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Abstract: The availability of water surface inundation with high spatial resolution is of fundamental
importance in several applications such as hydrology, meteorology and ecology. Medium
spatial resolution sensors, like MODerate-resolution Imaging Spectroradiometer (MODIS), exhibit
a significant potential to study inundation dynamics over large areas because of their high
temporal resolution. However, the low spatial resolution provided by MODIS is not appropriate
to accurately delineate inundation over small scale. Successful downscaling of water inundation
from coarse to fine resolution would be crucial for improving our understanding of complex
inundation characteristics over the regional scale. Therefore, in this study, we propose an innovative
downscaling method based on the normalized difference water index (NDWI) statistical regression
algorithm towards generating small-scale resolution inundation maps from MODIS data. The
method was then applied to the Poyang Lake of China. To evaluate the performance of the
proposed downscaling method, qualitative and quantitative comparisons were conducted between
the inundation extent of MODIS (250 m), Landsat (30 m) and downscaled MODIS (30 m). The results
indicated that the downscaled MODIS (30 m) inundation showed significant improvement over
the original MODIS observations when compared with simultaneous Landsat (30 m) inundation.
The edges of the lakes become smoother than the results from original MODIS image and some
undetected water bodies were delineated with clearer shapes in the downscaled MODIS (30 m)
inundation map. With respect to high-resolution Landsat TM/ETM+ derived inundation, the
downscaling procedure has significantly increased the R2 and reduced RMSE and MAE both for
the inundation area and for the value of landscape metrics. The main conclusion of this study is
that the downscaling algorithm is promising and quite feasible for the inundation mapping over
small-scale lakes.

Keywords: terrestrial surface water; inundation; downscaling; NDWI; statistical regression
algorithm

1. Introduction

Terrestrial surface water, as a fundamental component of the global water cycle, is key to
hydrology, ecology and meteorology [1–3]. It is also crucial for terrestrial life and the human
environment as a resource for water consumption, agriculture, and industry [4]. Therefore,
accurate spatio-temporal representation of terrestrial surface water is of significant importance for
management and conservation of water resource and other hydrology services associated with

Remote Sens. 2015, 7, 15989–16003; doi:10.3390/rs71215813 www.mdpi.com/journal/remotesensing



Remote Sens. 2015, 7, 15989–16003

freshwater [5–7]. Traditionally, the detection of terrestrial water surface relies on in situ gauge
measurements and hydrological models. These methods, however, cannot provide an overall
distribution pattern on a regional scale since their low efficiency or sometimes absence in inaccessible
regions [8].

In recent years, the development of remote sensing has presented us with new methods of
surface water inundation observation. These include multispectral, synthetic aperture radar (SAR),
and passive-microwave observations [9–11]. In particular, some of the high spatial resolution
multispectralimagery (e.g., Landsat TM/ETM+, SPOT, ASTER and ALOS) make it possible to
accurately detect and delineate the water body information [12–15]. However, the routine inundation
monitoring with high spatial resolution multispectral data is difficult due to narrow scanning
coverage and the long return period between successive satellites overpasses [10,16]. High temporal
resolution multispectral data including MODIS and AVHRR have therefore been widely used to
conduct routine inundation monitoring in mesoscale [17–20], but when focusing on regional scale,
their coarse spatial resolution is a common drawback [21,22]. The overall uncertainty of these
measurements is ~6%–13% for small lakes [23], which identified coarse spatial resolution imagery’s
inability to detect small inundated regions. Hence, the trade-off between spatial and temporal
resolution of satellite data presents a dilemma for us to capture the inundation changes at small
scales. With the development of remote sensing technique, downscaling becomes an attractive option
to overcome this limitation [24].

Downscaling is defined as an increase in spatial resolution following disaggregation of the
original dataset [25]. Recently, several researchers have begun to investigate the downscaling method
to disaggregate the inundation information using coarse remote sensing data [7,26,27]. Two main
methods have been used so far for the downscaling of surface water inundation. The first general
method uses digital elevation model (DEM) information to distribute the inundation extent at
a finer scale [21,28,29]. The second method utilizes probability statistical and image-processing
technique. The probability statistical methodology first derives the inundation probability at a low
resolution dataset. Then, a seeded region growing segmentation process is used to redistribute the
inundated area at the finer resolution [7]. However, most of these methods have some technical
limitations. For one thing, extra independent measurements of hydrological information are required,
making the approach less ideal for extensive and real-time monitoring. For another, most of these
methods mainly applied in global or large scale, which have not been applied locally. Likewise,
these methods are maladapted to the fine scale hydrological processes, because many hydrological
activities particularly occur at a finer spatial/temporal scale over a period of a couple of days.
Likewise, the coarse resolution imagery (e.g., MODIS) is far from meeting the needs of operational
flood/drought detection and assessment [21]. Therefore, it is of great importance to develop a method
to downscale the satellite-based inundation at small spatial/temporal scales.

