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Abstract: The sensitivity of Earth’s wetlands to observed shifts in global precipitation and
temperature patterns and their ability to produce large quantities of methane gas are key global
change questions. We present a microwave satellite-based approach for mapping fractional
surface water (FW) globally at 25-km resolution. The approach employs a land cover-supported,
atmospherically-corrected dynamic mixture model applied to 20+ years (1992–2013) of combined,
daily, passive/active microwave remote sensing data. The resulting product, known as Surface
WAter Microwave Product Series (SWAMPS), shows strong microwave sensitivity to sub-grid scale
open water and inundated wetlands comprising open plant canopies. SWAMPS’ FW compares
favorably (R2 = 91%–94%) with higher-resolution, global-scale maps of open water from MODIS and
SRTM-MOD44W. Correspondence of SWAMPS with open water and wetland products from satellite
SAR in Alaska and the Amazon deteriorates when exposed wetlands or inundated forests captured
by the SAR products were added to the open water fraction reflecting SWAMPS’ inability to detect
water underneath the soil surface or beneath closed forest canopies. Except for a brief period of
drying during the first 4 years of observation, the inundation extent for the global domain excluding
the coast was largely stable. Regionally, inundation in North America is advancing while inundation
is on the retreat in Tropical Africa and North Eurasia. SWAMPS provides a consistent and long-term
global record of daily FW dynamics, with documented accuracies suitable for hydrologic assessment
and global change-related investigations.
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1. Introduction

The sensitivity of Earth’s natural wetlands to changes in precipitation and temperature patterns
and their role as a significant source of atmospheric methane (CH4)—an important greenhouse
gas—are key climate change questions [1]. Unlike weather station data, from which global
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precipitation and temperature trends can be inferred, global CH4 emissions are typically estimated via
process-based models calibrated to individual wetland sites [2–6]. In this approach, CH4 emissions
from wetland sites are extrapolated via spatially explicit maps of global wetland distribution,
combining static and more recently dynamic inundation maps with hydrological and biogeochemical
process features thought to be relevant for methanogenesis [7–19]. Top-down approaches, such as
estimation of atmospheric CH4 using satellite measurements and inverse models [20–23] are useful
tools in constraining ground-based emission inventories, particularly over tropical wetlands which
exhibit higher CH4 emissions than those estimated from forward calculations [24–26]. This emission
discrepancy between model approaches may be explained by both a lack of field data available from
tropical wetlands and an incomplete representation of the hydrodynamics of shallow tropical wetland
complexes [27]. Development and application of spatially comprehensive and temporally consistent
maps of global inundation dynamics as model inputs or optimization targets in global methane
models are thus crucial for improving our understanding of the role of wetland emissions in the
climate system [16].

Several different remote sensing-based approaches haven been taken towards regional
to global-scale satellite monitoring of inundation: passive microwave, active microwave and
hybrid approaches. Coarse-resolution (25-km) passive and active microwave (MW) data
from satellite instruments (e.g., Advanced Microwave Scanning Radiometer-EOS (AMSR-E),
SeaWinds-on-QuikSCAT) are well suited for the global monitoring of inundation patterns because
they are sensitive to the distribution of liquid water in the landscape and cover large areas with daily
repeat periods at high latitudes. Because MW instruments can operate day and night and are not
limited by cloud cover, they provide the unique capability for acquiring temporally consistent and
continuous records of inundation dynamics, supporting accurate inference of surface water dynamics
and related fresh water storage changes. Differences observed between vertically and horizontally
polarized brightness temperatures (Tb) by passive MW instruments have long been shown to be
effective in measuring large-scale inundation patterns across densely vegetated landscapes [28–36].
Common to this approach is the assumption that, across densely vegetated forests, changes in soil
moisture and vegetation biomass and structure and associated variations in emissivity caused by
both are negligible relative to the influence of inundation.

Radar backscatter (σ0) from active MW instruments is also sensitive to inundation conditions
and has been used regionally to delineate floods and monitor inundation extent [37–41]. Its higher
sensitivity to vegetation structure, relative to Tb, provides a unique capability to characterize biomass
variations associated with seasonal plant dynamics [42–48]. As most major global wetland complexes
consist of inundated surfaces that are often vegetated, methods that combine σ0 and Tb provided
by coarse-resolution active and passive MW instruments would be ideal for the characterization of
surface water dynamics in vegetated ecosystems subject to seasonal plant dynamics.

Hybrid approaches combine the strengths of different types of sensors. For example,
high-resolution low repeat cycle data can be combined with low-resolution high repeat data to
construct an inundation product that provides both high resolution and frequent observation [49,50].
The Global Inundation Extent from Multiple-Satellites (GIEMS) product merges coarse-resolution
passive and active MW sensors with optical remote sensing data for mapping inundation globally
regardless of the environment [51–54]. GIEMS corresponds with Synthetic Aperture Radar (SAR)
maps of inundation extent in the Amazon basin [53] and has been subsequently employed
in estimating surface water storage variations in large river basins [55–57]. Jones et al. [58]
determine the global surface water extent synergistically leveraging multiple frequencies from a
single dual-polarized passive MW instrument [59]. Because long records are crucial for assessing
CH4 model sensitivities to climate change [19], inundation products from satellites of limited
lifespan [54,58] will therefore have limited applicability.

Despite its strength, GIEMS has displayed some limitations. First, comparisons with the
International Geosphere-Biosphere Programme (IGBP) based MODIS classification of permanent
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open water over central Russia and western Canada showed that GIEMS missed many small water
features (i.e., fractional inundation <10%) in densely forested regions whereas in other regions
including the Amazon Basin there was a tendency for GIEMS to overestimate higher inundation
fractions [53]. Second, comparisons with SAR-based classifications of inundation in the West
Siberian Lowland (WSL) suggested that GIEMS underestimated (overestimated) inundation in
forested (non-forested) areas [16]. Third, in the WSL, Bohn et al. [19] showed large discrepancies
between inundation from GIEMS and the active/passive MW product of Schroeder et al. [60].
Possible explanations for the mismatch between the two inundation products could be GIEMS’ large
radiometer footprint and the retrieval algorithm involving the use of optical satellite data [51,53,54].
Finally, the use of the C-band European Remote Sensing (ERS) scatterometer in the estimation of
surface water fractions and the prospect of introducing a record discontinuity using the shorter
wavelength Ku-band QuikSCAT (QSCAT) as a substitute for the C-band ERS currently limits GIEMS’
time series from 1993 to 2000, although efforts have been made to GIEMS’ extension using monthly
climatologies of the ERS and AVHRR [54]. Given the uncertainty regarding the validity of GIEMS’
surface water fractions, the omission of small water bodies and GIEMS’ relatively short time series,
we have developed an alternative long-term record of coarse-resolution fractional open water (FW)
and inundated wetlands covering 20+ years (1992–2013).

The primary goal of this study was to develop an alternative FW product with retrieval
enhancements in at least three areas with respect to GIEMS. These areas were: (1) accurate and
spatially consistent FW; (2) improved low-range FW sensitivity; and (3) extension of the FW time
series beyond the C-band ERS record. We asked whether the inclusion of the Ku-band QSCAT, as
a means to extend the time series beyond that of the C-band ERS, will lead to a discontinuity in
the data record. To accomplish these tasks, we combined the data streams from the Special Sensor
Microwave Imager (SSM/I), Special Sensor Microwave Imager/Sounder (SSMI/S)—the passive MW
instruments—with those from the ERS, QSCAT and the Advanced Scatterometer (ASCAT)—the
active MW instruments—which together cover 20+ years of continuous, global-scale and daily MW
observations. The resulting FW retrievals represent 25-km equal area grid cell fractions of open water.
We define FW to be inclusive of all water bodies that are unmasked by vegetation. The passive MW
sensors provide upwelling Tb at ě19 GHz which limits penetration of overlying vegetation and litter
layers [59,61–63]. The FW signal therefore originates from the water surface within open areas and
under low density vegetation [64].

We developed a stratified, fully dynamic and calibrated mixture model to aid in the detection
and quantification of FW. We evaluated both spatial and temporal accuracy of FW, including seasonal
and interannual variability. We examined the 20+ year FW trend and determined the sensitivity of
the trend to snow cover screenings. We identified the dominant sources of retrieval error and the land
cover conditions that may have caused them. We determined the fundamental physical limitations
to FW detection and provided the user with a qualitative map of expected FW accuracy. Finally,
we made recommendations as to which satellite observations and data products might be helpful
to improve upon the accuracy and sensitivity of our approach. The resulting dataset provides an
accurate, consistent and comprehensive global-scale, multi-year data set of daily FW and is suitable
for hydrological assessment and global change-related monitoring of FW. This data record together
with supporting documentation known as Surface WAter Microwave Product Series (SWAMPS) is to
be archived and maintained at the Alaska Satellite Facility Distributed Active Archive Center (ASF
DAAC) and available to the world-wide science community.

2. Data Processing and Analysis

2.1. Passive and Active Microwave Satellite Data Record Construction

Tb from SSM/I and SSMI/S and σ0 from ERS [65], QSCAT [66] and ASCAT [67] were chosen
to support the generation of SWAMPS over a 20+ year study period (1992–2013). We used the
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multi-frequency, dual-polarized SSM/I and SSMI/S Level-3 Tb observations from the National Snow
& Ice Data Center [68], binned as global and northern hemisphere Equal-Area Scalable Earth (EASE)
grids at 25-km spatial resolution [69]. The gridding procedures for these data follow the methods
described in Armstrong et al. [68] and include the Backus-Gilbert (v1) and Inverse-Distance-Squared
(v2) interpolation for respective SSM/I and SSMI/S instrument periods. Observations which use
v1-gridding began in 1987 and ended in 2009; v2 covered the remainder of the study period including
a 2+ year overlap period with v1.

Overlap was utilized to reduce Tb cross-sensor differences [68]. To do so, we constructed
linear models from two years of overlapping, high-quality v1 and v2 records, separately for each
frequency, polarization and overpass, appropriate to each platform, following previously developed
methods [70]. High-quality Tb records were obtained from grid cells at least two cells away
from the nearest water body and dominated (>80%) by a single forest cover as defined by the
high-resolution (1-km) MODIS IGBP [71] land cover (LC) product (MODIS LC) binned previously
to the EASE-grids [72]. v1 and v2 records that were more than 30 min apart or covered tropical forest
were excluded. This approach allowed for maximizing Tb seasonal variability while minimizing Tb
differences resulting from differences in acquisition time and method of interpolation.

Tb observations over land are largely influenced by surface temperature variations [59,62,70].
To support the derivation of FW, this study employed the Microwave Polarization Difference Index
(MPDI) from the 19 GHz band, defined as:

MPDI “ pTbpVq ´ TbpHqq{p0.5pTbpVq ` TbpHqqq (1)

where Tb(v) and Tb(h) are the brightness temperatures at respective vertical (v) and horizontal (h)
polarization. We employed only morning overpasses, to capture surface conditions as close to
isothermal as practical. Partitioning of the polarization difference over its sum is useful because it
cancels out the surface temperature component of Tb, leaving a quantity that is largely dependent
on the contributions from open water and vegetation [61,73]. Generally, the MPDI increases with the
presence of open water bodies and decreases with increasing vegetation density.

To account for the depolarization effect that vegetation has on total MPDI and to maximize
sensor sensitivity to the presence of vegetation structure and biomass dynamics in inundated areas,
concurrent, high-quality σ0 observations from the ERS, QSCAT and ASCAT were acquired to solve
for FW on a daily basis. We employed Level-2, VV-polarized C-band ERS, Ku-band QSCAT and
C-band ASCAT and gridded these data to the EASE-grids of the Tb record using drop-in-the-bucket
averaging (i.e., samples that fell within a grid cell were averaged together) with no swath averaging.
σ0 coverage began in 1992 and is ongoing. The ERS and QSCAT records began in 1992 and 1999, and
ended in 2000 and 2009, respectively. ASCAT covered the remainder of the study period including
1+ year of overlap with QSCAT.

A fundamental difficulty with utilizing the ERS and ASCAT for the continuous monitoring of
inundated vegetation structure and biomass dynamics is additional variability in the signal caused by
changes in the angle of incidence [42,43,74,75]. Following from prior results of Long and Hardin [76],
a method for deriving the normalized σ0 coefficients at a reference incidence angle of 54˝, equal to
that of the QSCAT, was developed. The method is based on a simple forward model of the form:

σ0pθq “ α`βpθ´ 54q (2)

where σ0(θ) is backscatter acquired at incidence angle θ, α is the incidence angle corrected σ0 in dB
normalized to 54˝ and β is a slope factor approximating the change in σ0 with incidence angle (θ) in
dB/˝. We combined a 56-day moving window approach with grid cell-wise linear regression analysis
to compute time-averaged, daily α and β values by combining σ0 measurements from each swath,
overpass and all antennae regardless of look angle for all ASCAT data collected between 11 November
2008 and 31 March 2013. Time-window averaged σ0 values were computed for four 10 degree wide
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incidence angle bins and aggregated to the EASE-grids using drop-in-the-bucket averaging. Since
σ0 is a measure on a logarithmic scale, it must be anti-logged prior to calculating arithmetic means.
The slope factor β for each day was obtained from binned σ0 via least-squares linear fits and the
resulting slope image from the regression analysis of all grid cells was kept. Likewise, we developed
a daily ASCAT climatology of the slope by averaging σ0 from all years (2009–2012). The resulting
time-averaged slope images were input to equation (2) and the VV-polarized and incidence angle
normalized backscatter α at 54˝ for each day, swath and satellite overpass between 11th November
2008 and 31st March 2013 was computed and aggregated to the EASE-grids using drop-in-the-bucket
averaging. Likewise, images of the slope obtained from averaging 4 years of ASCAT data were
input to equation (2) and the VV-polarized and incidence angle corrected ERS backscatter α at 54˝

for each day, swath and overpass between 1st January 1992 and 31st December 2000 was computed
and aggregated to the EASE-grids.

