of the monsoon, it is 

characterized by concentrated rainfall, large temperature differences, and four distinct seasons. The 

permanent population increased by 5% between 2000 and 2010. Due to Shenyang municipal planning, 

urban green space increased to 273.28 km2 in 2010 [43].  
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Lanzhou is located at 36°03′ N latitude and 103°40′ E longitude. With a temperate continental climate, 

it has neither a hot summer nor a cold winter. It is one of the arid and semi-arid cities in China with less 

vegetation around, which is different from the other three cities in this study. The permanent population 

increased by 3% between 2000 and 2010. The urban green space in Lanzhou increased to 16.79 km2 in 

2010. Lanzhou is a second-tier city with a lower level of economy development. 

The locations of the four cities are shown in Figure 1. These four metropolises all experience long 

histories of urbanization and have different natural climates, so they have broad representativeness. 

 

Figure 1. The location of the study areas in China (Background: Defense Meteorological 

Satellite Program/Operational Linescan System (DMSP-OLS) nighttime light in 2000). 

2.2. Data and Preprocessing 

This study employed DMSP-OLS stable light product, NDVI product, Land Surface Temperature and 

Emissivity product, and Landsat Thematic Mapper (TM) images. Table 1 shows a brief description of 

all the data. The DMSP-OLS stable light product was acquired from the National Oceanic and Atmospheric 

Administration/National geophysical Data Center (NOAA/NGDC) Earth Observation Group [44]. The 

stable light product contains the light collected from cities, towns, and other sites with persistent lighting, 

including gas flares. To reduce errors between the multi-source datasets, the average DN value of the 

DMSP-OLS light derived from F14 and F15 was calculated. The MODND1M products for monthly NDVI 

and MODLT1M products for monthly land surface temperature were downloaded from the Geospatial 

Data Cloud [45], and the maximum of monthly NDVI products was calculated in 2000 [46]. The urban 

heat island effect is usually more pronounced in the night than in the day. Therefore, to highlight the 

urban heat island effect, the Moderate-resolution Imaging Spectroradiometer (MODIS)-derived 

maximum of the monthly night temperature products in 2000 was calculated as the temperature factor. 
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The land cover types classified by Landsat TM images with resolution of 28.5 m were used as the true 

representation of urban areas, which were obtained by maximum likelihood classifier based on training 

data extracted from typical urban areas [46]. The Landsat images were classified into two categories 

(urban vs. non-urban). Because it is hard to distinguish between urban and suburban pixels covered by 

building and roads, the urban areas produced by the supervised classification were aggregated [46]. 

Subsequently, 28.5 m of classified urban areas were rescaled to the resolution of 1km to validate urban 

areas extracted by the indices based on DMSP-OLS light. In this study, all datasets were projected to 

GCS_WGS_1984. In order to better compare with VANUI, DMSP-OLS light and temperature were 

normalized by subset with Equation (1): 

min

max min

i
i

d d
D

d d




  
(1)

where Di is the normalized value; di is the original value; dmin and dmax are the minimum and maximum 

of the subsets, respectively. 

Table 1. Description of data in this study. 

Data Source Product Description Acquisition Date  

DMSP-OLS nighttime light 
Yearly stable light product with 1km spatial 

resolution 
2000  

MODIS NDVI and Land 

Surface Temperature 

products 

Computer Network Information Center, Chinese 

Academy of Science synthesizes China 1km 

monthly average NDVI and Land Surface 

Temperature products by MODND1M and 

MODLT1M, respectively (http://www.gscloud.cn/) 

12 months in 2000  

The land cover classification 

images by Landsat TM 
28.5 m spatial resolution  

Obtained from  

Xin Cao [43] 

2.3. VTLI Index 

The increasing urban impervious layer generally encroaches on vegetation, and there is an obvious 

temperature gradient between urban and rural surroundings [47]. The positive relationship between land 

surface temperature (LST) and impervious surface area (ISA) percent is strong [48]. ISA percent could 

represent urban mixed land-use type. The land surface temperature, unlike NDVI which may saturate [41], 

would contribute to the detection of spatial variation within urban environment in conjunction with 