In addition, effectiveness evaluation of downscaling method is of importance for the practical
applications. How well a downscaling method fits the observed data usually is determined by
comparisons of downscaled values with observations [30]. Currently, several evaluation criteria
(e.g., root-mean-squared error, standard deviation, commission error, omission error, and overall
accuracy) are available to assess the performance of downscaling results [7,31]. These criteria are
simple to calculate and almost always discussed in basic statistics [32]. Unfortunately, they suffer
from limitations that make them poor measures of model performance since they ignore the spatial
pattern characteristics of downscaled results [33]. Up to present, there is no study available to address
the evaluation of robustness or performance of spatial pattern for a downscaling method.

Given this background, the goal of this study is to propose and test an innovative
downscaling algorithm with pixel-based inundation. This goal will be addressed through the
following primary objectives: (1) to develop a downscaling algorithm using a statistical regression
algorithm scheme for generating small resolution inundation map from MODIS (250 m resolution)
data; (2) to evaluate the efficiency of this approach based on quantitative and landscape-level
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comparison with coincident high resolution data. The study is organized as follows. Section 2
details the downscaling methodology and evaluation. Section 3 describes the study materials and
data processing. Section 4 states and evaluates the downscaled results. Section 5 concludes and
discusses the study.

2. Methodology

This chapter describes the methodology, including water body delineation, downscaling
procedures and how we evaluate the proposed downscaling method. The detailed descriptions are
as follows.

2.1. Water Delineation Method

Water surfaces are some of the most discernible targets in remote sensing due to their special
spectral characteristics [34]. Electromagnetic energy is strongly absorbed by water, and this
absorption is even stronger for near infrared (NIR) bands [35]. The combination of the green and NIR
bands can differentiate water surface from most terrestrial features. McFeeters (1996) transformed
thedigital number (DN) values of the two bands into a normalized difference water index (NDWI):

NDWI “
DNGreen ´ DNNIR
DNGreen ` DNNIR

(1)

where DNNIR and DNGreen indicate the DN value in the NIR and green bands of remote sensing
imagery, respectively. In general, the acquired NDWI ranges from ´1 to 1. Water features
have positive values, whereas soil and terrestrial vegetation features have zero or negative
values [35]. In this study, we selected NDWI to delineate water inundation, because this index
has been demonstrated to be more efficient in the detection of water surfaces comparing to other
algorithms [15]. Generally, the computed NDWI images present relatively homogeneous regions
for water or non-water features, and NDWI histogram exhibits two different peaks with a valley
in-between. According to the NDWI histogram, an optimum threshold value could be selected as
the valley point. Then, surface water inundation extent can be delineated through segmentation
algorithm based on selected optimal NDWI threshold [34].

2.2. Downscaling Method: ALinear Calibration of the Coarse Resolution NDWI towards Fine
Resolution NDWI

In this study, the downscaling method was generated by the NDWI-based statistical regression
between coincident data from high-resolution data and low-resolution imagery. The method is based
on the assumption that the relationships between fine resolution (e.g., Landsat TM/ETM+) and
coarse resolution (e.g., MODIS) are linear and constant over time. The relations were then used at
a coarse scale to generate more detail in the NDWI grids. Mathematically, the NDWI-based statistical
regression method can be described as

NDWIFine
i,j,t “ ai,j¨NDWICoarse

i,j,t ` bi,j (2)

where NDWIFine
i,j,t and NDWICoarse

i,j,t are the fine and coarse resolution NDWI, respectively, at time
t and location (x, y), and ai,j and bi,j are the corresponding regression coefficients. The procedure
consisted of three steps (Figure 1): Firstly, the data set of coarse resolution NDWI (NDWICoarse

i,j,t ) is

resampled to match the resolution of NDWIFine
i,j,t . Secondly, the aggregated NDWICoarse

i,j,t are plotted

against the NDWIFine
i,j,t , and a linear regression model is established for each grid. After that, other

coarse NDWI data are taken as the independent variable and are downscaled using the constructed
regression models.
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Figure 1. Schematic of downscaling algorithm used in this study. 
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Figure 1. Schematic of downscaling algorithm used in this study.