A radiometric slope correction was performed prior to the incidence angle correction to reduce
the effects of incidence angle and illuminated target area on total σ0, following from the approach of
Sun et al. [77]. First, for each radar pulse within each EASE-grid cell, we calculated local incidence
angle θ relative to slope and aspect provided by the Global Land One-km Base Elevation (GLOBE)
Digital Elevation Model (DEM) of Knowles [78] binned previously to the EASE-grids as:

cospθq “ sinpαDEMqsinpαSCATqcospβSCAT ´βDEMq ` cospαDEMqcospαSCATq (3)

where θ is the grid-based incidence angle, αDEM is the slope angle provided by GLOBE, αSCAT is the
incidence angle of the ERS, QSCAT and ASCAT scatterometers (SCAT), βDEM is the aspect obtained
from GLOBE and βSCAT is the momentary look angle of the SCAT. Second, we corrected σ0 by relating
the incidence angle of the SCAT to the local incidence angle obtained from GLOBE in Equation (3) by:

σ0
DEM “ σ0

SCATsinpθq{sinpαSCATq (4)

where σ0
DEM is the terrain-corrected σ0 in dB, σ0

SCAT is σ0 provided by the SCAT, θ is the incidence
angle obtained from Equation (3) and αSCAT is the local incidence angle of the SCAT.

The suitability of the incidence angle and radiometric slope correction for the purpose of
extending the FW record beyond the QSCAT period was evaluated next. To do so, we examined
the temporal correspondence between the constant incidence angle QSCAT and the incidence angle
corrected ASCAT during 1 year of overlap (November 2008–November 2009). We chose 12 vegetated
and homogenous (80% classified as a single LC) evaluation sites spanning the range of MODIS
LC types. Of these, six sites were identified as having seasonally frozen ground and snow cover
conditions, following previously developed screening methods [60]. To reduce the effects of weather,
we aggregated daily σ0 into 28-day moving composites including monthly means. Metrics of
temporal correspondence were reported separately for screened (i.e., seasonal frozen ground and
snow cover was removed) and unscreened time series as well as for each satellite overpass to
determine the orbit of maximum correspondence. Investigations on the site level were supported
by grid cell-wise global calculations of Pearson’s correlation coefficients (R), excluding grid cells with
ě50% water bodies, snow/ice and urban/built-up as identified by the MODIS LC. To aid in the
interpretation of spatial R patterns and to assess whether the patterns determined relate to LC and
associated canopy structural differences, we stratified R based on grid cells dominated (>80%) by a
single MODIS LC.

2.2. Definition of the Global SWAMPS Domains

We limited the spatial extent over which SWAMPS provides daily FW to the global land surface
with <100% water bodies, snow/ice and urban/built-up as defined by the MODIS LC [72]. This
domain includes inland and coastal grid cells with FW contributions from both ocean and inland
water bodies. Additionally, we screened this domain for grid cells with ě50% water bodies to define
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FW in SWAMPS without costal contributions (i.e., SWAMPS excl. coast). This additional screening
eliminates a large proportion of ocean, non-ocean (e.g., large lakes) and coastal water contributions
(e.g., large estuaries, river deltas and other coastal wetlands) from the SWAMPS domain and is
consistent with the terrestrial focus of the global land parameter database [58]. Seasonal snow
cover and precipitating clouds over snow free surfaces can compromise FW. Screening for these
conditions is thus crucial for providing accurate FW. We adopted the decision tree of Grody and
Basist [79] applied to daily (morning) Tb records to remove grid cells contaminated by snow and
frozen ground. Wet snowpacks common during winter warm periods cannot be identified with
this approach [80] and thus, if not removed from the domain, introduce erroneously high FW due
to being misinterpreted as wide-spread landscape inundation. To account for this effect, we first
adopted the method of Chang et al. [81] to estimate daily snow water equivalent (SWE) over grid cells
identified by the decision tree, and second applied a 28-day moving window to SWE to conservatively
remove previously unidentified grid cells of, e.g., wet, and snow. We employed the decision tree of
Ferraro [82] applied to the Tb record to remove grid cells contaminated by precipitating clouds.

2.3. Data Record Development, Approach and Assumptions

Derivation of the SWAMPS product employs a LC-supported dynamic mixture model approach
using time series satellite remote sensing radar σ0 and radiometric Tb data from a variety of sensors
and wavelengths. The approach is to detect landscape inundation by identifying the temporal
response of σ0 or Tb to changes in the dielectric constant of the land surface that occurs as the soil
surface transitions between non-inundated and inundated conditions. The dynamic mixture model
approach assumes that the large change in dielectric constant occurring between non-inundated and
inundated surface conditions dominates the corresponding σ0 and Tb temporal dynamics across the
non-frozen seasons, rather than other sources of temporal variability such as changes in canopy
structure and biomass, atmospheric moisture variability or large precipitation events. Whether
this assumption is valid for most land covers across the global domain will be examined in the
results section.

To support the derivation of FW across the limits of our domain, we developed and applied
a dynamic mixture model calibrated for FW detection to daily records of passive (MPDI) and
active (σ0) MW observations (Figure 1). Construction of the mixture model involved a four
step process, consisting of (1) development of a set of LC-specific models approximating seasonal
biomass dynamics (i.e., the dynamic vegetation end-member); (2) definition of a dynamic open water
end-member over land using input from the Modern-Era Retrospective Analysis for Research and
Application (MERRA) reanalysis of Rienecker et al. [83]; (3) un-mixing of the FW component given (1)
and (2) and (4) construction of a consistent, global record of daily FW dynamics across multiple years.

LC-specific predictive models were developed to aid in quantifying the dynamic vegetation
end-member. Input to the derivation of these models was a regression analysis applied separately
to data from record periods of concurrent passive (v1 and v2) MPDI and active (ERS, QSCAT and
ASCAT) σ0 MW observations over grid cells spanning dominant MODIS LC types. MODIS LC
provides a total of 17 LC classes [71,72]. Grid cells occupied by less than 50% of a single LC were
rejected, including pixels containing any amount of water bodies, permanent wetlands and snow/ice
as defined by the MODIS LC. LC classes expected to produce different MW responses when low
and high-latitude regions of the same class are compared were split. This included open shrubland,
woody savanna, savanna, grassland and barren land. To reduce the impact of weather, monthly
climatologies from snow, ice and precipitation-screened MPDI and σ0 observations were computed
prior to the regression analysis. Monthly climatologies were generated from monthly means which
were generated from daily MPDI and σ0 observations for each record period. Screening of these
data follow the methods outlined in the previous section. We used both linear and non-linear
regression models to construct an optimal set of LC-specific model predictions from these data. Model
performance was examined and those models which best fit the data were chosen. The resulting
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regression models approximate, for each LC, sub-class and record period separately, the vegetation
end-member for MPDI and σ0 regardless of the ratio of land to water within the satellites’ field
of views.
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Figure 1. Flow chart of the Surface WAter Microwave Product Series (SWAMPS) surface water
fraction retrieval scheme including the calibration of vegetation and open water end-members and
post-product quality control.

Open water bodies strongly enhance sensitivity to atmospheric moisture variability when
high-frequency (ě19 GHz) Tb observations are used for FW retrieval [84]. σ0 of calm water is
much lower than over waters roughened by wind or raindrops [85,86]. To solve for FW on a daily
grid-by-grid cell basis, an end-member for open water that accounts for the effects of atmospheric
variability on MPDI and σ0 must be defined prior to FW retrieval. We defined this end-member by
constructing regression models derived from empirical relationships between precipitation-screened
MPDI and σ0 records, and concurrent, hourly inputs of water vapor, cloud liquid water and 2 m wind
speed from MERRA over open seas. Using the reanalysis as input, the models developed approximate
the open water end-member for MPDI and σ0 on land regardless of the ratio of land to water within
the satellites’ field of views.

We now are able to combine the results from the regression analysis of vegetation dynamics
with those from the end-member calibration of open water to quantify daily FW on a grid-by-grid
cell basis within the limits of our domain. We employed a root-finding algorithm that iteratively fits
a best linear solution between the open water end-member modeled independently by MERRA, the
LC-specific vegetation end-member estimated from monthly MPDI and σ0 climatologies, and daily
input from the passive and active MW sensors, to obtain LC-specific and atmospherically corrected
daily FW relative to end-members fully covered by water and vegetation. To obtain FW within
grid cells composed of more than one MODIS LC, LC-specific FW was scaled linearly and summed
according to the fractional coverage and number of LC classes within each grid cell provided by
MODIS. We applied the following equation to obtain total water fraction FWtot on a daily grid-by-grid
cell basis:

FWtot “

N
ř

lc“1
f wlc f raclc

f ractot
(5)
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where fwlc and fraclc denote LC-specific FW obtained from linear un-mixing, scaled by the LC-specific
grid cell fraction and summed over N land cover classes, and fractot is the grid-based total LC fraction
from MODIS, excluding contributions from water bodies, permanent wetlands and snow/ice as
defined by the MODIS LC. The output of Equation (5) is the daily LC-based and atmospherically
corrected total surface water fraction FW. At present, SWAMPS is available from 1992 until
March 2013 consisting of daily FW record periods herein referred to as v1-ERS (01/1992–12/2000),
v1-QSCAT (07/1999–04/2009) and v2-ASCAT (11/2008–03/2013).

2.4. Accuracy Assessment

To facilitate accuracy assessment, the following temporal composites of daily FW were generated
first for each record period: (1) monthly mean, minimum and maximum; (2) annual mean and
average annual mean generated from (1); (3) monthly climatology generated from monthly means;
and (4) the average annual maximum and minimum generated from (3). We then use these
records to assess annual and seasonal FW extent and variability within the limits of our domain
and the following continental regions: Arctic-Boreal (>50˝N)—North America: 180˝W–0˝W and
North Eurasia: 0˝E–180˝E; Tropics (30˝S–30˝N)—Tropical America: 180˝W–25˝W, Tropical Africa:
25˝W–50˝E and Tropical Asia: 50˝E–180˝E.

The FW composites were examined for spatial accuracy using the following independent FW
products: (1) Open water (OW) bodies and permanent wetlands both from the 1-km global-scale
MODIS LC product; (2) 250-m land-water mask from MODIS and the Shuttle Radar Topography
Mission’s (SRTM) global-scale Water Body Dataset (MOD44W) [87]; (3) 100-m OW and wetlands
derived from the L-band Japanese Earth Resources Satellite (JERS) over the state of Alaska [88] and
(4) 100-m maximum OW and flooded forest vegetation (VEG) derived from the Advanced Land
Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) ScanSAR
over the Amazon basin [41]. Water bodies in (1), (2) and (3) do not distinguish ocean from non-ocean
water surfaces; (4) distinguishes between VEG, OW/flooded grasses and OW that was occasionally
detected. It also provides an ambiguous OW class; this class was not incorporated into the
comparison due to difficulty separating OW from bare ground. Maximum FW extent was generated
by updating non-inundated grid cells, if in at least one image VEG or OW could be detected.
Drop-in-the-bucket averaging was used to produce 25-km EASE-grids from the independent data.
We applied a 3 ˆ 3 cell (EASE-grid) weightless box-car filter to these data to account for the larger
footprint size (70 ˆ 45 km) of the 19 GHz SSM/I and SSMI/S Tb inputs to SWAMPS. We examined
the following measures of spatial correspondence: (1) coefficient of determination (R2) to assess the
percentage of spatial variability in the independent data explained by SWAMPS; (2) Mean Residual
Error (MRE); and (3) Root Mean Square Error (RMSE) to provide an average bias and accuracy of
SWAMPS relative to independent FW. FW from v1-ERS were not included in the comparison against
these data because processing of the ERS backscatter data was still ongoing.

We examined the temporal accuracy of SWAMPS using concurrent precipitation (P) and river
discharge (Q) records over major global river basins. Basin-averaged P was computed from the
MERRA reanalysis and Q was from either WBMplus simulations [89] or Arctic-RIMS [90] for the
station farthest downstream. We evaluated the following measures of temporal correspondence: (1)
the linear correlation coefficient (R); (2) the time-lagged (anomaly) cross-correlation coefficient (R)
at maximum absolute correlation; and (3) the corresponding time-lag of the maximum (anomaly)
correlation in months. Basin analyses were supported by pixel-wise calculations of R over South
America (P only) and within the Amazon, Orinoco and Parana River basins (Q only) to examine
lag-patterns between P, FW and Q cycles. P from MERRA was verified via P acquired from the
Tropical Rainfall Measurement Mission (TRMM) multi-satellite precipitation analysis (TMPA) [91].
Ten-day average FW records for five global wetland sites were compared against concurrent records
of daily river stage height and river Q to assess the ability of the combined AMSR-E/QSCAT record,
a prototype version of SWAMPS, to capture seasonal FW variations indicated by the hydrological
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records. Wetlands sites identified were the Ob River floodplain at Salekhard, Russia (66.53˝N,
66.60˝E) providing river stage height [90], the Everglades Nat’l Park at Shark Valley, FL, USA
(25.76˝N, 80.77˝W) providing river stage height [92], the Okavango Delta (19.10˝S, 22.55˝E) providing
river discharge from the delta mouth located approximately 120-km upstream at Mohembo River
gauging station, Botswana [93], the Kafue Flats at Banojabo, Zambia (15.68˝S, 27.58˝E) and the
Paraná Delta at Puerto Ibicuy, Argentina (33.79˝S, 59.19˝W) providing satellite estimated river
discharge [94,95]. FW variability for these sites was verified with coincident 10-day FW averages
derived from AMSR-E [58].

