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Abstract: Mapping Impervious Surface Area (ISA) at regional and global scales has attracted
increasing interest. DMSP-OLS nighttime light (NTL) data have proven to be successful for mapping
urban land in large areas. However, the well-documented issues of pixel blooming and saturation
limit the ability of DMSP-OLS data to provide accurate urban information. In this paper, a
multi-source composition index is proposed to overcome the limitations of extracting urban land
using only the NTL data. We combined three data sources (i.e., DMSP-OLS, MODSI EVI and
NDWI) to generate a new index called the Normalized Urban Areas Composite Index (NUACI).
This index aims to quickly map impervious surface area at regional and global scales. Experimental
results indicate that NUACI has the ability to reduce the pixel saturation of NTL and eliminate
the blooming effect. With the reference data derived from Landsat TM/ETM+, regression models
based on normalized DMSP-OLS, Human Settlement Index (HSI), vegetation adjusted NTL urban
index (VANUI), and NUACI are then established to estimate ISA. Our assessments reveal that
the NUACI-based regression model yields the highest performance. The NUACI-based regression
models were then used to map ISA for China for the years 2000, 2005 and 2010 (Free download link
for the ISA products can be found at the end of this paper).
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1. Introduction

Over the past 30 years, global urban population has increased from 1.5 billion in 1975 to 3.4 billion
in 2010. This growth trend is predicted to continue into future decades according to the United
Nations. Global urban population will increase to 6.3 billion by 2050; nearly double the current
urban population [1]. The massive immigration to cities has resulted in correspondingly rapid
urban expansion. Although urban settlements occupy only a small fraction of the world’s surface,
they have a significant effect on climate, biogeochemical cycles, biodiversity and hydrology at local,
regional and even global scales [2]. Unprecedented urban expansion has brought about a series of
environmental and ecological problems such as encroachment on agricultural land, destruction of
ecosystems, water shortage, air pollution and urban heat islands [3-6]. Urban land is increasingly
being recognized as an important yet poorly quantified component in global change models [7].
Accurate information about urban dynamics is crucial for revealing the relationships between
urbanization and its environmental consequences [8,9].
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Remote sensing techniques, which can provide quick, periodic revisits and large area coverage,
have proven to be a useful tool for mapping urban land [10]. Satellite images have been extensively
used in monitoring urban dynamics [11-13]. In most previous studies, urban area mapping was
often carried out for individual cities by using high or medium spatial resolution images [12].
However, it is difficult to map urban areas using high or medium spatial resolution images such
as Landsat TM/ETM+ at regional or global scales. First, it requires a large amount of human and
computational resources to process and interpret these images. Second, obtaining a comprehensive
set of good-quality images within any given year that covers a large study area is also difficult
because of frequent cloudy conditions and infrequent measurements [14]. Therefore, developing new
approaches for mapping urban land over large areas using coarse resolution images is an urgent task.

The Defense Meteorological Satellite Program’s Operational Line-scan System (DMSP-OLS)
nighttime light (NTL) images have proven to be reliable sources of data for mapping urban
areas at regional and global scales [10,15-22]. Threshold-based approaches are the most common
techniques for extracting urban areas from DMSP-OLS data because of their simplicity [10,14,23,24].
Unfortunately, previous studies indicated that the threshold-based technique posed a problem to
retrieve urban areas accurately. These approaches not only omit a large number of small settlements
with low light brightness but also overestimate urban extents in larger-scale cities due to the blooming
effect [9,10,24,25]. The multiple thresholds method was then developed to map urban areas at
regional scales by considering the development level of cities [10,26]. A disadvantage of this method
is that there are no general guidelines available for selecting threshold values based on different levels
of socioeconomic development [25].

Additionally, the well-documented issue of saturation in bright urban cores means that NTL
is unable to accurately estimate Impervious Surface Area (ISA) or separate different types of land
cover [14,27]. Thus, uncertainty cannot be avoided when extracting urban area from DMSP-OLS
data at regional and global scales using these types of methods. The combination of multi-source
remotely sensed data might provide more information than any individual source because each
source has different characteristics. Previous studies have demonstrated that the vegetation index
was closely and inversely correlated with impervious surfaces [28,29]. Recently, a number of methods
have attempted to combine the vegetation index and NTL data to obtain more accurate urban
areas [14,21,25]. For example, Cao et al. (2009) [25] have shown the potential of combining DMSP-OLS
and SPOT-VGT data for extracting urban extents using semi-automatic Support Vector Machines
(SVM). However, the semi-automatic training process for SVM is both complex and time-consuming.
Furthermore, small urban areas within mixed pixels, which are usually abundant in DMSP-OLS data,
are also ignored. Hence, spatial information of towns and villages is inevitably omitted using the
proposed SVM method. Lu ef al. (2008) [14] proposed a Human Settlement Index (HSI) by integrating
DMSP-OLS NTL with Normalized Difference Vegetation Index (NDVI) data derived from MODIS for
mapping regional human settlements. However, HSI overcorrects the saturation in the peri-urban
areas [21]. The vegetation adjusted NTL urban index (VANUI) was also developed to correct the
NTL saturation [21]. However, NDVI is limited in its ability to distinguish urban lands from other
non-urban types when those show the lowest values, such as water and barren lands. It has been
proven that NDWI can effectively differentiate water bodies from non-water features [30]. NDWI can
make up for the limitations of the HSI and the VANUI, which only consider the contribution of NDVI.