NDVI. Therefore, we integrated NDVI and the land surface temperature to reduce the saturation and 

blooming effects of DMSP-OLS light. Based on the structure of VANUI, the method of factor 

multiplication was chosen. This method could not only enhance the same roles among factors, but also 

retain the different roles; therefore, VTLI is proposed as follows with Equations (2)–(4):  

max max(1 )VTLI V T L   
 (2)

max ( ... )January February DecemberV Max V V V  (3)

max ( ... )January February DecemberT Max T T T  (4)

Where V is monthly NDVI, T is the monthly night temperature and L is the DN value of DMSP-OLS 

light. All the factors range from 0 to 1.  
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To compare the capabilities of representing urban area of VANUI and VTLI, the following threshold 

method was used. The threshold started at 5% and kept increasing by 5% in each step until the matching 

degrees decreased. The DMSP-OLS light, VTLI, and VANUI were reclassified into two categories 

(urban area vs. non-urban area) on the threshold, which were compared with the Landsat TM 

classification using the Confusion Matrix tool in ENVI 4.7. All pixels in each subset were compared and 

the matching degree was measured by the kappa coefficient and overall accuracy (OA). Considering the 

wide range of non-urban pixels involved in the OA calculation, the optimal threshold was selected 

according to the maximum of the kappa coefficients [46]. All data were prepared with spatial resolution 

of 1km in the accuracy assessment. Furthermore, an examination of where disagreement occurred was 

conducted and the error areas which were not identified as the correct class (urban area or non-urban 

area) were analyzed. The formulas of OA and the kappa coefficient as follows were used to evaluate the 

accuracy of urban area extraction from VANUI and VTLI. 

kkx
OA

N
 (5)

2

kk k k
k k

k k
k

N x x x
kappa

N x x

 

 






 


 (6)

Where N is the total pixel count in the land cover type, xkk is the diagonal of the classification confusion 
matrix, xk∑ is the total pixel count of k class, and x∑k is the total pixel count that is classified into the k class. 

3. Results 

3.1. Spatial Distributions of the Three Indices  

Figure 2 shows the spatial distributions of DMSP-OLS light, VAUNI, and VTLI based on three 

ranges, which consist of high value (30%–100%), middle value (10%–30%), and low value (0–10%), 

respectively. The high value (30%–100%) range of DMSP-OLS light represents the approximate 

locations of the cities (Figure 2). The values of VAUNI and VTLI decrease from the urban centers to 

the suburbs, just as DMSP-OLS light does, and the pixels of value larger than 10% are much more 

concentrated compared with DMSP-OLS light. The main difference between VANUI and VTLI lies in 

that spatial distribution of high value (30%–100%) range of VTLI is discontinuously patchy, which is 

closer to actual urban patterns. 

3.2. Standard Deviation of the Three Indices 

To quantify the variation of DMSP-OLS light, VAUNI, and VTLI, standard deviation was calculated 

using a 3 × 3 window on Arcgis 9.3. The spatial distribution of the standard deviation was shown in 

Figure 3. A higher standard deviation represents a larger variation of the index value. The spatial 

distribution of DMSP-OLS light standard deviation presents a regular shape, and it almost surrounds the 

urban areas (Figure 3). VAUNI and VTLI show higher standard deviations in the urban areas overall. 

As for the case of Beijing, it has distinct rural-urban divisions, with six ring roads radiating outwards. 

Here we draw four lines in different directions (see the Appendix Figure A1). Figure 4 shows the 
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variation on the transect through the gradient of the rural-urban-urban center from west to east in Beijing. 

At the junction of urban and non-urban areas, the standard deviation of DMSP-OLS light increases 

sharply (Figure 4). In urban areas, the standard deviation of DMSP-OLS light is almost zero, while those 

of VANUI and VTLI are higher. This indicates that VAUNI and VTLI could detect the variation of 

DMSP-OLS light in the urban areas more effectively. Spatial distributions of the standard deviation of 

VAUNI and VTLI are similar, but VTLI shows many peaks with higher frequency of fluctuation (Figure 4 

and the Appendix Figure A1), and thus is superior to VANUI in this aspect. 