2.5. Trend Analysis and Trend Sensitivity to Snow Cover Screenings

Seasonally adjusted monthly FW extent anomalies from combined FW record periods were
generated within the limits of our domain and examined for linear trend by approximating the slope
of the least-square best fit-line. Trends were also examined on a grid cell-wise basis by applying linear
regression analysis to annual means from combined FW records. Trends were assessed at a minimum
95% probability level; only statistically significant trends (p < 0.05) were mapped. The resulting trend
patterns were examined for localized reports of recent changes in surface water area.

High FW often co-occurs with the presence of melting snow packs over still frozen grounds.
As a result, conservative snow screening is useful to remove erroneous FW associated with periods of
temporary snow melt. We tested the sensitivity of the annual grid cell-wise linear FW trend analysis
over the northern hemisphere to variable snow screenings using daily FW records where FW was
screened from potential wet snow contamination via (1) a 28-day long sliding mean time domain
SWE filter; (2) a 14-day long SWE filter and (3) no filter at all (0-day; only pixels identified by the
decision tree were removed). The resulting trend patterns for the 28-, 14- and 0-day snow screened
products were mapped and inspected visually for trend variations.

2.6. Quality Control Map

Global FW output from SWAMPS was assessed for FW accuracy relative to sensor retrievals,
model results and corresponding satellite-supported P measurements generated from TRMM
(supplemented by MERRA at high latitudes). We produced quality control (QC) maps from
these records describing grid cell-wise static attributes of FW accuracy within the limits of our
domain. Static QC attributes included (1) Tb and σ0 temporal coverage (COVER) excluding snow
and precipitation events; (2) topographic variability generated from GLOBE; (3) the standard error
estimates of the mixture model model predictions for each LC and (4) the plausibility of the sequence
(SEQ) of seasonal inundation and precipitation events. To facilitate the first analysis, Tb and
σ0 temporal gaps, including rain events and seasonal snow cover across the study domain and
observation period were recorded. Areas with daily satellite coverage during the snow free season
(e.g., high latitudes) and no rain events have the highest temporal coverage (COVER = 100%) while
areas with limited satellite coverage and frequent rain events (e.g., tropics) have the lowest temporal
coverage. Topographic variability was computed as the standard deviation of all elevation values
within a 3 ˆ 3 pixel large moving boxcar, with the lowest score (GLOBE = 0%) for areas with the
highest relief variability (e.g., mountain ranges). The accuracy of the model prediction for each LC
was estimated from the regression analysis of the passive and active microwave data sets. LC with
large emissivity and backscatter variability not caused by seasonal biomass dynamics (e.g., barren
land) receive the lowest LC score (LC = 0%). To facilitate the latter analysis, FW and P seasonal
cycles were examined for temporal correspondence using phase analysis. For instance, an anti-cyclic
sequence where FW decreases as P rises likely reflects modeling errors, whereas cyclic behavior tends
to indicate suitable signal un-mixing and favorable FW retrievals. The resulting QC maps were
linearly rescaled and aggregated to the final QC map using a weighted mean (50% SEQ, 25% LC, 15%
GLOBE, 7.5% Tb and 2.5% σ0 COVER). The weights were chosen subjectively with SEQ (COVER)
having the largest (smallest) expected impact on overall accuracy.
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Table 1. Relationships between Special Sensor Microwave Imager/Sounder (SSMI/S) (v2) and Special Sensor Microwave Imager (SSM/I) (v1) brightness
temperatures (K ˆ 10), during mission overlap (2007–2008), for A.M. and P.M. orbital nodes, vertical (V) and horizontal (H) polarizations, and the 19, 22, 37,
and 85/91 GHz bands. Relationships are significant at a minimum 0.01 probability level.

Orbital Node Polarization
19 GHz 22 GHz 37 GHz 85/91 GHz

[y0
(1), a(2), R2(3), RMSE(4),

MRE(5)]
[y0

(1), a(2), R2(3), RMSE(4),
MRE(5)]

[y0
(1), a(2), R2(3), RMSE(4),

MRE(5)]
[y0

(1), a(2), R2(3), RMSE(4),
MRE(5)]

AM
V ´85.3136, 1.0464, 0.9930,

38.5677, ´36.6085
´69.5971, 1.0342, 0.9953,

22.6536, ´20.2809
´40.2823, 1.0128, 0.9959,

12.7900, 6.8048
72.0668, 0.9677, 0.9890,

23.9092, 12.1443

H ´49.3111, 1.0332, 0.9857,
40.8327, ´36.9150

´33.0591, 1.0078, 0.9935,
18.9913, 14.7296

29.2438, 0.9834, 0.9882,
29.9569, 14.5423

PM
V 10.2076, 1.0068, 0.9923,

30.6220, ´28.2329
11.0493, 1.0010, 0.9944,

17.0735, ´13.6743
13.5759, 0.9894, 0.9951,

19.1385, 12.7735
116.9324, 0.9503, 0.9830,

25.8241, 13.7287

H 10.9150, 1.0081, 0.9844,
37.2778, ´32.2804

20.9808, 0.9857, 0.9924,
23.0815, 16.8249

83.1874, 0.9614, 0.9819,
33.1488, 18.3033

(1)intercept (2)slope constant (3)coefficient of determination (4)root mean square error (5)mean residual error
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3. Results

3.1. Merging the Passive and Active Microwave Satellite Records

The relationship between overlapping Tb records from the SSM/I (v1) and SSMI/S (v2) mission
were considerably strong for the successful merging of the two products (Table 1). The RMSE
difference between the 19 GHz SSM/I and SSMI/S-band employed in calculating the MPDI was
roughly 4 K (3.86 K ď RMSE ď 4.08 K), with a small negative (cold) bias (i.e., ´3.66 K ď MRE ď
3.69 K) observed for the SSMI/S relative to the SSM/I (Table 1). The observed differences in Table 1
are likely attributable to the cross-sensor calibration [68]. Linear models with the slope and intercept
constants (Table 1) were constructed to bias-correct [70] the SSMI/S 19 GHz and remaining frequency
bands employed in the screening algorithms.

Similar global patterns of overlapping σ0 records from the C-band ASCAT and the Ku-band
QSCAT show that the incidence angle and radiometric slope correction applied was sufficient to
extend the FW series beyond the QSCAT record (Figure 2).Remote Sens. 2015, 7 13 
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(ASCAT) (left) and Ku-band QuikSCAT (QSCAT) (right) during July (top row) and 
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were in most cases similar during snow-free conditions but opposite during snow and frozen ground 

cover, particularly in spring and fall (e.g., for site T, FT and DN) when the landscape transitioned from 

predominantly snow covered to snow-free conditions and vice versa. 

Figure 2. Global morning overpass radar backscatter from C-band Advanced Scatterometer (ASCAT)
(left) and Ku-band QuikSCAT (QSCAT) (right) during July (top row) and backscatter difference
between July and January of 2009 (middle row). Actual figure color is a linear interpolation of the
colors in the legend. Selected study sites and distribution of dominant vegetated land cover classes
as obtained from MODIS LC (bottom panel). All maps in geographic projection. Distance covered by
one degree of latitude is approximately 111-km.
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The two products are very similar across the global domain, except in the northern regions
during winter and summer. Across the selected comparison sites, the two products’ seasonal cycles
(Figure 3) were in most cases similar during snow-free conditions but opposite during snow and
frozen ground cover, particularly in spring and fall (e.g., for site T, FT and DN) when the landscape
transitioned from predominantly snow covered to snow-free conditions and vice versa.Remote Sens. 2015, 7 14 
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Figure 3. Daily time series from morning (A.M.) and evening (P.M.) overpasses of C-band
ASCAT and Ku-band QSCAT backscatter for 12 selected sites (Figure 2) during mission overlap
(11/2008–11/2009).

We attribute the contrasting σ0 trends in these sites to the scattering albedo of snow which
increases substantially from L- to Ku-band [96]. Likewise, differences in σ0 amplitude in sites in
the north during summer (e.g., EN, DN and DB) suggest differences in sensitivity to vegetation
water content and biomass structure that are attributable to the difference in sensing frequency. We
determined that the two products’ time series corresponded best during the evening overpass when
all dominant land cover pixels are combined and the landscape was screened for snow (Table 2;
pixel-wise correlation coefficients for the entire domain and histograms of R for dominant land covers
are provided in Figures S1 and S2). We hypothesize that reduced tissue water content in leaves and
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related deeper Ku-band canopy penetration in the afternoon (see Frolking et al. [47] for an example of
diurnal Ku-band differences in tropical forests (DB)) perhaps explained marginally improved evening
temporal correspondences, though exceptions existed (Table 2, Figures S1 and S2). The σ0 differences
observed between ASCAT and QSCAT suggest that the σ0 records cannot be merged without the
following restrictions applied prior to the generation of FW: (1) the backscatter time series was
screened from snow (2) the σ0 end-member calculation was derived separately for each instrument
period (e.g., v1-QSCAT and v2-ASCAT) and (3) only the PM overpass data was used, except for ERS
whose PM were supplemented by AM overpasses to increase overlap with the passive MW data.
Because overlap was still insufficient a 56-day moving average time domain filter was applied to the
ERS record.

Table 2. Dominant land cover, # of participating grid cells and A.M. and P.M. minimum, maximum,
mean and standard deviation Pearson’s correlation coefficients (R) between overlapping, snow
screened and time-averaged daily C-band ASCAT and Ku-band QSCAT backscatter time series data
(11/2008–11/2009). Relationships are significant at a minimum 0.01 probability level.

R

AM PM

Land Cover # Grid Cells [Min, Max, Mean, StDev] [Min, Max, Mean, StDev]

EB 16169 ´0.83, 0.98, 0.28, 0.38 ´0.86, 0.99, 0.24, 0.39
DB 224 ´0.76, 0.97, 0.11, 0.54 ´0.55, 0.96, 0.31, 0.42
EN 1705 ´0.84, 0.98, 0.70, 0.30 ´0.41, 0.99, 0.84, 0.15
DN 164 0.21, 0.97, 0.75, 0.13 0.44, 0.99, 0.81, 0.11

WS 927 ´0.50, 0.99, 0.77, 0.30 ´0.71, 0.99, 0.82, 0.21
SV 1956 0.04, 1.00, 0.95, 0.07 ´0.30, 1.00, 0.94, 0.07
GR 6669 ´0.87, 1.00, 0.78, 0.30 ´0.81, 1.00, 0.80, 0.28
CR 9522 ´1.00, 0.99, 0.83, 0.16 ´0.54, 1.00, 0.85, 0.15

FT 7 0.53, 0.95, 0.79, 0.17 0.65, 0.98, 0.88, 0.11
T 7190 ´1.00, 1.00, 0.62, 0.36 ´1.00, 1.00, 0.83, 0.22

CS 14 0.66, 0.97, 0.84, 0.09 0.47, 0.92, 0.79, 0.12
OS 11841 ´0.95, 1.00, 0.69, 0.29 ´0.92, 1.00, 0.68, 0.29

ALL 56388 ´1.00, 1.00, 0.68, 0.26 ´1.00, 1.00, 0.73, 0.21

3.2. FW Verification and Accuracy Assessment

3.2.1. Spatiotemporal Characteristics of SWAMPS and Relationship with MOD44W and MODIS Incl.
Permanent Wetlands

The average annual maximum FW (Figure 4b) compares favorably with the global distribution
of static FW from MOD44W (Figure 4a), except for large portions of the Sahara Desert, the Arabian
Peninsula and the Levant where SWAMPS’ FW is likely too high. High FW in these regions
corresponds with cretaceous outcrops of limestone deposits, e.g., in the Tuwayq Mountains south
of the city of Riyadh, Saudi-Arabia [97], whose surface emissivity is much lower than for the majority
of desert areas composed of more common minerals (e.g., quartz sand) [98]. Large differences are
also evident over parts of Southeast Asia, Eastern China and India for which SWAMPS shows much
more FW. High FW in these areas likely corresponds to the seasonal presence of inundation in rice
paddies and floodplains not depicted by the MOD44W, whose observation period for this part of the
world fell outside the monsoon season [87].
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Figure 4. Global maps of fractional water (FW): (a) MOD44W FW; (b–d) the average annual
maximum, minimum, and associated standard deviation of the annual means, respectively, of FW,
as determined from combined v1-ERS (1992–1999) and v1-QSCAT (2000–2008) monthly means of FW
over the global domain. Areas in light grey are outside of the domain, while areas in dark grey
represent snow-covered regions. Actual figure color is a linear interpolation of the colors in the legend.
Map projection same as Figure 2. Distance covered by one degree of latitude is approximately 111-km.
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The quality control map (Figure 5a) shows regions of very low to very high FW retrieval
accuracy. The integrated quality control index is high (>50%) in areas dominated by lakes and
river corridors and seasonally inundated wetlands and low (<50%) in many non-inundated arid and
semi-arid regions, suggesting that one or multiple quality attributes yielded low values. FW with
less and more than 50% of expected FW retrieval quality encompass 17% and 83% of the entire global
domain, respectively.
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previously stayed undetected in the GIEMS dataset (cf. Figures 2a, 3c and 4 in Prigent et al. [53]), are 

well represented in SWAMPS (Figures 4b and 5b). Conversely, medium to large FW (FW ≥ 10%) 

Figure 5. (a) A global quality control map was developed to provide a probabilistic indicator of
estimated FW retrieval quality relative to daily sensor coverage, land cover composition, topographic
variability and the likelihood of correctly identified seasonal wet and dry cycles. Areas in light grey
are outside of the domain, while areas in dark grey represent snow-covered regions. Actual figure
color is a linear interpolation of the colors in the legend. Map projection same as Figure 2. Distance
covered by one degree of latitude is approximately 111-km. (b) Histograms of fractional water (FW)
from MOD44W, MODIS incl. wetlands and the average annual maximum (FWmax) and minimum
(FWmin) as determined from combined v1-ERS (1992–1999) and v1-QSCAT (2000–2008) monthly
means of FW for the region 50˝N60˝N to 30˝E100˝E. Inset figure provides fine-scale resolution for
FW > 10%.