This paper proposes a novel index, called the Normalized Urban Areas Composite Index
(NUACI), to obtain accurate and timely urban dynamics in large areas based on the combination
of DMSP-OLS, the vegetation index, and the Normalized Difference Water Index (NDWI). The
innovation of NUACI is that it can significantly reduce the blooming and saturation effects of
NTL data in urban areas by incorporating NDWI, which improves its ability to distinguish urban
lands from non-urban types with the lowest vegetation densities. China, an area experiencing
unprecedented urbanization with rapid economic growth over the past three decades, was selected
for the case study. Landsat TM/ETM+ images were used to extract urban areas as reference data. The
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DMSP-OLS, MODIS EVI and NDWI data were integrated to calculate NUACI values, which were
then used to estimate ISA through regression models.

2. Pixel Blooming and Saturation for the DMSP-OLS Imagery

DMSP-OLS originated in the mid-1960s with the primary purpose of observing moonlit cloud
cover [31]. It has low-light-sensing capabilities for detecting artificial lighting on the Earth’s surface
at night and has been widely used in urban studies such as mapping urban areas, population
estimation, carbon emissions inventory and economic activities, among others [14,32-35]. However,
the well-documented issues of pixel blooming and saturation limit the ability for using NTL data to
estimate urban areas accurately, which led to DMSP-OLS being relegated to more of a novelty than a
scientific tool in the 1980s [16].

The spurious indication of light in a location without a light source is called pixel blooming,
which is a widespread phenomenon in NTL data, especially in large metropolitan areas [24]. Three
main causes for the pixel blooming phenomena in NTL images were summarized by Small et al. [24].
The first cause of pixel blooming is attributable to atmospheric scattering in the blue part of the
spectrum (0.4 to 0.5 mm), which is used for low-light imaging on the DMSP-OLS. The coarse spatial
resolution and scattered light result in blooming at the peripheries of light sources. Second, there is
a large overlap in the footprints of adjacent pixels. Finally, the accumulation of geolocation errors in
the compositing process is another factor that induces pixel blooming. The overlay images of Landsat
TM/ETM+ and DMSP-OLS are shown in Figure 1 illustrate that a large number of unlighted areas
are affected by the blooming effect. Agricultural lands, forests and water bodies are all depicted
with light. Therefore, pixel blooming is an obstacle in using NTL images to estimate urban areas
accurately. Many attempts have been made to reduce the blooming effect. Early effort is to use a low
light threshold of detection frequency [16]. However, no single threshold is well suited to map urban
areas for various cities [24]. Vegetation index is presented to reduce the overestimated spatial extent
of lighted areas [14,21,25]. However, this method cannot distinguish water bodies near cities, such as
coastal areas, from urban areas.

Another primary barrier to using NTL data for urban studies is pixel saturation, which refers to
the fact that data values in urban core areas tend to be truncated because of the limited radiometric
range of DMSP-OLS. The saturation phenomena are illustrated using digital number (DN) profiles
across a latitudinal transect in Figure 2, which indicates that NTL values are invariant in urban areas
due to saturation. In reality, the corrected NTL data without saturation would have some peaks
in the urban core. Several techniques have been developed to correct saturation. For example,
Ziskin et al. [36] attempted to calibrate radiance by varying the gain on the sensor. However, radiance
calibrated nighttime light images were produced involving a significant amount of labor and cost.
Recently, some simpler methods based on using the combination of MODIS NDVI and NTL data
have been presented to mitigate the saturation effects, such as HSI and VANUI [14,21].
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Figure 1. Overlay images of Landsat ETM+ and DMSP-OLS for the six selected cities.
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Figure 2. Latitudinal transects of calibrated NTL and saturated NTL in 2010 for Shenzhen, China.
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3. Normalized Urban Areas Composite Index (NUACI)

Previous studies have shown that vegetation abundance is highly negatively correlated with the
distribution of impervious surfaces [29,37,38]. Hence, vegetation index can be used to assist in the
estimation of urban areas and has also been applied to correct the blooming effect in HSI and VANUI
indices. Actually, vegetation cover often shows discriminated patterns in different seasons, such as
crops and grasslands [14]. Unfortunately, it is impractical to retrieve the distribution of urban areas
using only a single-date vegetation index. EVI has proven to be insensitive to background noise. It
avoids saturation at places with high densities of vegetation cover and more accurately reflects the
true background condition of land cover distribution. The annual maximum enhanced vegetation
index (EVInax) derived from MODIS images can accurately provide information about vegetation
covered areas and is certainly preferable for use as auxiliary data for mapping urban boundaries.
However, the values of EVInax for non-vegetation land cover, including water bodies, bare soils
and barren lands, are similar to those of urban areas, making it difficult to distinguish urban areas
from non-vegetation land using only the EVIy,x index. NDWI can differentiate water bodies from
non-water features [30]), so a combination of EVI.x and NDWI might be able to discriminate urban
areas from vegetation land cover and water bodies. Therefore, EVIyax and NDWI are combined with
NTL data in this paper to establish NUACI for extracting an urban fraction.