2.3. Evaluation Criteria

Currently, theevaluation criteria of the performance of a downscaling method are based on
Root-Mean-Squared Error (RMSE), standard deviation, overall accuracy and so on [7,31]. These
criteria are used to qualitatively evaluate the performance of downscaling method, which cannot
depict the robustness or performance of spatial pattern for the water inundation extent. To
comprehensivelye valuate the reliability of the presented downscaling method, we introduce the
landscape metrics evaluation criterion of landscape-level comparison in addition to the traditional
evaluation criterion of quantity-level comparison.

2.3.1. Quantity-Level Comparison

To evaluate the performance of the proposed downscaling method, the downscaled inundation
results were compared to quasi-simultaneously acquired Landsat TM/ETM+ data. These evaluation
statistics were quantified by coefficient of determination (R2), Mean Absolute Error (MAE), and
Root-Mean-Squared Error (RMSE). The coefficient of determination ranges from 0 to 1, with higher
values indicating better agreement.In addition, the agreement between the downscaled inundation
maps and original MODIS (250 m) derived inundation maps was also captured through a confusion
matrix from which omission error, commission error and overall accuracy were calculated [30,31].
The values for these evaluation criteria range from 0% to 100%, and the higher the overall accuracy
the more perfect the delineation is for the water surface inundation [7].

2.3.2. Landscape-Level Comparison

Landscape metrics can be used as indicators for describing, characterizing and quantifying the
pattern and configuration of landscape structures on various spatial scales [36–38]. Many landscape
metrics are correlated and exhibit statistical interactions with each other [39]. It has been a challenge to
choose the proper landscape metrics that would reflect the landscape properties. To further validate
the spatial pattern efficiency of the downscaled inundation results, we selected a subset of metrics
comprising a minimum set to adequately describe landscape pattern. In this study, the selection
of optimal metrics was based on the conceptual basis of a key element in pattern measures [40].
Robert and Trani demonstrated that six main factors (i.e., area, classes, proportion of dominant class,
polygons, polygon size variance, edge length and elevation range) encompass most of the landscape
pattern [41]. In our case, there is only a sole water body landscape to investigate. Therefore, the above
properties may be described by patch number, edge metrics, shape metrics and aggregation index.
These metrics have also been proven useful for describing and comparing the spatial pattern of water
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body [42,43]. Number of patches (NP) could serve as a good spatial subdivision index of the entire
landscape [44]. The water body with greater patches would have more spatial subdivision. Edge
density (ED) metrics usually are the best considered as representing landscape configuration [40].
Mean patch fractal dimension index (FRAC_MN) and shape metrics (PARA_MN) could reflect the
complexity of the shape of patches [44]. To increase the reliability of the measure of heterogeneity,
aggregation index (AI) was also chosen to measure the connectivity of water body. Table 1 provides
a brief description of the landscape metrics used in this study.

Table 1. A summary of the landscape metrics that were used to evaluate the proposed downscaling
algorithm in this study.

Landscape Metrics Metric Description Units Equation

Number of Patches
(NP)

number of patches in the
water body NA NP “ n

Edge Density (ED)

the sum of the lengths (m)
of all edge segments in the
landscape, divided by the
total inundation area(ha)

m/ha
ED “

řm
k“1 ek
A

(10,000)
ek: total length of edge
A: total landscape area

Fractal Mean
Number

(FRAC_MN)

an area-weighted mean of
the fractal dimension

index for each patch in the
inundation class

NA
FRAC_MN “

2lnp0.25piq

lnai
Pi: perimeter of patch i;

ai: area of patch i.
Mean

Perimeter-to-Area
(PARA_MN)

the mean ratio of the patch
perimeter (m) to area (m2) NA PARA_MN “

pi
ai

Aggregation Index
(AI)

number of like adjacencies
involving the

corresponding class,
divided by the maximum
possible number of that.