Small FW (FW < 10%) measured by MOD44W and MODIS across central Russia (Figure 5b),
which previously stayed undetected in the GIEMS dataset (cf. Figures 2a, 3c and 4 in Prigent et al. [53]),
are well represented in SWAMPS (Figures 4b and 5b). Conversely, medium to large FW (FW ě 10%)
observed by MOD44W and MODIS across central Russia (Figure 5b), that tended to be overestimated
in GIEMS (cf. Figures 2a, 3c and 4 in Prigent et al. [53]), are well within range (Figures 4b and 5b).
FW mean dynamic range (Figure 4b,c) is high in the sub-tropical climate zone, particularly across
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the Indochina Peninsula where monsoon rains and rice cultivation dominate the annual FW cycle.
FW interannual variability (Figure 4d) is expectedly higher in the semi-arid climate zone than in
other zones, particularly in the African Sahel, Australia’s outback and in the Tigris and Euphrates
River valleys. The average maximum annual FW in the Arctic-Boreal occurs in April and May at
50˝N and later at higher latitudes coincident with the northward progression of the snowmelt front
(Figure 6a) [99]. Average annual maximum inundation in coastal Western Europe occurs during
winter in January with an average FW presence of 1–4 months (Figure 6b). The correlation with
precipitation (P) is positive and large in Indochina and the Sahel, whereas it is largely negative in the
region immediately to the north at the transition from the Sahel into the Saharan Desert (Figure 6c).
The reversal of the relationship with P coincides with a sudden jump in the month of maximum
inundation with peak FW likely being ahead of time in this zone (Figure 6a). While the maximum
FW extent in this region is rather small relative to known wetland areas (Figure 4b), this situation
likely indicates modeling errors in semi-arid landscapes (Figure 5a) necessitating post-product
screening (Figure 1).

The average annual maximum FW extent for the global domain including the coast stands at
124.7 ˆ 105 km2 which compares favorably with the FW extent from MOD44W (123.7 ˆ 105 km2)
and MODIS including permanent wetlands (124.9 ˆ 105 km2) (Table 3). While comparable over
the entire domain, SWAMPS’ global maximum FW extent excluding the coast (66.1 ˆ 105 km2) is
considerably larger than corresponding MOD44W (58.0 ˆ 105 km2) and MODIS (58.5 ˆ 105 km2)
suggesting additional FW sensitivity, e.g., in inundated wetlands, that coincides with a systematic
dry-bias along the coast. The bias is the result of the differences in the gridding schemes applied
to SWAMPS’ Tb and the independent FW data causing the independent data to yield a larger
FW value for coasts (cf. Section 3.2.2, Table 4). On a seasonal basis, average FW extent for the
global domain is highest in August (101.7 ˆ 105 km2) and lowest in February (77.2 ˆ 105 km2)
with an average variability (i.e., standard deviation (SD) of the snow-screened monthly means) of
˘15.1 ˆ 105 km2 (Table 3). Multiple seasonal maxima of similar magnitude cause a notable
displacement of month of occurrence of the seasonal maximum for tropical America and Africa
between v1-QSCAT and v2-ASCAT.
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Figure 6. Global maps of: (a) the month of average maximum fractional water (FW); (b) the
average number of inundated months; (c) the temporal linear correlation (R) between FW and the
Modern-Era Retrospective Analysis for Research and Application (MERRA) precipitation analysis
and (d) the trend of the annual FW means over the global domain as determine from combined,
v1-ERS (1992–1999) and v1-QSCAT (2000–2008) monthly means and total monthly precipitation from
the MERRA reanalysis (1992–2008). Actual figure color (c,d) is a linear interpolation of the colors in
the legend. Except for (d), areas in white are outside of the domain or are screened (annual mean
FW < 1%) from the analysis, while areas in dark grey represent snow covered regions. The annual
FW trend was approximated from the slope of the least-square best fit-line and trend significance was
assessed at a minimum 95% (p < 0.05) probability level. Only statically significant trends are shown.
Map projection same as Figure 2. Distance covered by one degree of latitude is approximately 111-km.
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Table 3. Average seasonal maximum and minimum (including month of occurrence), and annual mean, maximum and minimum fractional water (FW) extents (km2

ˆ 105) from SWAMPS over the global and regional domains as generated from v1-ERS (1992–2000), v1-QSCAT (2000–2008) and v2-ASCAT (2009–2012) monthly
means. Seasonal and annual variability in inundation extents are expressed as the standard deviation of the snow-screened seasonal climatologies and annual
means. The FW extents from static measures of FW from the MOD44W and MODIS including wetlands products are shown for comparison.

Region Seasonal [v1-ERS/v1-QSCAT/v2-ASCAT] Annual [v1-ERS/v1-QSCAT/v2-ASCAT]
MOD44W MODIS incl.

Wetlands
Variability Maximum

[Month]
Minimum
[Month] Variability Average Maximum Minimum

Global 15.7/15.1/14.6 102.2 [8]/101.7
[8]/101.1 [8]

78.6 [2]/77.1
[2]/75.8 [2] 9.0/8.1/7.1 103.0/101.9/100.5 126.8/124.7

/122.7 81.6/81.3 /80.7 123.7 124.9

Global excl. Coast 11.2/10.6/10.2 48.3 [7]/48.3
[6]/48.4 [7]

33.9 [1]/33.0
[1]/33.2 [2] 6.6/5.8/5.0 48.1/47.6/48.2 67.1/65.6 /65.6 34.7/34.9 /36.1 58.0 58.5

Tropical (30S-30N) 5.9/5.8/5.9 48.4 [7]/47.3
[7]/47.0 [7]

44.6 [10]/43.9
[10]/43.3 [10] 3.8/3.3/3.1 46.0/45.3/44.8 56.5/55.6/55.6 38.5/37.9/37.5 49.0 50.4

Tropical excl. Coast 5.0/4.8/4.9 22.5 [7]/21.5
[7]/21.9 [7]

18.9 [10]/18.4
[10]/18.7 [10] 3.2/2.6/2.4 20.2/19.7/20.1 29.4/28.5/29.3 14.1/13.8/14.3 19.6 20.9

Tropical-America (180W-25W) 1.0/1.0/0.9 11.2 [4]/11.1
[3]/11.0 [7]

10.8 [12]/10.7
[12]/10.5 [12] 0.7/0.7/0.7 11.0/10.9/10.8 12.7/12.6/12.4 9.8/9.6/9.6 13.6 14.4

Tropical America excl. Coast 0.7/0.7/0.7 4.4 [3]/4.2 [3]/4.4
[7]

4.0 [12]/3.9
[12]/4.0 [12] 0.5/0.5/0.5 4.2/4.1/4.2 5.5/5.4/5.5 3.3/3.2/3.4 5.7 6.5

Tropical-Africa (25W-50E) 2.3/2.2/2.4 10.5 [7]/10.5
[3]/10.2 [3]

9.0 [9]/8.6
[10]/8.3 [9] 1.6/1.1/1.0 10.0/9.5/9.3 14.0/13.2/13.6 7.0/6.6/6.3 8.6 9.0

Tropical Africa excl. Coast 2.2/2.0/2.2 6.9 [7] /6.9 [3]
/7.0 [3]

5.4 [9]/5.0 [9]/5.0
[9] 1.4/1.0/0.9 6.4/5.9/6.0 10.1/9.4/10.0 3.6/3.3/3.3 4.3 4.6

Tropical-Asia (50E-180E) 2.6/2.6/2.5 26.8 [7]/26.7
[7]/26.4 [7]

24.2 [3]/24.2
[2]/24.1 [11] 1.5/1.5/1.4 24.9/24.9/24.7 29.9/29.8/29.6 21.7/21.7/21.6 26.8 27.0

Tropical-Asia excl. Coast 2.1/2.1/2.0 11.4 [7]/11.3
[7]/11.3 [7]

9.0 [3]/9.0 [3]/9.3
[11] 1.2/1.1/1.1 9.6/9.7/9.8 13.8/13.7 / 13.8 7.2/7.3/7.6 9.6 9.8

Arctic-Boreal (> 50 N) 5.8/5.4/5.1 32.1 [9]/31.8
[9]/31.9 [9]

10.3 [2]/10.0
[3]/10.1 [3] 2.8/2.6/2.2 31.3/31.1/31.0 38.1/37.4/36.6 22.9/23.2/23.3 40.6 40.5

Arctic-Boreal excl. Coast 3.4/3.1/2.7 17.0 [9]/16.8
[9]/17.2 [9]

3.9 [2]/3.7 [2]/3.6
[2] 1.7/1.6/1.3 17.0/17.0/17.1 21.7/21.3/20.7 12.9/13.3/13.7 22.2 21.5

N-America (180˝W-0˝W, > 50 N) 3.3/3.0/3.0 20.4 [9]/20.2
[9]/20.4 [9]

5.5 [2]/5.4 [2]/5.4
[3] 1.6/1.5/1.3 19.6/19.5/19.6 22.9/22.4/22.5 14.4/14.6/14.8 25.3 25.5

N-America excl. Coast 1.7/1.5/1.5 11.0 [9]/10.9
[9]/11.3 [9]

2.0 [2]/1.9 [3]/1.9
[3] 0.9/0.8/0.7 10.7/10.7/10.9 12.6/12.4/12.5 8.1/8.5/8.8 13.7 13.5

Eurasia (0˝E-180˝E, > 50 N) 2.5/2.4/2.1 11.7 [9]/11.7
[9]/11.5 [9]

4.8 [2]/4.6 [3]/4.6
[2] 1.2/1.1/0.9 11.7/11.6/11.4 15.2/14.9/14.1 8.5/8.6/8.5 15.3 15.0

Eurasia excl. Coast 1.7/1.6/1.2 6.2 [6]/6.3 [6]/5.9
[6]

1.9 [2]/1.8 [2]/1.6
[2] 0.8/0.8/0.6 6.4/6.3/6.2 9.1/8.9/8.2 4.8/4.8/4.9 8.5 8.0
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3.2.2. Global Comparisons of SWAMPS with MOD44W and MODIS

Average annual FW generated from monthly mean (FWave), maximum (FWmax) and
minimum (FWmin) record periods over the global domain all explain the majority of spatial variability
(80.5% ď R2 ď 93.9%) in the MOD44W and MODIS static FW maps, except along the coast and
shoreline of large water bodies where SWAMPS yields much lower FW (´33.8% ďMRE ď 8.2%)
(Table 4, Figure 7). The average RMSE difference between SWAMPS’ FWave and FWmax, and
MOD44W over the Arctic-Boreal excluding the coast is ď5%, in line with the results from
Watts et al. [64]. Pixel correspondences are lower between SWAMPS and MODIS than between
SWAMPS and MOD44W, particularly along the coast where MOD44W (61.3% ď R2 ď 78.8%) was
expected to outperform MODIS (52.1% ď R2 ď 75.0%) (Table 4).

Table 4. Summary statistics from pixel-wise comparisons of mean annual fractional water (FW)
generated from v1-QSCAT (2000–2008) and v2-ASCAT (2009–2012) monthly maximum (FWmax),
average (FWave), and minimum (FWmin) record periods against static FW from the MOD44W
and MODIS including wetlands products. Relationships are significant at a minimum 0.01
probability level.