To validate the feasibility of integrating EVIpnax and NDWI, 11 scenes of TM/ETM+ images
in China were selected, from which we collected 4320 sample plots involving six types of land
cover: water bodies, agricultural land, barren lands, forest, grass and urban. Figure 3 illustrates the
correlation between EVI,,.x and NDWI for different land covers. The values of NDWI and EVI,.x for
different sample plots are generally scattered within a certain coordinate space. When considering
only EVInax for correcting the saturation and blooming effects in NTL images, we can find many
sample plots—especially those belonging to urban lands and water bodies—that overlap along their
vertical axes for the same value range of EVIy,x. Urban lands cannot be easily separated from water
bodies, barren lands or grasslands with low densities of vegetation cover. This phenomenon is
usually typical for cities surrounded by barren lands or grass lands covered with low densities of
vegetation, as illustrated in Figure 4. When NDWI is incorporated into the index for deriving urban
information, different types of land cover show large differences between NDWI and EVIax. Sample
plots of different types are generally scattered within identifiable zones in the two-dimensional space
constituted by NDWI and EVInax. The sample plots belonging to urban lands are basically centralized
within the circle regions having lower NDWI and EVIpax. Although the sample plots of water bodies
present lower EVInayx, they generally show the highest NDWI, which makes them easy to separate
from urban lands. In addition, barren lands with the lowest EVI,ax have a lower NDWI than water
bodies but a higher NDWI than other types, while farmlands have a higher EVIax but lower NDWL
This characteristic pattern of differences makes urban lands easily distinguishable from farmlands,
water bodies and barren lands, even though a few sample plots of barren lands and sparse grass fall
into the circle region. Therefore, most non-urban areas with comparatively higher DN values in NTL
images can be excluded from urban lands by incorporating both EVIh.x and NDWL
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Figure 3. Relationship between NDWI and EVInax for sample plots with different land cover types.

As described above, because different characteristics can be obtained from the DMSP-OLS,
MODIS EVInax and NDWI datasets, it is necessary to identify the relationships among those datasets
to improve the accuracy of mapping urban areas. Therefore, a new index, the NUACI, is established
in this paper, as expressed in Equation (1).

0,d>r d= \/ (NDWI — a)? + (EVIpax — b)?
(A djr)s OLS-OLSpin
OLSmax - OLSmin ’

NUACI = 1)

d<r

where 4 and b are the average value of NDWI and EVIyax for urban samples, respectively, r is the
radius of the circle region aggregated with urban samples, d is the distance to the center of the
circle and OLSy,j, and OLSpax are the minimum and maximum values in the DMSP-OLS image,
respectively. The value of NUACI can be standardized within a range varying from 0 to 1. The true
distribution pattern of urban lands can be reflected according to the adoption value of 7. NDWI can
be calculated as follows:

NDWI — 857 — 1241 ()
0857 + P1241

where pgsy is reflectance in the near infrared band at 857 nm, and p1y41 is reflectance in the water
absorption band at 1241 nm. EVI can be expressed as follows:

PN~ PR
EVI = 3
PN+ Cipr —Copp + L ©

where p3; is reflectance in the near infrared band, p} is reflectance in the red band, L is the coefficient
of soil adaption and C; and C; are the coefficients used to correct the influence of atmospheric aerosol
scattering in the blue and red bands, respectively.
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Figure 4. A typical spatial pattern of land cover (e.g., grass covered with low density of vegetation
around urban land) in a city.

4. Materials and Data Preprocessing

The whole of China was selected for the case study. The country has experienced unprecedented
urbanization since the 1978 reforms. A time series of DMSP-OLS NTL images, Terra MODIS
reflectance and EVI products as well as Landsat ETM+ were used in this study. DMSP-OLS version
4 NTLs datasets with 1 km spatial resolution from 2000, 2005 and 2010 were downloaded from
the National Oceanic and Atmospheric Administration (NOAA)/National Geophysical Data Center
(NGDC) website. Each dataset is composed of average DN values of stable light images for an
entire year. DN values for lights on NTL images range from 1 to 63, while the background and
noise are all recorded as zero. The subsets of NTL images were then extracted according to Chinese
administrative boundaries.

Surface reflectance products of Terra MODIS (MODO09A1) and EVI (MOD13A1) with 463 m
spatial resolution were downloaded from the National Aeronautics and Space Administration
(NASA) website. MODO09A1 products, which were preprocessed to include atmospheric, radiometric
and geometric correction, were used to calculate the NDWI. The 16-day EVI product was processed
by compositing maximum values to create a yearly maximal EVI image (EVInax). The DMSP-OLS,
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NDWI and EVInax images were co-registered and projected to the Albers Conical Equal Area
projection. All the datasets were resampled to the same spatial resolution of 500 m.