 

Figure 2. The spatial distributions of the DMSP-OLS light, Vegetation Adjusted Normalized 

Urban Index (VANUI), and Vegetation Temperature Light Index (VTLI) in the four cities. 
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Figure 3. The standard deviations of the DMSP-OLS light, VANUI, and VTLI in the four cities. 
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Figure 4. The standard deviation changes for the DMSP-OLS light-based indices. (a) 

Latitudinal transect with background of Landsat TM image in Beijing. (b) Standard 

deviation transect of the DMSP-OLS light in corresponding to (a). 

 

Figure 5. The pixel count distributions of DMSP-OLS light, VANUI, and VTLI in the four 

cities; X axis is the value of the indices in percent; Y axis is the pixel count. 
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3.3. Convergence features of the Three Indices 

Figure 5 is the plot of the pixel count distributions of three indices in the four cities. In comparison 

with DMSP-OLS light and VANUI, VTLI reaches convergences fastest in the four cities, and the 

convergence means that the pixel counts of indices no longer decrease by increasing the value. The pixel 

count of DMSP-OLS light is larger than those of VANUI and VTLI all the time and it decreases slowly 

in the four cities (Figure 5). The pixel counts of both VAUNI and VTLI drop sharply between 0 and 0.1, 

which means that many non-urban pixels are filtered out, and the pixel count of VTLI is always smaller 

than VANUI at the same threshold value zone in the four cities. In addition, VTLI reaches the stationary 

points faster than VANUI, indicating that VTLI can extract urban area more easily. 

Table 2. The matching degrees of VANUI and VTLI at increasing thresholds and the highest 

kappa coefficients for the four cities (*). 

City Index 

Threshold 

5% 10% 15% 20% 

Kappa OA Kappa OA Kappa OA Kappa OA 

Beijing VANUI 0.279 63.4% 0.384 69.2% 0.407 70.6% 0.407 70.7% 

VTLI 0.372 68.6% 0.410 * 70.8% 0.401 70.6% 0.380 69.6% 

Shanghai VANUI 0.424 60.0% 0.585 73.0% 0.666 79.2% 0.705 82.1% 

VTLI 0.575 72.1% 0.700 81.6% 0.718 * 83.4% 0.714 83.7% 

Lanzhou VANUI 0.094 36.9% 0.223 53.0% 0.332 64.2% 0.426 72.1% 

VTLI 0.232 53.8% 0.362 67.0% 0.450 74.6% 0.483 * 78.1% 

Shenyang VANUI 0.348 83.1% 0.481 90.1% 0.544 92.5% 0.578 93.7% 

VTLI 0.520 91.8% 0.601 94.5% 0.623 * 95.2% 0.615 95.5% 

3.4. Applications of the Three Indices in Extracting the Urban Areas 

We obtained the urban areas by increasing the threshold of the indices. The results of the matching 

degrees with the Landsat TM images were shown in Table 2. At the threshold of 20%, the pixel counts 

of VAUNI and VTLI decrease slowly in all four cities (Figure 5), and they almost reach convergences. 

We stop increasing the threshold at 20% because the matching degrees begin to drop in Beijing, Shanghai, 

and Shenyang. In terms of kappa coefficients and overall accuracies (OAs), VTLI has the best consistency 

with the urban area from Landsat TM images in the four cities (Beijing: kappa = 0.410, OA = 70.8%; 

Shanghai: kappa = 0.718, OA = 83.4%; Lanzhou: kappa = 0.483, OA = 78.1%; Shenyang: kappa = 0.623, 

OA = 95.2%). The highest matching degrees of VTLI are acquired at lower thresholds than VANUI, 

indicating many non-urban pixels are effectively filtered out (Figure 5). Besides, the lower threshold 

means that it is easier to obtain the optimum threshold for VTLI. Therefore, VTLI is more sensitive and 

robust to extract urban areas than VANUI. The urban areas are extracted at the respective optimum 

thresholds in accord with the highest matching degrees (*) in the four cities (Figure 6). VAUNI and 

VTLI also omit some small urban patches around the urban centers in Beijing, Shanghai, and Shenyang. 