Data Set Coefficient of Determination
[%] v-QSCAT/v2-ASCAT

Mean Residual Error [%]
V1-QSCAT/v2-ASCAT

Root Mean Square Error [%]
V1-QSCAT/v2-ASCAT

Region FWmax FWave FWmin FWmax FWave FWmin FWmax FWave FWmin

MOD44W
Arctic-Boreal
(> 50 N) 91.4/92.0 91.5/91.0 83.8/88.8 2.1/´1.0 ´2.9/´2.9 ´6.9/´5.0 6.8/6.1 7.7/8.0 13.9/11.1

Arctic-Boreal
excl. Coast 87.9/88.4 88.2/88.1 76.3/86.3 1.9/´0.4 ´1.8/´1.7 ´4.3/´3.0 5.4/4.3 5.2/5.1 9.0/6.8

Global 92.3/93.9 92.1/93.5 81.1/91.5 2.8/0.3 ´1.5/´1.6 ´5.0/´3.5 6.8/5.0 6.3/6.2 12.2/9.0
Global excl.
Coast 84.1/86.2 84.0/87.3 67.8/85.5 2.5/0.7 ´0.8/´0.7 ´2.9/´1.9 5.7/4.1 4.8/4.4 8.1/5.8

Global excl.
Coast & Desert 85.6/88.4 85.0/89.1 70.6/87.2 2.2/0.3 ´1.1/´1.0 ´3.3/´2.2 5.5/3.9 4.9/4.5 8.5/6.1

Global Coast
only 61.3/79.2 72.2/78.8 64.4/74.0 8.2/´4.5 ´11.3/´13.8 ´33.6/´25.0 15.1/10.6 15.7/16.7 35.7/26.8

MODIS incl.
Wetlands

Arctic-Boreal
(> 50 N) 88.6/90.8 89.3/89.9 82.4/88.1 2.1/´0.9 ´2.8/´2.9 ´6.8/´5.0 7.7/6.5 8.1/8.1 14.0/11.0

Arctic-Boreal
excl. Coast 84.6/86.5 85.9/86.5 75.1/85.3 2.2/´0.1 ´1.5/´1.5 ´4.1/´2.8 6.1/4.4 5.1/5.0 8.6/6.4

Global 91.2/93.1 91.3/92.7 80.5/90.0 2.8/0.3 ´1.6/´1.7 ´5.0/´3.5 7.2/5.2 6.5/6.4 12.2/9.1
Global excl.
Coast 82.6/85.0 82.8/86.2 67.0/84.6 2.4/0.6 ´0.8/´0.8 ´2.9/´2.0 5.9/4.2 4.8/4.5 8.0/5.8

Global excl.
Coast & Desert 84.2/87.3 84.7/88.1 69.7/86.3 2.1/0.3 ´1.2/´1.1 ´3.3/´2.2 5.7/4.0 5.0/4.5 8.4/6.0

Global Coast
only 52.1/74.3 67.3/75.0 64.0/71.2 8.0/´4.8 ´11.6/´14.0 ´33.8/´25.2 16.1/11.6 16.4/17.3 35.9/27.2

FWmax has a small wet bias relative to static FW (Table 4, Figure 7a), whereas FWave and FWmin

show small-to-large dry-biasing (Table 4, Figure 7b,c). The FWmax and FWmin bias from v1-QSCAT is
larger than the corresponding bias from v2-ASCAT, except when the MRE is generated from FWave

where v1 and v2 biasing is similar. The product differences for these measures are consistent with
the differences in the gridding procedure reported for the v1 and v2 Tb data [68]. Regionally, FWmax,
FWave and FWmin from v1 and v2 are lower than static FW along major river ways (e.g., Ob River),
lakes and reservoirs (e.g., Central Canada) (Figure 7). Conversely, FWmax, FWave and FWmin are
greater than static FW in arid regions and the wetland-dominated areas (e.g., WSL, Everglades).
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Figure 7. Difference maps between average annual fractional water (FW) from v1-QSCAT 

(2000–2008, left) and v2-ASCAT (2009–2012, right) generated from (a) monthly maximum 

(FWmax), (b) monthly average (FWave) and (c) monthly minimum (FWmin) minus static FW 

from the MOD44W (top) and the MODIS including permanent wetlands product (bottom) 

for the entire domain. Areas in light grey are outside of the domain, while areas in dark grey 

represent snow-covered regions. Actual figure color is a linear interpolation of the colors in 

the legend. Map projection same as Figure 2. Distance covered by one degree of latitude is 

approximately 111-km. 

Figure 7. Difference maps between average annual fractional water (FW) from v1-QSCAT (2000–2008,
left) and v2-ASCAT (2009–2012, right) generated from (a) monthly maximum (FWmax), (b) monthly
average (FWave) and (c) monthly minimum (FWmin) minus static FW from the MOD44W (top) and the
MODIS including permanent wetlands product (bottom) for the entire domain. Areas in light grey are
outside of the domain, while areas in dark grey represent snow-covered regions. Actual figure color
is a linear interpolation of the colors in the legend. Map projection same as Figure 2. Distance covered
by one degree of latitude is approximately 111-km.
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The seasonal progression for 20+ years of monthly FW extents in the Arctic-Boreal shows that
the change in backscatter sensing frequency among the products generated did not introduce a
record discontinuity, except for lower FWmax and higher FWmin beginning in 2008/2009 coincident
with lower MDPImax and higher MPDImin resulting from the change in the Tb gridding procedure
(Figure 8). Continuity of the FW time series is demonstrated during 18 months of FW co-retrieval
(v1-ERS/v1-QSCAT) for which all three FW measures overlap seamlessly (Figure 8). Figure 8
suggests that the differences in FW extent for FWmax and FWmin in the Arctic-Boreal can be mitigated
by determining the FW extent from a temporal composite of multiple (daily) observations (e.g.,
monthly means). Day-to-day FW variability (i.e., the grid noise) for each gridding procedure is
evidently very different. It is caused by swath footprints (roughly 40 ˆ 70 km) whose small position
offsets cause differences in footprint open water fraction when combined into 25 km grid cells along
water bodies. Therefore, care should be taken when comparing FW from v1 with FW from v2,
particularly along the coast.
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generated from monthly maximum (FWmax, MPDImax) average (FWave, MPDIave) and 

minimum (FWmin, MPDImin) for the study period (1992–2013). The Arctic-Boreal FW extent 

from static measures of FW from the MOD44W and MODIS including wetlands products 

are shown for comparison. Note that FW has been plotted from all record periods including 

duplicate measurements taken during period overlap. 
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records from v1-ERS and v2-ASCAT confirm high spatial correspondence among the products 

Figure 8. Seasonal progression of monthly FW extents (km2) from SWAMPS and total Microwave
Polarization Difference Index (MPDI) in the Arctic-Boreal domain (>50˝N) as generated from monthly
maximum (FWmax, MPDImax) average (FWave, MPDIave) and minimum (FWmin, MPDImin) for the
study period (1992–2013). The Arctic-Boreal FW extent from static measures of FW from the MOD44W
and MODIS including wetlands products are shown for comparison. Note that FW has been plotted
from all record periods including duplicate measurements taken during period overlap.

Pixel-wise global-scale comparisons of FW generated from v1-QSCAT against corresponding
FW records from v1-ERS and v2-ASCAT confirm high spatial correspondence among the products
generated, except for the coast over which v2-ASCAT is dry-biased relative to v1-QSCAT and v1-ERS
(Table 5). v1-ERS was not compared with v2-ASCAT because both v1-ERS and v1-QSCAT show a
very high degree of correspondence. We attribute this bias to the change in the gridding procedure
and associated large Tb differences reported for coasts and other high-gradient Tb regions [68]. These
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differences can be one or two grid cells wide [68] implying that FW from v2-ASCAT located inland
but closest to the coast is likely wet-biased relative to v1-QSCAT and v1-ERS.

Table 5. Summary statistics from pixel-wise comparisons of average annual mean, maximum and
minimum fractional water (FW) generated from v1-QSCAT (2000–2008) against corresponding FW
record from v1-ERS (1992–2000) and v2-ASCAT (2009–2012) over the global domain, by excluding
coastal regions and for coastal regions alone. Relationships are significant at a minimum 0.01
probability level.

Coefficient of
Determination

[%]

Mean
Residual
Error [%]

Root Mean
Square

Error [%]

Coefficient of
Determination

[%]

Mean
Residual
Error [%]

Root Mean
Square

Error [%]

Data Set v1-QSCAT – v1-ERS v1-QSCAT – v2-ASCAT
Region

Global
Average Annual Mean 99.3 ´0.07 1.3 98.3 0.11 2.2

Average Annual Maximum 98.7 ´0.15 2.0 97.7 0.14 2.7
Average Annual Minimum 98.3 ´0.02 1.9 97.3 0.04 2.4

Global excl. Coast
Average Annual Mean 98.8 ´0.04 0.9 96.5 ´0.05 1.6

Average Annual Maximum 96.8 ´0.11 1.6 94.9 0.00 2.1
Average Annual Minimum 97.5 0.02 1.1 95.1 ´0.10 1.6

Global Coast only
Average Annual Mean 98.1 ´0.03 2.8 93.4 2.48 5.8

Average Annual Maximum 96.4 ´0.13 3.8 91.9 2.48 6.4
Average Annual Minimum 94.4 ´0.18 5.5 91.7 2.14 7.0

3.2.3. Direct Comparison of SWAMPS with JERS-SAR and ALOS-PALSAR ScanSAR over Alaska and
the Central Amazon Basin

Average annual maximum (FWmax), mean (FWave) and minimum (FWmin) FW generated from
monthly mean record periods over the state of Alaska explain the majority of spatial variability
(86.2 ď R2 ď 97.2) in the JERS OW (284,000 km2), MOD44W (287,000 km2) and MODIS (276,000 km2)
static FW maps, except for the wetland portion (70,000 km2) of the combined longer wavelength JERS
classification (354,000 km2) where SWAMPS (183,000–256,000 km2) yields much lower FW (´11.4 ď
MRE ď ´6.5) (Table 6, Figure 9). Pixel correspondences between SWAMPS and static FW are slightly
lower for the comparison against JERS-SAR OW and MODIS than MOD44W.

FWmax has a small dry-bias relative to static FW, whereas FWave and FWmin show larger
dry-biasing. FW from v2-ASCAT is consistently dry-biased relative to v1-QSCAT. The bias is most
notable along the coast (Figure 9) consistent with the above mentioned Tb gridding differences.
Locally, FWmax, FWave and FWmin are lower than static FW from MOD44W and JERS-SAR OW in
the North Slope as well as in portions of the southern Yukon Delta (Figure 9). Conversely, FWmax,
FWave and FWmin in these areas are higher than static FW from MODIS. In other regions, such as
the maritime and glaciated south, FWmax, FWave and FWmin are higher than static FW, except for the
comparison against MODIS which yields higher FW.
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Table 6. Areal extent and summary statistics from pixel-wise comparisons of fractional water (FW) generated from v1-QSCAT (2000–2008) and v2-ASCAT
(2009–2012) average annual maximum (FWmax), mean (FWave), and minimum (FWmin) record periods against maps of open water (OW) and wetlands derived
from the L-band Japanese Earth Resources Satellite (JERS)-based Alaska wetland map and static FW from the MOD44W and MODIS including wetlands products
over the state of Alaska (54˝N–72˝N, 143˝W–170˝W). Relationships are significant at a minimum 0.01 probability level.

Areal Extent [km2 ˆ 103] Coefficient of Determination [%] Mean Residual Error [%] Root Mean Square Error [%]
Data Set v1-QSCAT/v2-ASCAT v1-QSCAT/v2-ASCAT v1-QSCAT/v2-ASCAT v1-QSCAT/v2-ASCAT

FWmax FWave FWmin FWmax FWave FWmin FWmax FWave FWmin FWmax FWave FWmin
255.5/248.3 228.0/221.4 194.9/183.4

JERS Open Water (OW) 284.1 93.0/94.2 93.4/94.4 87.6/86.2 ´1.9/´2.4 ´3.7/´4.2 ´5.9/´6.7 7.9/7.8 9.0/9.3 12.5/14.0
JERS OW incl. Wetlands 353.7 85.3/87.3 85.2/87.2 78.2/77.9 ´6.5/´7.1 ´8.4/´8.9 ´10.6/´11.4 13.2/13.1 14.6/14.8 18.0/19.1

MOD44W 286.6 96.4/97.2 96.5/97.0 90.0/87.8 ´2.1/´2.6 ´3.9/´4.4 ´6.1/´6.9 5.7/5.7 7.0/7.6 11.2/12.8

MODIS Open Water (OW) 275.9 96.2/96.3 96.1/95.9 90.5/87.5 ´1.3/´1.8 ´3.2/´3.6 ´5.4/´6.1 5.1/5.3 6.2/6.9 10.0/11.7
MODIS OW incl. Wetlands 276.2 96.2/96.3 96.1/95.9 90.5/87.6 ´1.4/´1.8 ´3.2/´3.6 ´5.4/´6.1 5.1/5.3 6.3/7.0 10.0/11.8

Table 7. Areal extent and summary statistics from pixel-wise comparisons of fractional water (FW) generated from v1-QSCAT (2000–2008) and v2-ASCAT
(2009–2012) average annual maximum (FWmax), mean (FWave), and minimum (FWmin) record periods against maps of open water (OW) and flooded vegetation
derived from the Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) ScanSAR Amazon maximum
inundation extent map and subsets of static FW from the MOD44W and MODIS including wetlands products for a section (8.5˝S–1˝N, 55.5˝W–74.5˝W) of the
central Amazon river floodplain. Relationships are significant at a minimum 0.01 probability level.