Thirty scenes of Landsat ETM+ images covering partial regions of China with spatial resolutions
of 28.5 m from the years 2000, 2005 and 2010 were also obtained from the United States Geological
Survey website and used to extract actual impervious surface area, which we then used as reference
data to establish regression models and validate the performance of NUACI. All the selected
TM/ETM+ images were reprojected to the Albers Conical Equal Area projection. The urban areas
were extracted using the maximum likelihood classifier (MLC), which has been commonly applied
to the classification of medium resolution remote sensing images. Table 1 shows the confusion
matrices of the urban land classifications extracted from Landsat ETM+ images. In Table 1, the
overall accuracy shows high values of 91.13% (2000), 91.58% (2005), and 91.55% (2010), which indicate
that the classification image is fairly accurate. Therefore, the urban information derived from the
TM/ETM+ images can be used as reliable reference data. The obtained urban classification was then
aggregated to calculate actual ISA with a pixel size of 500 m by 500 m, which matches the spatial
resolution of MODIS EVI, NDWI, and DMSP-OLS data.

Table 1. Confusion matrices for urban land classifications (2000, 2005, 2010).

Reference
Classification 2000 2005 2010
Urban Non-urban Urban Non-urban Urban Non-urban
Urban 1141 163 1186 153 1239 169
Nonurban 447 5123 426 5109 412 5054
Over Accuracy 91.13% 91.58% 91.55%

5. Model Application and Results Discussion

5.1. Calculation and Validation of NUACI

Nineteen MODIS surface reflectance data and 16-day composite EVI products covering China
were used to obtain NDWI and EVInay, respectively. The NUACI for the whole of China was
then calculated using the combination of DMSP-OLS, NDWI and EVImax images with ArcMap
model builder, which is used to implement GIS processes by linking input data automatically. The
parameters 4, b and r in Equation (1) must be determined before implementing NUACI calculation
for the study region. Urban samples collected from ETM+ can be used to determine the 4, b and
r parameters. We calculated the average values of NDWI and EVIax for urban samples to obtain
the values of a and b. The parameter r can be set by calculating the distance between the farthest
urban sample and the central urban sample, the position of which is given as (a, b). In this paper,
the parameters a, b and r were finally set to —0.35, 0.15 and 0.4, respectively. Six cities undergoing
rapid urbanization, including Beijing, Tianjin, Hangzhou, Guangzhou, Shenzhen, and Wuhan, were
selected to make the comparison between the NUACI data and the NTL images. As shown in
Figure 5, NTL values were kept invariant in the urban core because of pixel saturation. Furthermore,
the blooming effect caused pixels scattered near urban periphery to exhibit high DN values in NTL
images. Non-urban land cover within peri-urban areas can be effectively separated from urban lands
by using NUACL

To further evaluate the ability of NUACI on reducing pixel saturation and eliminating the
blooming effect, a visual comparison was performed between NUACI, NTL, calibrated NTL without
saturation, VANUI and HSI for a latitudinal transect in Shenzhen (Figure 6). It was apparent that
the spatial pattern of NUACI is similar to those of VANUI and HSI. However, NUACI values vary
within the urban core, increase toward the urban core, and decrease away from the urban core. The
comparison illustrated that although these three indices can reduce pixel saturation and increase
inter-urban variability, NUACI values have more variations within urban areas. More importantly,
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both VANUI and HSI are incapable of reducing the blooming effect because their values for non-urban
land cover around the peri-urban areas are still high. In contrast, NUACI values for those areas are
very low—almost equal to zero. This result indicates that NUACI has the ability to solve the pixel
blooming problem. Figures 7 and 8 also display visual comparisons among corrected images selected
from the Pearl Delta and from the city of Wuhan as sample areas. The shoreline or riverbank located
in the cities is apparently affected by pixel blooming in the NTL data. Pixel blooming is most evident
on the imagery where glints of light into adjacent water bodies can be observed. As illustrated in
Figures 7 and 8 both VANUI and HSI are incapable of separating water bodies from urban areas,
whereas NUACI can accurately capture the spatial distribution information of urban areas.

1. Beijing 2. Tianjin 3. Hangzhou 4. Guangzhou 5. Shenzhen 6. Wuhan

Figure 5. Comparison of Landsat ETM+ images (a); NTL data (b); and NUACI images (c) for six cities.

Further quantitative assessment was carried out to validate the performance of the proposed
NUACI index on eliminating the blooming effect. In this experiment, the Pearl River Delta was
selected as the sample area. The values of areas located within present urban lands were discussed
and analyzed in detail. Urban lands were retrieved from TM/ETM+ images covering the Pearl River
Delta, a total of six buffers around existing urban areas within an interval distance of 0.5 km were
designated. The mean values of those buffer areas were then calculated for different urban indices.
Theoretically, DN values for those non-urban areas should equal zero. However, the buffer areas
may show different mean values because of the blooming effect. When lower mean values appear in
the corrected images, we can consider the blooming effect extremely restrained. Table 2 shows the
average values for different indices based on images within six buffers. The lowest average values
were obtained from the NUACI-based images, which were less than those from DMSP-OLS, HSI, and
VANUI images in all the buffer areas.