Percentage

AI “ r
g

max Ñ g
sp100q

g: number of like adjacencies
between pixels of water patch;
max Ñ g : maximum number
of like adjacencies between

pixels of water patch.

3. Materials and Data Processing

3.1. Study Area

We selected the Poyang Lake as the application region. The lake is located within the Poyang
Lake Basin, which is a tributary of the Yangtze River in China (Figure 2). It is the primary component
of the Poyang Lake wetland, which was included in the first batch of the Ramsar Convention List of
Wetlands of International Importance [45]. Poyang Lake is 173 km long from north to south, with
a lakeshore of 1200 km and an average water depth of 8.4 m [46]. As shown in Figure 2, water
from the XiuheRiver, GanjiangRiver, FuheRiver, XinjiangRiver and RaoheRiver flows into the Yangtze
River through this lake. PoyangLake has a seasonal, reverse-flow system from the Yangtze River
which greatly contributes to the complexity of its yearly inundation variation [47]. In high-water
period (April–September), the five tributaries are flooded due to concentrated rainfall, resulting in a
maximum lake surface of over 3000 km2 [48]. While in low-water period (October–March), the lake
forms a remarkably scattered distribution of water body. At that time, the lake loses as much as 90%
of its water, and water surface shrinks to less than 1000 km2 [46]. These complex water characteristics
provide a more thorough test for the downscaling method.
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Figure 2. Location of the study area (PoyangLake) in this paper. The lake locates in the Hunan 
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Figure 2. Location of the study area (Poyang Lake) in this paper. The lake locates in the Hunan
Province of China with the area of 3903 km2.

3.2. Data Acquisition and Processing

MODIS Level-1B data (MOD02_QKM and MOD02_HKM) of the Poyang Lake from 2000 to 2012
were acquired from NASA Goddard Space Flight Center (GSFC) (http://ladsweb.nascom.nasa.gov).
A total of 466 cloud-free images were used in this study (Table 2). MOD02_QKM and MOD02_HKM
datasets contain Level-1B calibrated and geo-located radiances for visible and near infrared (NIR)
band. MOD02_HKM was extracted for digital number (DN)values in green band (0.54–0.57 µm) at
500 m resolution, and MOD02_QKM was extracted for DN values in NIR band (0.84–0.88 µm) at
250 m resolution. MODIS green band was resampled into 250 m to match the resolution of MODIS
NIR band. All the acquired MODIS images were projected onto the Universal Transverse Mercator
(UTM) with a World Geodetic System (WGS-84) datum.

In addition, 55 scenes (high-water period: 24; low-water period: 31) of cloud-free Landsat
TM/ETM+ images with same overpass time as MODIS data were selected for downscaling the
lower-resolution (250 m) MODIS observations. The Landsat series data were acquired from the
Global Land Cover Facility (GLCF) (http://glcf.umd.edu/data/landsat/), and have a finer spatial
resolution of 30 m. It should be noted that the Scan Line Corrector (SLC) compensating for the
forward motion of the satellite in the ETM+ sensor failed on 31 May 2003. In this study, we used
an available gap-filling extension toolbox (landsat-gapfill.sav) in the ENVI software to remove stripe
noises for SLC-off images [49]. TM/ETM+ band 2 (green band) and band 4 (NIR band) were used
to delineate the relative accurate lake surface. To ensure spatially matched dataset, all images were
co-registrated to each other with a root mean square error (RMSE) within 0.5 pixels.

Table 2. Terra MODIS and Landsat MSS/TM/ETM+ images used in this study.

Satellite Imagery Spatial
Resolution (m)