Areal Extent [km2 ˆ 103] Coefficient of Determination [%] Mean Residual Error [%] Root Mean Square Error [%]
Data Set v1-QSCAT/v2-ASCAT v1-QSCAT/v2-ASCAT v1-QSCAT/v2-ASCAT v1-QSCAT/v2-ASCAT

FWmax FWave FWmin FWmax FWave FWmin FWmax FWave FWmin FWmax FWave FWmin
40.4/41.5 32.2/30.7 22.9/20.0

PALSAR Open Water (OW) 25.4 79.9/80.7 81.3/83.3 78.4/80.0 0.8/0.7 0.4/0.2 ´0.2/´0.2 2.0/2.0 1.6/1.2 1.5/1.3
PALSAR OW incl. Flood. Veg. 67.7 66.5/68.1 63.2/67.4 56.6/65.8 ´1.1/´1.2 ´1.9/´1.7 ´3.2/´2.1 3.0/2.9 3.7/3.3 5.0/4.0

MOD44W 50.9 88.6/89.3 90.0/91.6 87.9/90.1 ´0.4/´0.4 ´1.1/´0.9 ´2.1/´1.4 1.5/1.5 2.1/1.9 3.4/2.8

MODIS Open Water (OW) 60.1 73.2/74.6 73.1/75.9 69.8/74.0 ´0.8/´0.8 ´1.6/´1.3 ´2.8/´1.8 2.5/2.4 3.1/2.8 4.4/3.5
MODIS OW incl. Wetlands 65.3 77.7/78.6 78.4/80.7 77.1/81.2 ´1.0/´1.1 ´1.8/´1.5 ´3.2/´2.0 2.5/2.5 3.2/3.0 4.7/3.8
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Figure 9. Difference maps between fractional water (FW) from v1-QSCAT (2000–2008) and v2-ASCAT
(2009–2012) generated from (a) average annual maximum (FWmax); (b) mean (FWave); and (c)
minimum (FWmin) minus open water (OW) and wetlands derived from the L-band Japanese Earth
Resources Satellite (JERS)-based Alaska wetland map and subsets of static FW from the MOD44W and
MODIS including wetlands products over the state of Alaska (54˝N–72˝N, 143˝W–170˝W). Actual
figure color is a linear interpolation of the colors in the legend. Map projection same as Figure 2.
Distance covered by one degree of latitude is approximately 111-km.

FWmax, FWave and FWmin generated from monthly mean record periods over a section of the
central Amazon River basin explain the majority of spatial variability (69.8 ď R2 ď 91.6) in the
PALSAR OW (25,000 km2), MOD44W (51,000 km2) and MODIS (60,000–65,000 km2) static FW maps,
except over the inundated forest fraction (43,000 km2) of the combined longer wavelength PALSAR
classification (68,000 km2) where SWAMPS (20,000–42,000 km2) yields lower FW (´3.2 ď MRE
ď ´1.1) (Table 7, Figure 10). Although lower than expected FW is supported by other research from
this domain [30,58], SWAMPS’ maximum annual areal extent (42,000 km2) is in plain contrast with
GIEMS’ high-water stage (171,000 km2) offering 4–5 times as much inundation for this region [53].
Pixel correspondences between SWAMPS and static FW are notably lower for the comparison against
PALSAR OW and MODIS than MOD44W; however, the correspondence with MODIS improves when
the MODIS permanent wetland fraction was added to MODIS OW.
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FWmin has a large dry-bias relative to static FW (except PALSAR OW which shows virtually no
biasing), whereas FWave and FWmax show small dry-biasing (except PALSAR OW which shows a
small wet-bias). Locally, FWmax, FWave and FWmin are all higher than static FW in the lower river
sections particularly north of the main river course across Balbina reservoir (Figure 10), established
in 1985 for hydroelectric power generation [100]. In this region, wet biasing is particularly evident
against PALSAR even when the inundated forest fraction was added to PALSAR OW. In contrast,
FWmax, FWave and FWmin are all lower than static FW in the upper river section. This is especially
evident against MODIS particularly when the wetland fraction was added to MODIS OW.

Figure 10. Difference maps between fractional water (FW) from v1-QSCAT (2000–2008) and
v2-ASCAT (2009–2012) generated from (a) average annual maximum (FWmax), (b) mean (FWave),
and (c) minimum (FWmin) minus open water (OW) and inundated/flooded vegetation derived
from the Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture
Radar (PALSAR) ScanSAR Amazon maximum inundation extent map and subsets of static FW
from the MOD44W and MODIS including wetlands products for a section of the lower Amazon
river floodplain (8.5˝S–1˝N, 55.5˝W–74.5˝W). Actual figure color is a linear interpolation of the
colors in the legend. Map projection same as Figure 2. Distance covered by one degree of latitude
is approximately 111-km.

3.2.4. Relationship of SWAMPS with Precipitation and River Discharge

13 years of monthly FW dynamics for eight global river basins representing four major climate
zones show close agreement with corresponding monthly fluctuations obtained from river Q and P
records (Figure 11).
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Figure 11. Monthly mean river discharge from WBM simulations, basin-averaged total monthly
MERRA precipitation and corresponding basin-wide monthly mean total FW extent for the Amazon,
Indus, Danube and Ob river basins over the 13 year, combined v1-QSCAT (2000–2008) and v2-ASCAT
(2009–2012) FW record along with corresponding deseasonalized monthly anomalies. River Q is not
available for 2012, and is limited from 2000–2008 in the Ob basin.

Strong maximum cross-correlations between river Q and FW are observed in the Tropical
and Arctic-Boreal river basins (Table 8). Lower correlations are observed in the Subtropics and
Mid-Latitudes which is likely due to other influences on Q and FW, such as from utilizing stream
flow for hydroelectric power generation and rice cultivation. FW lags rainfall (by 3 months) and river
Q (by 1 month) in the Amazon whereas it precedes P (by 2 months) in the Mississippi, likely because
downstream floodplain inundation in the latter basin is influenced by peak discharge following
upstream spring snowmelt; the maximum cross-correlation between Q and FW in the Mississippi
is 0.695, p < 0.001 at 0 lag (Table 8). Likewise, complex linkages between FW, P, and Q are also
evident in the Ob, which shows anomaly correlations at large lag times (Table 8). Overlapping FW,
Q and P monthly anomalies indicate that SWAMPS captures periodic dry and wet cycles reflected
in the P and Q observations (Figure 11). For instance, a positive FW, Q and P anomaly in 2010 for
the Indus coincides with disastrous flooding in 2010 [101,102]. An anomalous dry period in 2010
for the Amazon coincides with a historic drought [103] following an unusually fast El Niño/La Niña
phase transition [104]. The sign and magnitude of the normalized anomaly FW patterns for this event
together with corresponding P patterns are presented over South America in Figure S3.
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Table 8. Trend analysis from and cross-correlation analysis between monthly mean river discharge (Q) from WBM simulations, basin-averaged total monthly
MERRA precipitation (P) and corresponding basin-wide monthly mean total fractional water (FW) extent for eight global river basins over the 13 year, combined
v1-QSCAT (2000–2008) and v2-ASCAT (2009–2012) FW record. Shown are annual trends obtained from deseasonalized monthly anomalies (left), the time-lagged
cross-correlation (R) at maximum absolute correlation and the corresponding time-lag of the maximum correlation in months for both monthly (middle) and
corresponding deseasonalized monthly anomalies (right) as determined from Q, P and FW. Positive time lags indicate that Q, P precede FW or Q.

Region Trend, Significance Max. Correlation (R), Significance Max. Anomaly Correlation (R), Significance

Basin FW [km2/yr] P [mm/yr] Q [m3s´1/yr] FW/Q [FWlag] FW/P [FWlag] Q/P [Qlag] FW/Q [FWlag] FW/P [FWlag] Q/P [Qlag]

Tropics
Amazon ´1824, 0.075 3.4, <0.001 208.8, 0.772 0.910, <0.001 [1] 0.826, <0.001 [3] 0.908, <0.001 [1] 0.600, <0.001 [1] 0.276, <0.001 [1] 0.545, <0.001 [0]
Orinoco 121.2, 0.035 ´0.7, 0.346 314.4, 0.023 0.868, <0.001 [0] 0.697, <0.001 [2] 0.680, <0.001 [2] 0.490, <0.001 [1] 0.313, <0.001 [2] 0.451, <0.001 [0]

Subtropics
Indus ´81.5, 0.182 0.7, 0.056 111.2, <0.001 0.666, <0.001 [0] 0.612, <0.001 [0] 0.713, <0.001 [0] 0.389, <0.001 [0] 0.543, <0.001 [0] 0.563, <0.001 [0]
Zambezi 357.6, <0.001 ´2.9, <0.001 146.4, 0.222 0.653, <0.001 [0] 0.578, <0.001 [1] 0.838, <0.001 [1] 0.644, <0.001 [0] 0.253, 0.002 [1] 0.570, <0.001 [1]

Mid-Latitudes
Danube 48.0, 0.094 ´0.2, 0.716 64.3, 0.199 0.621, <0.001 [0] 0.287, <0.001 [´2] 0.480, <0.001 [0] 0.593, <0.001 [0] 0.479, <0.001 [0] 0.588, <0.001 [0]
Mississippi ´182.4, 0.153 0.3, 0.339 368.4, 0.035 0.695, <0.001 [0] 0.554, <0.001 [´2] 0.484, <0.001 [´2] 0.554, <0.001 [0] 0.392, <0.001 [0] 0.526, <0.001 [1]

Arctic-Boreal
Ob ´850.8, <0.001 ´0.2, 0.232 ´307.2, 0.071 0.882, <0.001 [´1] 0.742, <0.001 [´1] 0.752, <0.001 [0] 0.670, <0.001 [´3] 0.335, <0.001 [4] 0.347, <0.001 [7]
Yukon ´43.2, <0.001 ´0.5, 0.010 49.8, 0.830 0.735, <0.001 [0] 0.813, <0.001 [´1] 0.658, <0.001 [´1] 0.325, <0.001 [´1] 0.187, 0.020 [1] 0.127, 0.134 [3]

16714



Remote Sens. 2015, 7, 16688–16732Remote Sens. 2015, 7 31 

 

 

 

 

 

Figure 12. (a) Pixel-wise linear correlation (R); (b) maximum cross-correlation (R); and  

(c) associated time lag in months between total monthly MERRA precipitation (top), total 

monthly TRMM precipitation (middle), and monthly mean river discharge from WBM 

simulations (bottom) and corresponding monthly mean fractional water (FW) for South 

America (55°S–15°N, 35°W–85°W) over the 13 year combined v1-QSCAT (2000–2008) 

and v2-ASCAT (2009–2012) record. Black lines (bottom) indicate basin limits for the 

Orinoco, Amazon and Parana River basins. Areas in white are outside of the domain/basins 

or are screened (average annual FW < 0.1%) from the analysis. Actual figure color is a linear 

interpolation of the colors in the legend. Map projection same as Figure 2. Distance covered 

by one degree of latitude is approximately 111-km. 

Figure 12. (a) Pixel-wise linear correlation (R); (b) maximum cross-correlation (R); and (c) associated
time lag in months between total monthly MERRA precipitation (top), total monthly TRMM
precipitation (middle), and monthly mean river discharge from WBM simulations (bottom) and
corresponding monthly mean fractional water (FW) for South America (55˝S–15˝N, 35˝W–85˝W) over
the 13 year combined v1-QSCAT (2000–2008) and v2-ASCAT (2009–2012) record. Black lines (bottom)
indicate basin limits for the Orinoco, Amazon and Parana River basins. Areas in white are outside of
the domain/basins or are screened (average annual FW < 0.1%) from the analysis. Actual figure color
is a linear interpolation of the colors in the legend. Map projection same as Figure 2. Distance covered
by one degree of latitude is approximately 111-km.

The pixel-wise linear correlation between monthly FW and P cycles over South America
shows high temporal correspondence in upstream locations of the Amazon drainage basin, while
correspondence is lower in downstream areas (Figure 12). This pattern corresponds with short lag
times in upstream locations, whereas FW increasingly lags P as one travels further downstream. This
is particularly evident in the Pantanal [32] and Llanos de Moxos [105] wetland complexes, with lag
times > 2 months at the wetlands’ outlets. The grid cell-wise relationship with P varies when the
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MERRA rainfall reanalysis is substituted by that of the satellite retrieval from TRMM, as shown in the
northern portion of South America where MERRA exhibits large negative and TRMM large positive
linear relationships with FW. FW lags Q by 2 months across the central portion of the Amazon River,
whereas it is slightly ahead of Q in the Llanos de Moxos wetland. The FW and Q cycles largely
overlap in the Llanos de Orinoco wetland/basin and in the Pantanal wetland in the Paraguay basin.
However, near the respective wetland outlets FW lags Q by 3 months.
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Figure 13. 10-Day intervals of in-situ river discharge/stage, satellite estimated river 

discharge and corresponding fractional water (FW) from combined AMSR-E and QSCAT 

and AMSR-E only [58] for five selected wetland sites over an 8 year period (7/2002–7/2009). 

Static FW from MOD44W and MODIS including wetlands is shown for reference. 

10-Day interval time series of FW show favorable temporal correlation with corresponding 

hydrological records at five global wetland sites including dynamic FW retrieved from an independent 

analysis (Figure 13). Both FW records exhibit strong correspondence with each other and the 

hydrological records (R2 ≥ 0.84) particularly in the Everglades and the Paraná Delta where the dynamic 

Figure 13. 10-Day intervals of in-situ river discharge/stage, satellite estimated river discharge and
corresponding fractional water (FW) from combined AMSR-E and QSCAT and AMSR-E only [58] for
five selected wetland sites over an 8 year period (7/2002–7/2009). Static FW from MOD44W and
MODIS including wetlands is shown for reference.