Figure 9 shows a visual comparison of value distribution pattern among the different urban
indices images. The scope of blooming effects is obviously reduced and sometimes even eliminated
in the NUACI images. When the buffer area contains large-scale water bodies, the values of NUACI
are approximately zero, whereas pixels within the buffer areas for the other urban indices images
show high values because of the remaining blooming effect.
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Figure 6. Latitudinal transects of calibrated NTL, saturated NTL, NUACI, HSI, and VANUI for

Shenzhen, China.

Figure 7. Comparison of different indexes. (a) Landsat ETM+ images; (b) saturated NTL; (c) calibrated
NTL; (d) VANUI (e) HIS; and (f) NUACI for the Pearl River Delta, China.
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Figure 8. Comparison of different indexes. (a) Landsat ETM+ images; (b) saturated NTL; (c) calibrated
NTL; (d) VANUI (e) HIS; and (f) NUACI for Wuhan, China.
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Figure 9. Comparison of Landsat TM/ETM+ images, saturated NTL, VANUI, HSI, and NUACI for
buffer areas: (a) Dongguan; (b) Zhuhai; (c) Guangzhou; (d) Shenzhen; and (e) Huizhou.
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Table 2. Comparison of the average values within different buffer areas.

0.5 km 1km 1.5 km

OLS HSI  VANUI NUACI OLS HSI  VANUI NUACI OLS HSI  VANUI NUACI
Foshan 0.5326 1.4353 0.3640 0.2669 0.4771 1.2940 0.3236 0.2297 0.4424 1.2120 0.2987 0.2087
Guangzhou 0.4042 0.9953 0.2472 0.1364 0.3442 0.8680 0.2069 0.1037 0.3101 0.8082 0.1857 0.0886
Huizhou 02257 05773 0.1220 0.0431 0.1816 0.5108 0.0957 0.0290 0.1541 0.4766 0.0804 0.0223
Dongguan 0.8232 1.9550 0.5233 0.3224 0.7883 1.8401 0.4934 0.2799 0.7597 1.7724 0.4730 0.2566
Shenzhen  0.7572 1.9056 0.4385 0.1823 0.7064 2.0489 0.4104 0.1452 0.6696 2.2156 0.3977 0.1294
Zhongshan 0.6499 1.3683 0.3945 0.2301 0.6060 1.2739 0.3651 0.2042 0.5767 1.2167 0.3460 0.1889
Zhuhai 0.3360 0.9272 0.2052 0.0870 0.3030 0.9436 0.1903 0.0742 0.2777 0.9643 0.1791 0.0659

2 km 2.5 km 5 km

OLS HSI VANUI NUACI OLS HSI VANUI NUACI OLS HSI  VANUI NUACI
Foshan 04229 1.1671 0.2846 0.1977 0.4083 1.1315 0.2739 0.1894 0.3571 1.0127 0.2371 0.1610
Guangzhou 0.2865 0.7673 0.1713 0.0799 0.2693 0.7353 0.1606 0.0743 0.2169 0.6367 0.1278 0.0578
Huizhou  0.1360 0.4563 0.0707 0.0188 0.1220 0.4408 0.0633 0.0163 0.0886 0.4063 0.0457 0.0109
Dongguan 0.7360 1.7257 0.4578 0.2423 0.7154 1.6886 0.4453 0.2321 0.6624 1.5885 0.4136 0.2091
Shenzhen  0.6427 23297 0.3894 0.1166 0.6242 2.4109 0.3857 0.1083 0.5580 2.3948 0.3629 0.0877
Zhongshan 0.5543 1.1837 0.3326 0.1792 0.5362 1.1639 0.3224 0.1722 0.4904 1.1131 0.2958 0.1521
Zhuhai 0.2548 0.9892 0.1681 0.0586 0.2360 1.0119 0.1586 0.0532 0.1669 1.0565 0.1175 0.0333

City

City

Additionally, urban indices such as HSI and VANUI have been directly applied to extract the
extent of urban areas by using the threshold segmentation method. The accuracy of urban land
extraction can reflect the efficiency on reducing the blooming effect. In this paper, we extracted
urban areas using the proposed NUACI We selected a total of eleven cities as samples. Urban
areas obtained from normalized DMSP-OLS, HSI, and VANUI images were further evaluated to
validate the efficiency of NUACI in eliminating the blooming effect. In addition, urban land extracted
from the MODIS land-use products with a resolution of 500 m, which were generated using SVM
methods [2], were also downloaded for comparison purposes. The total area of urban lands was
derived from Landsat TM/ETM+ images using the MLC method and used as actual reference data.
Corresponding equal areas of urban land for each sample city were retrieved from DMSP-OLS NTL
data, MODIS land-use data, HSI image, VANUI image, and NUACI image, respectively. Quantitative
indices including Kappa coefficient and overall accuracy were calculated by means of point-to-point
comparison. The results were applied to measure the performance of deriving urban areas with these
different combinations.