Compared with the urban areas from Landsat TM image, the ones (Figure 6) extracted by VANUI greatly 

magnify the true urban areas of the four cities, while VTLI presents the almost true urban area. In 

addition, an examination of areas where disagreement occurred was shown in Figure 7 and the difference 

between the two indices was listed in Table 3. The urban areas which are not classified as the urban areas 



Remote Sens. 2015, 7 1432 

 

of VTLI are greater than those of VANUI except Lanzhou where they are the same. In Figure 7, the 

areas misclassified as non-urban areas are discretely distributed far away from the urban centers in 

Shanghai and Shenyang, while they tend to be agglomerated in the south of Beijing. On the other hand, 

the areas misclassified as urban areas of VTLI are much smaller than those of VANUI in the four cities 

(Table 3). Most of the areas misclassified as urban areas are distributed around the urban areas (Figure 7), 

which may be caused by the arbitrary nature of assigning a threshold. The difference of classification 

error between VTLI and VANUI is mainly in the category of areas which are misclassified as urban 

areas, and VANUI overestimates the urban areas greatly. 

VANUI   VTLI    Landsat TM 

 

Figure 6. The urban areas from Landsat TM images and those extracted from VANUI and 

VTLI at the respective optimum thresholds for Beijing (10%), Shanghai (15%), Lanzhou 

(20%), and Shenyang (15%), respectively. 
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VANUI    VTLI 

 

Figure 7. The spatial comparison of urban areas in Landsat TM with those extracted by 

VANUI and VTLI in four cities at the optimum thresholds of 10% for Beijing, 15% for 

Shanghai, 20% for Lanzhou, and 15% for Shenyang, respectively. 
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Table 3. The difference of classification between VTLI and VANUI in the four cities (areas 

of VTLI minus those of VANUI in the corresponding category). 

City 

Area (km2) 

Areas Misclassified as 

Non-Urban Areas  

Areas Classified 

Correctly 

Areas Misclassified as 

Urban Areas 

Beijing 53 71 −124 

Shanghai 5 57 −106 

Lanzhou 0 25 −25 

Shenyang 7 56 −63 

4. Discussion 

Although DMSP-OLS nighttime light has been used to study urbanization for years [20,49–51], up until 

now, there have been no robust methods to reduce the saturation and blooming effects of DMSP-OLS 

light. Even if HSI and VANUI (Equations (1) and (2), respectively) increased the variation of DMSP-OLS 

light, the improvements were limited. In Equation (7) [40], the NDVImax is the maximal NDVI during April 

and October and OLSnor is the normalized DN value of DMSP-OLS light. In Equation (8) [41], the NTL 

is the DN value of DMSP-OLS light, and the NDVI is the annual average value. 

max

max max

(1 )

(1 )
nor

nor nor

NDVI OLS
HSI

OLS NDVI OLS NDVI

 


     (7)

(1 )VANUI NDVI NTL    (8)

In this study, VTLI has effectively weakened the saturation and blooming effects of DMSP-OLS light 

in rapid urbanized cities. The standard deviation graph (Figure 4) shows that VTLI has potential for 

increasing inter-urban variability, especially in the urban centers. Moreover, it is better at extracting 

urban areas. The inter-urban variability characterized by VANUI only depends on the NDVI range in 

the city, as is shown in Equation (8). However, vegetation coverage is very low in some urban-rural 

junctions, so the role of NDVI in reducing light saturation is small in these places. In VTLI, the 

temperature factor strengthens the difference between urban and non-urban areas in nighttime data due 

to a temperature gradient between urban and rural areas. Vegetation cover, vegetation composition, and 

vegetation configuration together affect the temperature of urban heat islands. For such cities as semiarid 

Lanzhou, the effect of VANUI is not obvious because vegetation mainly lives on artificial irrigation in 

most of the arid and semi-arid areas, which results in more vegetation in urban areas instead. 

Nevertheless, the night temperature in the desert of non-urban areas is much lower than that of urban 

areas, so VTLI is also suitable for cities in arid and semi-arid areas. Compared with urban areas in Landsat 

TM images, many of the small urban patches far from the urban centers cannot be obtained through VTLI 

and some areas around the urban areas are also misclassified. When examining areas where disagreement 

occurred, the difference between VTLI and VANUI was small and the advantage of VTLI was not 

remarkable. There are two reasons behind that result. First, with the resolution of 1 km, DMSP-OLS light 

is too rough to detect small urban patches, and this is to say, DMSP-OLS light is much more appropriate 

to reflect urban information on a large scale. Second, the method of assigning a threshold maybe the other 

source of problem. The misclassified areas vary among four cities, e.g., the areas misclassified as non-urban 
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areas are more concentrated in Beijing than other three cities. This may be explained by the imbalance of 

economic level among cities and VTLI may still suffer somewhat from the blooming effect.  