10-Day interval time series of FW show favorable temporal correlation with corresponding
hydrological records at five global wetland sites including dynamic FW retrieved from an
independent analysis (Figure 13). Both FW records exhibit strong correspondence with each other
and the hydrological records (R2 ě 0.84) particularly in the Everglades and the Paraná Delta where
the dynamic FW records produce almost identical results. Following the severe drought of 2007 in the
U.S. [106], both FW records in the Everglades show temporary higher FW than indicated by the in-situ
record. In the Kafue Flats and the Okavango Delta, the combined passive (AMSR-E)/active (QSCAT)
MW inundation record measures higher peak FW than the corresponding independent (passive
only) record. The discharge cycle from Mohembo, located 120-km upstream at the mouth of the
Okavango Delta, leads FW in the Delta center by 50 days. The dynamic FW retrievals are considerably
larger than static FW during peak inundation, with the exception of the Ob River floodplain site
where MOD44W captures the seasonal FW maximum. This result suggests that both FW records
have enhanced sensitivity to standing water in vegetated (emergent) wetlands comprising open leaf
canopies with vertically oriented plant stalks such as the sawgrass marshes found extensively in the
Everglades [107].
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3.3. Trend Analysis and Trend Sensitivity to Snow Cover Screening

A weak (R = ´0.28) but statistically significant (p < 0.001) linear drying trend of ´4900 km2/yr
is observed for the global domain (excl. coast) when the monthly mean anomalies from combined
v1-ERS (1992–1999), v1-QSCAT (2000–2008) and v2-ASCAT (2009–3/2013) monthly averages
(N = 255 months) are examined for trend (Table 9).

Table 9. Trend estimates (km2/yr), trend significance (p) and trend strength (R) and sign (˘) for the
combined v1-ERS (1992–1999), v1-QSCAT (2000–2008) and v2-ASCAT (2009–3/2013) SWAMPS time
series over the global and regional domains. Trends (1992–3/2013) were estimated by approximating
the slope of the least-square best fit-line derived from deseasonalized monthly mean anomalies.

Region FW Trend [km2/yr] Significance Strength [R]

Global ´14520 <0.001 ´0.65
Global excl. Coast ´4896 <0.001 ´0.28

Tropics (30S–30N) ´8772 <0.001 ´0.58
Tropics excl. Coast ´4104 <0.001 ´0.31

Tropical-America
(180W–25W) ´1404 <0.001 ´0.57

Tropical-America excl. Coast ´278 0.029 ´0.14

Tropical-Africa (25W–50E) ´5892 <0.001 ´0.57
Tropical-Africa excl. Coast ´4284 <0.001 ´0.45

Tropical-Asia (50E–180E) ´1476 <0.001 ´0.26
Tropical-Asia excl. Coast 449 0.168 0.09

Arctic-Boreal (> 50N) ´145 0.600 ´0.03
Arctic-Boreal excl. Coast 418 0.030 0.14

N-America (180W–0W, > 50N) 446 0.022 0.14
N-America excl. Coast 839 <0.001 0.41

Eurasia (0E–180E, > 50N) ´594 <0.001 ´0.21
Eurasia excl. Coast ´420 0.003 ´0.19

This 20+ year trend is driven primarily by a reduction of FW area in the Tropical-Africa
domain as this region shows the largest FW decrease relative to other regions. Subtracting the
monthly climatology from the monthly time series indicates that the overall area loss in this region
is influenced largely by strong losses from 1992 until mid-1996, with little or no indication of further
decline for the remainder of the observation period (Figure 14). The anomaly time series evolution
also plainly shows the influence of the Tb gridding difference as the FW record transitions from the
v1-to-v2 gridding schemes resulting in a sudden loss of FW area for v2-ASCAT when the coast is
added into the trend calculation. Because FW from v2-ASCAT located inland but closest to the coast
is likely wet-biased relative to v1, it is probably safe to state that the long-term drying trend for
the entire domain minus the coast of ´4900 km2/yr is slightly lower but not as low as with the
coast (´14,500 km2/yr). A very weak (R = 0.14) linear wetting trend (p = 0.03) of 400 km2/yr is
observed for the Arctic-Boreal (excl. coast) (Table 9). This trend is driven primarily by FW area gains
in North American which are partially offset by FW losses in North Eurasia. Low trend strengths
indicate strong year-to-year FW variability (Figure 14). Anomalous flooding in 2002 and 2007 in
the North Eurasian domain (Figure 14) coincides with results from the Ob River basin (Figure 11)
suggesting that FW variability in the Ob basin dominates variability for the entire North Eurasian
domain. Because both flood events occurred in the second half of the FW record, the long-term
drying trend observed for North Eurasia could have been larger without these events, which would
have offset the wetting trend for the entire Arctic-Boreal.
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Figure 14. Deseasonalized monthly FW extent anomalies for the combined v1-ERS (1992–1999),
v1-QSCAT (2000–2008) and v2-ASCAT (2009–3/2013) SWAMPS time series over the global and
regional domains. The deseasonalized anomalies are generated by subtracting the 22 year monthly
climatology (1992–3/2013) from individual monthly means.

Areas of widespread FW gain and loss are detected when the trend test is applied on a per
grid-cell basis (Figures 6d, 15 and 16 28-Day). For the period from 1992–2008 (Figures 6d and 15),
FW expanded moderately (FW > 0.1%/yr, p < 0.05) in the following areas: (1) Northern Nunavut
Province (Canada); (2) Tibetan Plateau; (3) Rio Cesar near confluence with Rio Magdalena (Colombia);
(4) Parana River north of Brazil’s Porto Primavera Dam; (5) Balbina Lake (Brazil); (6) Sudd wetland
(South Sudan); and (7) Asian river deltas, such as the Yangtze (China), Mekong (Vietnam), Chao
Phraya (Thailand), Irrawaddy (Burma) and the Ganges and Brahmaputra (Bangladesh). FW declined
in: (1) Western Siberian Tundra (Russia); (2) Northern Quebec south of Ungava Bay (Canada);
(3) Reservoir system of the upper Volga (Russia) and upper Missouri River including Lake Oahe,
Lake Sakakawea and Lake Fort Peck (USA); (4) Lake Mead and Lake Powell (USA); (5) Central
Mississippi River valley (USA) and (6) Central Yangtze River watershed (China). Pronounced FW
losses (FW < ´1%/yr, p < 0.05) are observed for many lake, floodplain and wetland bodies located in
semi-arid and subtropical regions, including: (1) Everglades (USA); (2) Salt Lake (USA); (3) Southern
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Parana River Floodplain (Argentina); (4) Upper Paraguay River including the Pantanal (Brazil);
(5) Sahel including the Inner Niger Delta (Mali); (6) Aral Sea (Uzbekistan, Kazakhstan); (7) Tigris and
Euphrates River (Iraq); (8) Lake Urmia (Iran); and (9) Lake Eyre (Australia). For the period from
2000–2008 (Figure 16 28-Day), FW expanded moderately at the following high-latitude locations:
(1) Cedar Lake west of Lake Winnipeg in Central Manitoba; (2) Hay-Zama Lake in Northeastern
Alberta; (3) LaGrande reservoir in Quebec; (4) Upper Lena River floodplain in Siberia; and (5) lakes
and wetlands west of the Putorana Plateau in Siberia. FW diminished in: (1) Alaska’s North Slope;
(2) Southern Nunavut Province; (3) South of Ungava Bay in Northern Quebec; (4) Newfoundland and
Labrador; and (5) Northern WSL (Russia).Remote Sens. 2015, 7 36 
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Figure 15. Trend maps of the annual FW means over Southeast Asia (10˝S–45˝N, 135˝E–55˝E),
South America (57˝S–19.5˝N, 33.5˝W–83˝W), North America (25˝N–80˝N, 50˝W–170˝W), Europe
(30˝N–75˝N, 40˝E–15˝W) and Central Asia (25˝N–80˝N, 120˝E–35˝E) as determined from combined,
v1-ERS (1992–1999) and v1-QSCAT (2000–2008) monthly means. The annual FW trend was
approximated from the slope of the least-square best fit-line and trend significance was assessed at
a minimum 95% (p < 0.05) probability level. Only statically significant trends are shown. Actual
figure color is a linear interpolation of the colors in the legend. Map projection same as Figure 2.
Distance covered by one degree of latitude is approximately 111-km.
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Figure 16. Same as Figure 15 but for the Arctic-Boreal as determined from v1-QSCAT (2000–2008)
monthly means. Daily FW was screened from potential wet snow contamination via a 28- and 14-day
long sliding mean time domain SWE filter. SWE filtering was not applied to FW for the 0-day retrieval;
only pixels identified as frozen snow were removed. Actual figure color is a linear interpolation of
the colors in the legend. All maps in northern hemisphere Equal-Area Scalable Earth (EASE) grids
projection with the North Pole at the center of the map. Distance covered by one degree of latitude is
approximately 111-km.

The grid cell-wise annual FW trend over the snow-impacted northern hemisphere is sensitive
to the time domain of the corresponding SWE filter (Figure 16). The changes in trend patterns are
largest for the 0-day screening; patterns for the 28-day screening are generally maintained using a
14-day screening method. The largest deviation relative to the 28-day version occurs for the 0-day
screening in western Russia and Eastern Europe. Notable deviations from the 28-day trend are also
visible in Alaska and Eastern Siberia, although confined to areas adjacent to the Bering Sea.

4. Discussion

4.1. FW Validation and Inundation Patterns

The most striking finding, in terms of FW evaluation and spatial patterns, was the high degree
of spatial agreement between the coarse-resolution SWAMPS and the high-resolution, independent
and global-scale FW observations (e.g., MOD44W and MODIS). This finding is in good agreement
with the FW product from AMSR-E [58] validated over the Arctic-Boreal [64], but not with GIEMS
whose FW estimates in central Russia either are low (e.g., in densely forested areas) or high (e.g.,
in the non-forested regions) [53]. We attribute the favorable accuracy of our retrievals across the
global domain to the mixture model approach and the strong sensitivity of the passive MW sensors
to landscape variations in surface dielectric constant caused by even a small water fraction. One
plausible explanation for the disagreement between SWAMPS and GIEMS, and the independent,
e.g., MODIS, observations, could be the lack of calibrated end-members and LC stratification,
and the inclusion of optical/NIR satellite data, a key input for wetland detection in GIEMS [51].
Aggregation of the finer scale optical/NIR observations to the coarser spatial scale of the passive
and active MW instruments and the enhanced sensitivity of optical/NIR sensors to surface water
signal contamination by vegetation and cloud cover could hamper GIEMS’ ability to detect small
water fractions in densely vegetated or frequently cloud covered regions, a limitation SWAMPS
does not possess due to its independence from visible/NIR data during signal un-mixing (Figure 1).
Differences between SWAMPS’ annual means and the independent FW maps over the global domain
mainly resulted from limitations to temporal and spatial coverage of the underlying satellite and
survey data utilized in generation of the independent FW maps. The correspondence between
MOD44W and SWAMPS was larger than the corresponding comparison against MODIS because
MOD44W was obtained from MW-based and visible/NIR-supported satellite observations of open
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water bodies [87], whereas MODIS excluding permanent wetlands was generated from vector-based
open water survey maps [108] whose accuracy depend on the quality and currency of the underlying
survey data. Lower MODIS accuracies relative to MOD44W along coastlines and large inland
water bodies apparently resulted from reported deficiencies in the World Vector Shoreline data for
shallow water bodies and coastlines representing areal surface water extents in the MODIS data
from 40 years ago [108]. Underrepresentation of water body extent by MODIS and MOD44W in
wetland-dominated area of the global domain plausibly could be explained by reduced open water
detection by visible/NIR and active microwave satellite sensors in emergent wetlands (i.e., water
bodies are covered by a layer of wetland vegetation), comprising herbaceous hydrophytes such as
sawgrass and cattail found extensively in the Everglades [107].

SWAMPS’ sensitivity to seasonal and annual FW variations is also demonstrated in the
comparison against river Q and P, a finding corroborated by other FW products [53,54,60,64].
However, the comparison of FW with river Q showed that the discharge cycle at the mouth of the
Amazon River leads inundation in the central Amazon River basin by approximately 2 months; FW
lagged river Q for the entire Amazon basin by 1 month. Although counterintuitive at first, this finding
apparently resulted from the delayed filling and drainage of the central Amazon River floodplain
relative to the rise and fall of the river. This observation is in agreement with previous findings from
the central Amazon River [30,31], but not with GIEMS documenting basin-wide peak FW ahead (by 1
month) of Q [54,109]. The FW cycles in the Okavango Delta lagged the Q cycle at Mohembo, Botswana
by 50 days consistent with the documented slow propagation of the flood wave and resultant delayed
expansion of inundation throughout the low-gradient and low-relief Okavango Delta [110].

Another notable finding was that the change in sensing frequency of the active MW input
data, limiting the time series extension of the GIEMS, did not cause a discontinuity in the ERS
and QSCAT-supported FW time series enabling us to examine a longer time record of observed
FW and associated trends spanning multiple passive and active MW satellite missions. We attribute
record continuity to multiple factors, including matching gridding schemes, separate mixture model
end-members and general good agreement between the backscatter temporal responses of the
incidence angle corrected C- and constant incidence angle Ku-band scatterometers to seasonal plant
dynamics. This finding is supported by our research results and those of others [43,45,48,111],
including L-to-X-band backscatter modeling experiments [112,113].