Figures 10-12 show the spatial distribution of classification accuracy, commission errors, and
omission errors on urban areas derived from the different images from 2000, 2005, and 2010. All the
results derived from NUACI exhibit lower commission and omission errors in all the sample areas.
The spatial patterns are generally similar to those derived from MODIS land-use data. Within the
time variation, the spatial patterns of urban lands obtained with NUACI method for the selected
cities are more rational than those from MODIS land-use data. Higher commission errors (in green)
generally presented in the urban areas extracted from DMSP-OLS NTL because of the blooming effect
on the coastal area, rivers, vegetation covered lands, barren lands and water bodies. The results
derived from HSI and VANUI can reduce the blooming effect on vegetation covered areas, which also
reduces commission errors on vegetation covered lands. In addition, the blooming effect on coastal
areas, rivers and large-scale water bodies are further efficiently reduced by using NUACI, although
a few commission errors were distributed along small-scale rivers. The densities of omission pixels
also decreased in the extracted urban areas when using the NUACI method. In addition, results
derived from MODIS land-use data presented higher omission errors than those from NUACI in
regions with low urban land densities. As shown in Tables 3-5 almost all the cities show the highest
Kappa coefficients and overall accuracy of urban areas when extracted from NUACI compared with
those from DMSP-OLS, HSI, VANUI, and the MODIS data.
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Figure 10. Comparison of the results of extracting urban lands by the Threshold Segmentation Method
in the year 2000: (a) Guangzhou; (b) Shanghai; (c) Shenzhen; and (d) Hangzhou.
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Figure 11. Comparison of the results of extracting urban lands by the Threshold Segmentation Method
in the year 2005: (a) Guangzhou; (b) Shanghai; (c) Shenzhen; and (d) Hangzhou.
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Figure 12. Comparison of the results of extracting urban lands by the Threshold Segmentation Method
in the year 2010: (a) Guangzhou; (b) Shanghai; (c) Shenzhen; and (d) Hangzhou.

Table 3. Kappa and overall accuracy of extracting urban land in 2000.

Urban Kappa Overall Accuracy
Name  Area MODIS MODIS
(KM2) DMSP HSI VANUI 500 m NUACI DMSP HSI VANUI 500 m NUACI

Beijing 1047  0.5550 0.6329 0.6224 0.5567 0.6393 0.7795 0.8181 0.8129 0.7817 0.8213
Shanghai 760 0.5432 05376 0.4496 05549 0.6279 0.7720 0.7692 0.7253 0.7801 0.8143
Guangzhou 546 04935 0.4667 0378 0.4459 04916 0.8013 0.7851 0.7384 0.7517 0.8023
Shenzhen 606 04404 04763 02946 0.5245 0.5931 0.7367 0.7682 0.6709 0.7966 0.8344
Wuhan 323 0.5078 0.5189 03564 0.6202 0.6009 0.8383 0.8419 0.7488 0.8636 0.8689
Nanjing 257 0.4660 0.4778 03923 0.4369 0.5566 0.7396 0.7454 0.7037 0.7399 0.7838
Chongqing 204 0.5417 05701 0.5193 0.5188 0.5739 0.8396 0.8495 0.8318 0.8262 0.8508
Dalian 281 05712 0.4651 0.0081 0.6293 0.6939 0.8858 0.8491 0.4029 0.8986 0.9186
Hangzhou 174 0.3606 03728 0.3587 0.5104 0.4548 0.7427 0.7481 0.7423 0.8044 0.7808
Changsha 129 04229 04369 03782 04677 04398 0.7714 0.7769 0.7537 0.7786 0.7781
Xiamen 107 0.2808 0.1655 —0.0090 0.3012 0.4070 0.8370 0.6967 0.3913 0.7669 0.8660
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Table 4. Kappa and overall accuracy of extracting urban land in 2005.

Urban Kappa Overall Accuracy
Name  Area MODIS MODIS
(km?2) DMSP HSI VANUI 500 m NUACI DMSP HSI VANUI 500 m NUACI

Beijing 1236 0.5610 0.5989 0.5994 0.5020 0.6058 0.7993 0.8168 0.8168 0.7625 0.8198
Shanghai 882 04816 0.4564 0.5103 0.5909 0.6031 0.7523 0.7399 0.7657 0.8080 0.8101
Guangzhou 799 04566 05134 05244 04934 05420 0.7421 0.7691 0.7743 0.7593 0.7828
Shenzhen 813 04150 04276 0.4841 04694 05979 0.7238 0.7300 0.7566 0.7559 0.8103
Wuhan 417 0.5030 0.5107 0.5271 0.5991 0.5791 0.8052 0.8083 0.8147 0.8444 0.8351
Nanjing 337 0.4501 0.4192 04532 0.2861 0.5001 0.7282 0.7130 0.7298 0.6232  0.7529
Chongqing 250 04817 0.5395 0.5342 0.4940 0.5609 0.7921 0.8151 0.8132 0.8042 0.8238
Dalian 296 05694 0.3849 0.5095 0.6290 0.6534 0.8804 0.8293 0.8639 0.8964 0.9039
Hangzhou 238 0.3369 0.3915 04003 0.4665 04903 0.6871 0.7127 0.7169 0.7618 0.75%4
Changsha 170 04165 0.4406 0.4410 04317 04570 0.7318 0.7428 0.7430 0.7458 0.7503
Xiamen 166 0.3261 0.0188 0.1469 0.4007 04841 0.7835 0.6851 0.7260 0.7810 0.8345

Table 5. Kappa and overall accuracy of extracting urban land in 2010.