The applications of DMSP-OLS light, VANUI, and VTLI are summarized as follows. Firstly, with 

the mutation points of the standard deviation representing the transition of urban and non-urban areas 

(Figure 4), urban areas may be extracted by setting threshold according to the mutation points of standard 

deviation. Secondly, VANUI and VTLI can effectively reduce saturation and increase variation in 

nighttime luminosity, but for cities that have experienced significant growth over a relatively short time 

span with similar NDVI, VTLI is superior to the former in detecting the inter-urban variability. For many 

researchers who studied urban dynamics using DMSP-OLS nighttime light [52–54], it would be more 

accurate to take advantage of the VTLI index because it effectively reduces the saturation and blooming 

effects. Thirdly, the spatial distribution of the standard deviation from VTLI reflects the urban form to 

some extent (Figure 3). Urban form is one of the most important indicators to identify urban ecological 

effects [24,55,56] or evaluate urban sprawl. As Figure 2 shows, the value of VTLI in the urban center is 

higher. Thus, the driving force factors behind urbanization may be analyzed corresponding to urban 

spatial pattern. It is also useful for policy makers to allocate social resources and formulate policies.  

In spite of its superiorities, VTLI still has its drawbacks. The Urban Heat Island (UHI) depends on the 

time, season, latitude, climate zones and other factors. The maximum of night temperature throughout the 

year was calculated in this study. After being compared with the median and minimum night temperature, 

the effect of the maximum can be best captured. However, the mechanism influencing the temperature is 

very complex, and it is related to anthropogenic heat emissions, building shapes, building materials, and 

underlying surface properties. How these factors affect the results requires further investigation. In addition, 

DMSP-OLS nighttime light is related to many factors, including socio-economic, geographical, and natural 

environmental factors. VTLI has not yet assimilated these socio-economic and geographical factors.  

5. Conclusions  

DMSP-OLS nighttime light was demonstrated to be an indicator of human activities, so it has been 

used to map urbanization dynamics and spatialize social economic data. The saturation and blooming 

effects of DMSP-OLS light are two large obstacles to achieve the aim. In this study, the new index VTLI, 

which integrates DMSP-OLS light, NDVI, and temperature datasets, was proposed. It could enhance the 

variation and difference between non-urban areas and urban areas of DMSP-OLS light.  

Without losing the spatial information of DMSP-OLS light data, the high value (30%–100%) range 

of VTLI was more concentrated in the urban centers. The discontinuously patchy distribution of VTLI 

is closer to actual urban patterns. The standard deviation was used to represent the variation of indices. 

In the urban center and the junction between urban area and non-urban area, the higher standard deviation 

of VTLI showed its ability of enhancing the variation of DMSP-OLS light data. Compared with VANUI, 

VTIL reached the convergence fastest. In the value range of 0–20% in four cities, the pixel counts 

dropped sharply and decreased slowly afterwards, indicating the threshold belonged to this range. The 

highest accuracies of extracting urban areas were obtained by VTLI and the optimum thresholds were 

10% for Beijing, 15% for Shanghai, 20% for Lanzhou, and 15% for Shenyang, respectively. Though 

some small patches far from urban centers were not identified correctly, the higher temporal resolution 

and coarser spatial resolution made VTLI an ideal alternative tool for extracting large scale urban 
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information. Furthermore, as the four cities have different climate and social economic characters, VTLI 

may be applicable to other regions with rapid urbanization.  

Currently, the saturation and blooming effects of DMSP-OLS light are still not well solved, and we 

believe that, with the simplicity and feasibility of VTLI, it can be widely used in the studies and practices 

of urban planning, urban ecology, and urban sustainability on a large scale.  
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Appendix 

 

Figure A1. The standard deviation changes of DMSP-OLS light, VANUI, and VTLI in 

different directions in Beijing. 
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