4.2. Trend Analysis and Sensitivity to Snow Screening

The grid cell-wise trend analysis indicated widespread wetting and drying trends
throughout the global domain. The observed trend patterns generally correspond with local field
studies [114–118]. Notably, the patterns detected did not appear to be randomly distributed but
coincided largely with the location of major wetland complexes, floodplains, rivers, lakes and
reservoirs [87,119–121]. For instance, negative surface water area trends overlapped with the
presence of major reservoir systems located in the USA which coincided with reports of ongoing
drought and associated declining reservoir levels, e.g., at Lake Mead and Lake Powell [118,122].
Smith et al. [116] noted disappearing Arctic lakes in the northern WSL which matched our
observations in the northern WSL and beyond (e.g., Western Siberian Tundra). Reports of pronounced
lake drying for shallow semi-arid lake bodies coincided with the detection of large negative FW trends
e.g., for Lake Urmia [114] and the Aral Sea [123] during the study period. Drainage of wetlands and
reservoirs through a combination of drought, increased water demands [124] and the abandonment
of irrigated areas following rural exodus and associated expansion of urban centers [125] apparently
explained the detection of negative FW trends for the Everglades and the central Yangtze River
watershed. The documented expansion of urban centers near major river deltas in Asia could have
contributed to the observed increases of inundation due to recent expansions of nearby irrigated areas
and construction of freshwater reservoirs [109]. The construction of reservoirs for hydroelectric power
generation resulted in the detection of FW gains, e.g., at Balbina Lake and LaGrande. LaGrande’s
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FW increase was documented by independent visible/NIR MODIS observations [126]. MODIS also
confirmed SWAMPS’ expansion for Hay-Zama Lake, Cedar Lake and surface drying for Quebec,
Newfoundland and Labrador, whereas disagreement exists in the northern Nunavut province which
shows drying for MODIS and wetting for SWAMPS. This discrepancy could be the result of a climate
change-induced reduction of large lakes and an increased presence of small water bodies in the
region. An increased presence of very small (<3 ha) water features in this region might have stayed
undetected in the MODIS [126] but was accounted for by SWAMPS. Lack of FW sensitivity in MODIS
in these regions likely stems from the methodology employed by Carroll et al. [87] which only allows
for the detection of lakes not smaller than the MODIS spatial resolution, whereas SWAMPS provides
water surface area as a fraction of total grid cell area regardless of the size of individual lakes, a
retrieval attribute not shared with GIEMS which depends on 8-km AVHHR visible/NIR reflectance
data for water body detection [51,54].

Although the grid cell-wise global analysis indicated significant FW wetting and drying trends,
results from the global and regional analyses were less clear but show that FW extent in Tropical
Africa declined in the early 90s while inundation in North American is still expanding, though at
a low rate relative to the large FW extent for this region. Results from other domains showed no
significant trends, although a weak drying trend was determined when the entire global domain was
considered. The overall lack of significant inundation trends was likely due to the spatial variability in
FW patterns where areas with gains were offset by regions with losses. Other important factors may
include the relatively short record period of the FW time series relative to the timescales of natural
climate variability, ecosystem buffering and climate change feedback processes [127]. However,
significant FW increases in North America, in particular across the northern Nanuvut province, are
likely due to the underlying warming trend in the region [128] where sub-surface thaw may have
changed the proportion of small-to-large lakes [129–133] in favor of smaller features [115] which
could have resulted in a net FW gain as recorded by SWAMPS and net loss for MODIS [126]. Our
finding in this region seems to be also supported by the geography of the area, because the region has
a large number of small lakes relative to other areas in the Arctic [119,126].

Potential FW contamination by wet snow over the northern hemisphere apparently affected the
grid cell-wise v1-QSCAT annual inundation trends. The v1-QSCAT annual trend patterns showed
large deviations in regions that have frequent winter warm (i.e., thaw) periods [70,99] and water-rich
snow packs.

4.3. FW Sensitivity, Limitation and Modeling Errors

One limitation of SWAMPS was the inability to detect standing water bodies underneath closed
forest canopies as was demonstrated here by comparing SWAMPS against the inundated forest
mappings of the longer wavelength PALSAR over the central Amazon basin. This result is in good
agreement with microwave theory for the frequency bands employed in derivation of SWAMPS [134]
and the FW product from AMSR-E reporting similarly strong canopy masking from this region [58].
GIEMS on the other hand offers FW areal extent 4–5 times as large in this region though it employs
a shorter wavelength passive MW channel for FW generation than SWAMPS [53]. GIEMS therefore
appears to overcome physical limitations which are not supported by microwave theory and the
results of other passive MW FW products including SWAMPS. We, therefore, must attribute the
mismatch between the FW products and GIEMS in the tropics and elsewhere to the basic and uniform
assumptions made for end-members in the linear mixture model of Prigent et al. [52], contrasting
the dynamic mixture model end-member calculations of SWAMPS and Jones et al. [59]. Despite
the limitation for FW detection under closed forest canopies, SWAMPS has demonstrated enhanced
sensitivity to FW detection in inundated, emergent wetlands comprising open plant canopies as was
demonstrated here by comparing the FW data against the MOD44W and MODIS mappings in five
global wetland sites. Agreement between seasonal peak FW and the MOD44W observation in the
Ob site was not coincidental. This is because satellite coverage by MOD44W for high latitudes
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(>60˝N) was from May to September during three years (2000–2002) of MODIS data, contrasting
the areas between 60˝S to 60˝N covered in February of 2000 by the SRTM mission [87]. Another
general limitation was that emergent vegetation was likely effective in attenuating the passive MW
signal leading to FW that was likely underestimated. This finding is based on our observation in
the Everglades during drought and fire in 2007 [135,136] where both FW records showed temporary
higher FW than indicated by the in-situ record. We argue that this discrepancy could have been due in
part to the drought/fire-induced removal of emergent vegetation, therefore exposing additional open
water surfaces as water levels began to rise relative to previous years; disagreement likely ended as
new vegetative growth breached the water surface [137]. Furthermore, detection of exposed wetlands
(e.g., bogs) that lacked surface inundation apparently was not possible with our approach as was
demonstrated here by comparing SWAMPS against the wetland mappings of the longer wavelength
JERS over Alaska. This result is consistent with the approach taken by Whitcomb et al. [88] which
takes advantage of the U.S. National wetlands inventory data to map wetlands with SAR. Water
ponding and flooding of waterlogged, arable land following heavy rainfall periods in Western Europe
could have explained the occurrence of small inundated areas during winter months [138] that were
not detected by the independent data. Interestingly, these areas were also detected by GIEMS, but
with FW that was 10–30 times as large, thus inadvertently biasing forward calculations of methane
emission for the region [16] including recent efforts of downscaling GIEMS [49,50,139].

SWAMPS produced erroneous high FW over limestone deposits in arid regions which caused
those locations to have more FW than shown by the independent data [87,108]. We attribute low
correspondence between SWAMPS and the independent maps to limitations of the mixture model
to capture characteristically large emissivity and backscatter gradients present within the barren and
sparsely vegetated LC employed in derivation of FW [42,98,140]. In other areas, SWAMPS produced
excessive FW before the onset of the rainfall season. This may have occurred because the model
apparently assumed the passive and active MW input data to increase and decrease, respectively, as
the region approached the end of the dry season, whereas, in reality, backscatter may have increased
because the effect of the vegetation was mostly attenuation of the signal returned by the underlying
soil. This situation was likely met in some grassland (e.g., Sahel) and agricultural areas (e.g., Europe)
comprising very rough soil surfaces. Post-product screening indicated that modeling errors should
be expected in these regions.

4.4. Future Needs for Observations

The passive and active MW sensors employed in generation of SWAMPS were not specifically
designed for mapping FW which hampered our ability to generate a temporally consistent and
spatially comprehensive long-term FW record. The sensors employed have been providing
over-ocean atmospheric information with temporal and spatial accuracies sufficient for weather
forecasting and analysis and climate evaluation [84,85]. The relatively coarse spatial resolution
of the 19 GHz Tb footprints, the inherent geolocation errors and incompatibility between the v1
and v2 gridding procedures currently limit our ability to quantify sub-grid scale FW heterogeneity
and FW more consistently over the entire study domain and record period length. Moreover,
SSM/I and SSMI/S are restricted to relatively high frequencies (ě19 GHz) which limited wetland
detection to inundated surfaces comprising open plant canopies. Complementary FW information
at lower frequencies (<19 GHz) with enhanced sensitivity to inundated vegetation is available from
AMSR-E [60] and AMSR2.

SWAMPS primarily uses available long-term records of existing polar orbiting MW sensor which
achieve a mean temporal sampling of 3 days or better north of 55˝N and 5 days or better elsewhere;
temporal sampling of these observations and associated FW temporal accuracies are reduced at lower
latitudes due to diverging polar orbital swaths. Temporal repeat varies considerably with sensor
inputs and associated sensor swath coverage. Due to alignment of A.M. and P.M. orbital passive and
active MW swaths, temporal repeat is highest for FW derived from the v1-QSCAT overlap period
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(7/1999–4/2009). Temporal sampling and FW accuracy is also reduced for areas with frequent, large
precipitation events due to data loss from the screening of precipitation events and erroneous FW
attributed to precipitation induced shifts in σ0 and Tb missed by the precipitation screening process.
Moreover, differences in surface mineralogy and associated Tb and σ0 variability in semi-arid and
arid regions were not accurately captured by the single barren LC map employed in derivation of
FW. Therefore, global-scale LC maps capable of resolving surface mineral variations in semi-arid
and arid regions are needed to improve results. PALSAR or Sentinel-1 SAR observations combined
with AMSR2 provide concurrent, high-resolution global active and low-resolution passive C-band
MW data with the prospect to sense inundation conditions through light vegetation cover. These
additional assets allow for future improvement of SWAMPS, including enhanced spatial resolution
and accuracy, improved radiometric resolution, and potential discrimination of inundated and
saturated wetlands which, in turn, will benefit carbon modeling efforts, particularly for methane
emissions [8,14,16,27,141–143]. Moreover, the development of multi-decade inundation records is
instrumental for assessing methane model responses to climate change [19].

5. Summary and Conclusions

We developed a daily and multi-year (1992–2013) inundated land surface data record at a 25-km
resolution global and northern hemisphere EASE-grid projection. The resulting product known as
SWAMPS is the global time series inundated area fraction dataset component of the NASA fractional
open water and Inundated Wetlands (IW) Earth System Data Record (ESDR) available online [144].
Passive microwave data from the SSM/I and the SSMI/S, and microwave radar backscatter from ERS,
QSCAT and ASCAT provided the basis for the construction of this global time series inundated area
fraction dataset. Currently, the data record extends from 1 January 1992 to 31 March 2013, is global
in extent, provided for land area for periods with non-frozen surface conditions, no snow cover, and
during times with no precipitation.

SWAMPS was extensively compared to independent and non-dynamic open water and
inundated area satellite products from MODIS including Wetlands, MOD44W, JERS-1 and
ALOS-PALSAR. The comparisons indicated high spatial agreement globally and regionally, with FW
sensitivity primarily to open water bodies (e.g., lakes) and inundated wetland vegetation comprising
open plant canopies (e.g., sawgrass marsh). The relatively high accuracy of SWAMPS over the global
and regional domains was largely attributed to the land cover-specific parameterization supporting
implementation of a dynamic mixture model and the strong sensitivity of the passive MW sensors to
landscape variations in surface dielectric constant caused by even a small water fraction.

Our results demonstrated that SWAMPS has no documented sensitivity to detect water standing
under closed forest canopies, which is consistent with the high-frequency bands used in derivation
of SWAMPS. SWAMPS did not differentiate between individual lakes, wetlands and other surface
water which has implications for assigning methane emissions accurately [16]. Exposed wetlands
lacking surface inundation were not resolved. Therefore, to improve the thematic content of
SWAMPS, one must carefully combine SWAMPS with wetland inventories and/or high-resolution
SAR. Surface water fraction can be greater than that provided by MODIS, MOD44W, JERS-1 and
PALSAR because of seasonally varying flooding and canopy masking effects in inundated areas with
emergent vegetation. Canopy masking can lead to mixed visible/NIR and intermediary backscatter
signals that are comparable to non-inundated vegetation signatures. Surface water fraction can also
be greater than static estimates because of temporary surface water ponding on saturated and frozen
soils. Our measurement of the average annual maximum inundated area of 124.7 ˆ 105 km2 for
the global domain was in good agreement with independent global inventories (123.7 ˆ 105 km2

(MOD44W), 124.9ˆ 105 km2 (MODIS including Wetlands)). SWAMPS showed sufficient sensitivity to
seasonal and annual surface water variations as demonstrated in the comparison against independent
records of river discharge and basin-averaged precipitation within eight major global river basins.
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The total annual inundation extent for the global domain excluding the coast was largely stable
over the 22-year-long study period. Regionally, inundation in North America is advancing while
inundation appears on the retreat in Tropical Africa and North Eurasia. The grid cell-wise trend
analysis indicated widespread wetting and drying trends coincident with local field studies. The
mixture model employed in derivation of SWAMPS has limitations when applied to semi-arid and
arid regions with associated retrieval errors (e.g., excessive FW) being common in these regions.
A quality control map was developed to provide a probabilistic indicator of estimated retrieval
confidence relative to daily sensor coverage, land cover composition, topographic variability and
the likelihood of correctly identified seasonal wet and dry cycles. SWAMPS provides a consistent
and long-term global record of daily surface water fraction dynamics, with documented accuracies
suitable for hydrologic assessment, global change-related investigation, and a variety of other
research applications that utilize information on surface water dynamics. Realistic inundation
dynamics derived from SWAMPS and its predecessors have already demonstrated to improve
methane emission simulations [14,19] and were instrumental in driving the distribution gradient of
vector-borne diseases [145].
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