Spectral
Resolution (µm) Band Temporal

Coverage Scene

EOS-Terra MOD02_HKM 500 Green: 0.54–0.57 4

2000–2012
466

MOD02_QKM 250 NIR: 0.84–0.88 2

Landsat TM/ETM+ 30 Green: 0.52–0.60 2 55
NIR: 0.76–0.90 4

Figure 3 shows the detailed data processing flow. In each grid of the acquired MODIS
and Landsat TM/ETM+ imagery, the NDWI was first calculated using Equation (1). Secondly,
MODIS NDWI was resampled to match the resolution of Landsat TM/ETM+ NDWI using a nearest
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neighbor method. For the calculated 55 scenes of Landsat NDWI data, 35 of which combined
with quasi-simultaneously acquired MODIS NDWI were then selected randomly (high-water period:
16 scenes; low-water period: 19 scenes) for constructing the regression function at each 30 m
grid according to Equation (2). From these regression functions, the coefficients ai,j and bi,j were
obtained, and the MODIS NDWI was downscaled over the entire study period. Finally, the
remaining 20 scenes were used for efficiency assessment of the proposed method. The specific
processing program consists of three steps, described in the follow sections: (1) Delineate the water
surface inundation using threshold segmentation algorithm for original Landsat_NDWI (30 m),
simultaneous MODIS_NDWI (250 m) and downscaled Landsat_NDWI (30 m); (2) According to
delineated inundation, calculate the five landscape metrics (NP, ED, FRAC_MN, PARA_MN and AI)
at the class-level through the Fragstats 4.2 software (McGarigal and Marks, 2002); (3) Qualitatively
and quantitatively (by R2, MAE, RMSE and landscape metrics) compare downscaled inundation
results with the original Landsat and MODIS inundation results.
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low-water period (Figure 4d), some rivers and sub-lakes in PLNNR show bad consistency in shapes 

and sizes, and some inundated water bodies cannot be observed. While through downscaling, the 

spatial visual pattern of the inundation results of downscaled MODIS (30 m) (Figure 4b,e) and 

original Landsat (30 m) are highly matched to each other, although there is a slight difference. All 

downscaled MODIS inundation extents are improved compared to the original MODIS results in 

terms of inundation spatial distribution. Some undetected water bodies in Figure 4a,d can also be 

Figure 3. Processing scheme in this study. Boxes with rounded corners represent inputs/outputs, and
rectangles show methodological steps.

4. Results and Discussion

To comprehensively evaluate the accuracy of the proposed downscaling method and its
reliability, qualitatively and visually interpret was first performed for inundation results. For this
purpose, two different inundation scenarios are compared in this study (Figure 4). One is the
high-water period of 30 September 2005 (top images in Figure 4). The other is the low-water period of
6 February 2003 (bottom images in Figure 4). Three columns in Figure 4 are inundation observations
from the original Landsat (30 m), MODIS (250 m) and downscaled MODIS (30 m), respectively.
Compared with original Landsat (30 m) inundation results (Figure 4c,f), MODIS (250 m) inundation
results (Figure 4a,d) show the deficiency of inundation observations. Especially in the low-water
period (Figure 4d), some rivers and sub-lakes in PLNNR show bad consistency in shapes and sizes,
and some inundated water bodies cannot be observed. While through downscaling, the spatial visual
pattern of the inundation results of downscaled MODIS (30 m) (Figure 4b,e) and original Landsat
(30 m) are highly matched to each other, although there is a slight difference. All downscaled MODIS
inundation extents are improved compared to the original MODIS results in terms of inundation
spatial distribution. Some undetected water bodies in Figure 4a,d can also be clearly observed.
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It indicated that the downscaling technique can effectively capture the sub-grid’s spatial distribution
of water inundation within the MODIS pixel. Apart from visual interpretation, several pixel-based
spatial accuracy metrics were also calculated to measure their agreement or disagreement. In general,
MODIS (250 m) derived results underestimate the extent of water surface inundation compared to
that of Landsat (30 m). Taking the high-water period (30 September 2005) as an example, omission
error is significantly reduced from 8.52% at 250 m to 2.47% at 30 m. Commission error is reduced
slightly from 1.24% to 0.91%. Likewise, overall accuracy increases from 92.12% to 95.37%, indicating
a satisfactory result.
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Figure 4. Qualitative comparisons of the delineated inundation extent among the images from,
MODIS (250 m) (left column), downscaled-MODIS (30 m)(middle column) and Landsat (30 m)
(right column) in Poyang Lake. Subfigure indicates the enlarged inundation condition in Poyang
Lake National Nature Reserve (PLNNR). The top images (a–c) are acquired from the high-water
period of 30 September 2005. The bottom images (d–f) are acquired from the low-water period of
6 February 2003.
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Figure 5a is the line chart among the MODIS_NDWI derived inundation area, Landsat_NDWI
derived inundation area and downscaled_NDWI derived inundation area from 2000 to 2012. In
general, the downscaled results show good agreement with the original Landsat TM/ETM+ and
MODIS derived results. That is to say, the downscaled results could effectively capture the similar
inundation area with the high resolution remote sensing data. Judging from the magnitude of
inundation, downscaled inundation area overall appears to be lower than the original Landsat
derived area, but higher than the MODIS derived inundation area. However, it should be
noted that the downscaled area appears to be higher than the Landsat derived area during some
extreme low-water periods (e.g., 2007007 and 200915). This uncertainty may stem from several
possible sources associated with the proposed downscaling method, including the co-registration
between MODIS and Landsat images and the different thresholding processes for original and
downscaled NDWI.Remote Sens. 2015, 7, page–page 
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Figure 5. Quantity-level comparison results of the delineated inundation area. The top figure
(a) shows time series for the MODIS-derived, Landsat-derived and MODIS downscaled inundation
area from 2000 to 2009. The bottom figures show the performance of the downscaling methods: the
vertical axes show the Landsat_NDWI derived inundation area. The horizontal axes show (b) the
MODIS_NDWI derived inundation area, and (c) the downscaled MODIS_NDWI derived inundation
area. The perfect agreement line (1:1) and linear regression lines are also plotted.
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Figure 5b,c show the scatter plots of Landsat TM/ETM+ derived inundation area versus those
from MODIS derived and downscaled MODIS derived inundation area. It clearly shows that a
strong correlation between the downscaled MODIS derived area and the original Landsat TM/ETM+
derived area. The downscaling procedure has increased the R2 (from 0.909 to 0.926) and reduced
RMSE (from 465.57 km2 to 255.56 km2) and MAE (from 406.08 km2 to 216.88 km2). In addition,
the scatter points between Landsat-derived and downscaled MODIS-derived inundation area better
concentrate along the line of 1:1, indicating that the downscaled MODIS inundation is of higher
accuracy than that the original MODIS inundation and the downscaling approach is very promising.