Urban Kappa Overall Accuracy
Name  Area MODIS MODIS
(km2) DMSP HSI VANUI 500 m NUACI DMSP HSI VANUI 500 m NUACI

Beijing 1675 04718 04587 0.3900 0.1944 04861 0.8852 0.8824 0.8674 0.6448 0.8717
Shanghai 1017  0.4460 0.3454 0.2856 0.5448 0.5836 0.7946 0.7232 0.6980 0.7989 0.8241
Guangzhou 925 04530 0.4140 0.2879 04741 04820 0.7296 0.7103 0.6479 0.7432 (.7438
Shenzhen 969 04225 04319 0.2888 0.4690 0.6584 0.7102 0.7183 0.6473 0.7427 0.8306
Wuhan 581 0.4454 0.3918 0.2632 0.5454 0.4976 0.7407 0.7157 0.6468 0.8006 0.7651
Nanjing 407 0.3255 0.4240 0.3669 0.1918 0.5651 0.7011 0.7448 0.7195 0.5273 0.8073
Chonggqing 335 04649 0.5314 05450 0.4354 05560 0.7501 0.7811 0.7875 0.7548 0.7926
Dalian 368 0.6169 0.4505 0.0366 0.6203 0.6914 0.8658 0.7843 0.4127 0.8837 0.8987
Hangzhou 256 0.3362 0.3904 03874 0.4446 05061 0.6778 0.7048 0.7033 0.7446 0.7608
Changsha 263 04335 0.4430 04026 03281 04885 0.7202 0.7250 0.7049 0.6511 0.7474
Xiamen 231 0.3015 0.0730 -0.0636 0.4348 0.5964 0.7182 0.5220 0.3787 0.7735 (0.8373

5.2. Estimation of ISA with NUACI

The quantitative and visual comparison validated incorporating EVI and NDWI to efficiently
reduce the blooming effect and saturation limitation. NUACT has the ability to retrieve accurate urban
information using the coarse resolution NTL data. In actuality, mapping the national urban fraction
is more attractive and has increased interest in using the coarse resolution images. ISA has been
considered as an important indicator for measuring the degree of urbanization. Numerous studies
have shown that NTL data were positively correlated with ISA data [14,21,39]. A regression model
was thus established with the NUACI for estimating the density of ISA for the whole of China. In the
linear regression model, the aggregated ISA data derived from the retrieved thirty scenes of Landsat
TM/ETM+ classification results were used as reference data (dependent variable), while NUACI was
used as a single independent variable. ISA extracted from regression models based on normalized
DMSP-OLS, VANUI and HSI were used in the comparison to evaluate the ability of NUACI to extract
urban fractions. Correlation coefficients between the estimated ISA and the reference data were used
to examine the performance of the regression models. In addition, the root-mean square error (RMSE),
which is a quadratic scoring rule available to measure the average magnitude of the error, was used
to perform an accuracy assessment. RMSE can be calculated as follows:

(pi — t:)? 4)

M=

RMSE = | (1/N)
i=1
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where N is the number of samples, and p; and ¢; are the measured and estimated values, respectively.

Five thousand sample plots were randomly selected from the reference data. From those,
3000 samples were used as the training data to establish regression models corresponding to
normalized DMSP-OLS, NUACI, VANUI and HSI, respectively. The remaining 2000 samples were
used to calculate quantitative indices including the coefficient of determination (R?), the correlation
coefficient (R) and RMSE for validating the regression models. The estimation and validation
were performed using Matlab, a programming language developed by MathWorks [40]. Table 6
lists the regression models and the calculated evaluation indices. It shows that the R? value of
regression models based on DMSP-OLS, HSI, VANUI, and NUACI are 0.4459, 0.6888, 0.7822, and
0.8079, respectively. The regression models using VANUI or NUACI as the independent variable
provide comparatively higher R? values than those based on normalized DMSP-OLS or HSI. The
NUACI-based regression model has the highest R? value of 0.8079. This result implies that NUACI
could be the most suitable method for estimating ISA. In contrast, the DMSP-OLS-based regression
model has the lowest R? value of 0.4459. The results for correlation coefficients (R) were similar
to the R? values. The NUACI-based regression model has the highest R value (0.8908), while the
DMSP-OLS, HSI and VANUI based regression models had R values of 0.6680, 0.8241 and 0.8695,
respectively. This implies that the NUACI-based regression model has the best performance for
testing samples. Moreover, the RMSE of the NUACI-based regression model shows the lowest value
of 0.1176. The scatterplots (Figure 13) generated using the estimations and the reference data also
demonstrate that there is higher correlation between ISA and NUACI or VANUI than between ISA
and other urban indices. In addition, the three regression models other than the NUACI model are
inclined to overestimate the fraction values for some pixels that have zero value (horizontal axis).
This indicates that the NUACI-based regression model can successfully reduce the blooming effect
and achieve better estimation accuracy of ISA than other models.

Table 6. Regression models based on different variables for estimating ISA.