To further quantitatively evaluate the spatial reliability of the downscaled high-resolution
inundation map, the selected five landscape metrics were calculated for different resolution images.
The corresponding evaluation results are given in Table 3, whereas scatter plots of different landscape
metrics between Landsat (30 m) inundation and MODIS (250 m/30 m) inundation are illustrated in
Figure 6. As shown in Table 3, there is notably considerable lower R2, high RMSE and MAE between
original Landsat (30 m) inundation and MODIS (250 m) inundation for all selected five landscape
metrics. However, these statistical values between Landsat (30 m) and downscaled MODIS (30 m)
inundation are changed. Specific changes include: increase in R2 (NP: 0.144 to 0.914; ED: 0.147 to
0.556; FRAC_MN: 0.180 to 0.673; PARA_MN: 0.069 to 0.323; AI: 0.279 to 0.515), while there is a great
reduction in RMSE and MAE (see in Table 3). This is also supported by the scatter plot diagrams of
Figure 6. It indicated that the downscaled inundationmap can reproduce the spatial pattern of the
original Landsat (30 m) inundation to a greater degree than the MODIS (250 m) inundation.

Furthermore, we examine the downscaling behavior of landscape metrics in an attempt to
better evaluate the proposed downscaling method. Firstly, NP is the number of patches in the
water inundation, which could quantify information regarding patch size and distribution. Through
downscaling, the results showed that the mean NP increased from 238 to 3856. To some extent,
a landscape with more patches would have greater spatial fragmentation. Therefore, this change
indicates that the water body landscape becomes more spatially segregated when the MODIS (250 m)
downscaled to 30 m. Likewise, the change in mean NP can be attributed more to the overall decrease
in pixel size.

Secondly, edge density (ED) metric is total length of edge per unit area, which serves as a good
spatial configuration index of the entire landscape. Correspondingly, ED metrics quantify length
and distribution of the amount of edge between patches. Whendownscalingis applied, average
edge density grew from 1.72 m/ha to 6.08 m/ha. This variation indicates that the water body
landscape becomes more spatially heterogeneous after downscaling from 250 m to 30 m, similar to
that demonstrated by patch number.

Thirdly, FRAC_MN metric is the mean patch fractal dimension of water body patches within the
landscape. FRAC_MN is a shape complexity measure, which approaches 1 for shapes with simple
perimeters and 2 for complex shapes. According to the results, there was a slight increase from 1.03 to
1.06 in average FRAC_MN. The mean shape index values for the patches in downscaled inundation
are greater than original MODIS inundation, indicating that many water patches are irregularly
shaped through downscaling. This is also supported by the mean PARA_MN metric (the mean ratio
of the patch perimeter to area). It provides a measure of shape irregularity. Whendownscalingis
applied, average PARA_MN value also greatly increased from 110.14 to 853.61. The change in
PARA_MN metric suggested the significant impacts on inundation spatial pattern, which could
effectively depict the detailed inundation information.
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Table 3. Statistical measures of spatial reliability evaluation for the downscaling method.

Landscape Metrics Average Value Landsat (30 m) versus
MODIS (250 m)

Landsat (30 m) versus
Downscaled-MODIS (30 m)

2-10 MODIS
(250 m)

MODIS
(30 m)

Landsat
(30 m) R2 RMSE MAE R2 RMSE MAE

Number of Patches (NP) 238 3856 4014 0.144 3724.74 3618.58 0.914 318.89 270.68
Edge Density (ED) 1.72 6.08 7.45 0.147 4.42 4.36 0.556 1.54 1.38

Fractal Mean Number
(FRAC_MN) 1.03 1.06 1.05 0.180 0.023 0.022 0.673 0.005 0.004

Mean perimeter-to-area
(PARA_MN) 110.14 853.61 867.29 0.069 743.81 743.47 0.323 23.21 19.34

Aggregation index (AI) 89.53 96.57 97.23 0.279 7.64 7.03 0.515 1.16 1.02

Similar results were found for the aggregation index (AI). Aggregation index is the percentage
of neighboring pixel, being the same land class, based on single-count method. There was an
increase in average AI from 89.53% to 96.57% due to the downscaling process. This change
in average aggregation from low value to high value suggests that the water body landscape
became more connective after downscaling, because the downscaling process changed the factors
of landscape pattern.

In conclusion, the above results reveal that downscaling processes had significant effects on all
landscape metrics. The five landscape metrics (NP, ED, FRAC_MN, PARA_MN and AI) for original
MODIS-derived inundation were less obvious than those from downscaled inundation. The change
direction of the water body landscape has been towards the spatial pattern of Landsat (30 m). The
investigation showed that the original MODIS could only show general inundation information in
landscape pattern. However, the inundation extent from downscaled results could get details and
precise information for landscape analysis.

5. Conclusions

Terrestrial surface water is essential to terrestrial ecosystems and human civilization. Inundation
maps with accurate, high spatial resolution are crucial for improving our understanding of
regional-scale hydrology. In this study, we presented a novel downscaling method based on the
NDWI statistical regression algorithm to generate small-scale resolution inundation map from coarse
data. The downscaling is a linear calibration of the NDWI index from MODIS imagery to Landsat
imagery, which is based on the assumption that the relationships between fine resolution and coarse
resolution are invariable. The relationships were then used at a coarse scale to generate more
detail in the NDWI grids. The proposed method was tested over the Poyang Lake of China. To
evaluate the efficiency of the proposed algorithm, we make the qualitative (visual) and quantitative
(through statistical and landscape metrics) comparison between the delineated inundation at original
MODIS (250 m), Landsat (30 m) and downscaled MODIS (30 m). The results indicated that the
downscaled MODIS (30 m) inundation showed significant improvement over the original MODIS
observations when compared with coincident Landsat (30 m) inundation observations. Thus, a
number of conclusions can be drawn based on this work: (1) The downscaling algorithm developed in
this study is quite easily implemented and feasible. It can effectively capture the spatial details of the
inundation in Poyang Lake; (2) Landscape metrics provide valuable information for the interpretation
of landscape patterns, which can be used as novel measurements for evaluating the downscaling
method for water inundation. To the best of our knowledge, this is the first time landscape metrics
have been introduced into accuracy assessment of downscaled results. In addition, the presented
downscaling algorithm is generic in nature and is applicable to other small-scale lakes. Since two
MODIS instruments provided two daytime measurements per day. Even though, after removing the
cloud and vegetation contaminated scenes, there was many MODIS data available during a month.
Therefore, it is possible to obtain near-real-time and high-spatial-resolution inundation maps over
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small-scale lake with the proposed method, which is highly significant in regional flood/drought
dynamic monitoring and water resource assessments for decision-makers.
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