Variable Used Regression Model (y = ax + b) R? R RMSE
DMSP ISA =2.589DMSP — 0.159 0.4459 0.6680 0.1667
HSI ISA = 0.669HSI — 0.825 0.6888 0.8241 0.1541
VANUI ISA =3.222VANUI — 1.307 0.7822 0.8695 0.1458
NUACI ISA =1.701INUACI — 0.261 0.8079 0.8908 0.1176

According to the comparison above, NUACI can perform efficiently for retrieving the ISA
distribution in the sample area. Therefore, the NUACI-based regression models were applied to
the estimation of ISA in 2000, 2005 and 2010 for the whole of China. As shown in Table 7, there are
some variations in the parameters of regression models for different years. The regression model in
2005 has the highest estimation accuracy. Overall, a large proportion of ISA are distributed in the
eastern regions, especially in the Pearl River Delta, Yangtze River Delta and Beijing-Tianjin-Tangshan
metropolitan areas as shown in Figure 14. The ISA growth distributions from 2000 to 2010
are shown in Figure 15, which illustrates that the Pearl River Delta, Yangtze River Delta and
Beijing-Tianjin-Tangshan metropolitan areas are the three major regions with high ISA growth rates.
In particular, the highest ISA expansion rates occur in the Yangtze River Delta. Figure 15 also
demonstrates that medium and small cities surrounding megacities have rapid ISA growth rates
because of the radiation effect.
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Figure 13. Comparison of the scatterplots between the estimated ISA and the reference data.

Table 7. Regression models for estimating ISA based on NUACI in 2000, 2005 and 2010.

Year

Regression Model (y = ax + b) R?

R

RMSE

2000
2005
2010

ISA =1.750*NUACI — 0.430 0.7914
ISA =1.701*NUACI — 0.261 0.8079
ISA =1.669*NUACI — 0.121 0.7834

0.8413
0.8908
0.7382

0.1400
0.1176
0.1393
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Figure 14. Estimated ISA of the three metropolitan areas in the years 2000, 2005 and 2010 using the
NUACI-based regression model: (a—c) ISA estimated for the Beijing-Tianjin-Tangshan metropolitan
areas in 2000, 2005, and 2010; (d-f) ISA estimated for the Yangtze River Delta in 2000, 2005, and 2010;
and (g—i) ISA estimated for the Pearl River Delta in 2000, 2005, and 2010.
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Figure 15. The growth pattern of ISA from 2000 to 2010 in China.

6. Conclusions

Variation in urban areas at large scales has been regarded as a major interface between
socio-economic and environmental processes. Gathering accurate and timely information about
urban dynamics at national and global scales is especially important for discussing environmental
and ecological issues. This paper proposed a new index called NUACI for depicting urban
characteristics. It is calculated by integrating DMSP-OLS, MODIS EVI, and NDWI. EVI and
NDWTI were incorporated into the DMSP-OLS data to extract urban dynamics because of their
complementary characteristics among different land covers. DMSP-OLS, VANUI, HSI and NUACI
were carried out by means of not only latitudinal transects sampling but also typical cities sampling
analysis. The results indicated that NUACI yields the highest performance for reducing pixel
saturation and eliminating the blooming effect. Accurate urban information with the highest Kappa
coefficient values and best overall accuracy can also be retrieved from the NUACI images by selecting
the same sample points across different years.

The NUACI-based regression model was then established to map ISA using the urban fraction
derived from TM/ETM+ as reference data. The validation indicated that the NUACI-based regression
model has the highest R? value (0.8079), the highest R value (0.8908), and the lowest RMSE value
(0.1176). The scatterplots generated with the estimations and the reference data also demonstrated
that there is a higher correlation between ISA and NUACI than between ISA and other urban indices.
Although there are some variations in the parameters of regression models for different years, the
NUACI-based regression models in 2000, 2005, and 2010 also presented higher values for R?> and R as
well as lower values for RMSE. The ISA results extracted from the NUACI-based regression models
indicate that a large proportion of ISA are distributed in the eastern regions, especially in the Pearl
River Delta, the Yangtze River Delta, and the Beijing-Tianjin-Tangshan metropolitan areas. The three
metropolitan areas show the highest ISA expansion rates during the period from 2000 to 2010.
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In summary, the NUACI index proposed in this paper, combining information from multi-source
remotely sensed data, can obtain more detailed urban characteristics than single source data can do
individually. Our assessments confirm that NUACI has the ability to reduce pixel saturation of NTL,
eliminate the blooming effect and provide a more accurate ISA estimation. The NUACI index is
easily interpreted and is simple to implement for mapping national urban fractions from only a few
samples. Furthermore, the DMSP-OLS and MODIS data used in NUACI can be freely downloaded
at the global scale, thus this index is capable of mapping ISA for any large area with limited effort
and at low cost in a reasonable amount of time. Furthermore, NPP VIIRS images with newer-version
NTL data, with a higher spatial resolution and a wider radiometric detection range will soon become
an even more attractive data source for mapping urban areas. We expect that the proposed NUACI
will be implemented with NPP VIIRS data to retrieve accurate and timely urban information of even
higher resolution at the national and global scales.

We have published the ISA results for China for the years 2000, 2005 and 2010 on the Internet [41],
which are available for download and free to use.
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