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Abstract: Along with the creation of new maps, current efforts for improving global land
cover (GLC) maps focus on integrating maps by accounting for their relative merits, e.g.,
agreement amongst maps or map accuracy. Such integration efforts may benefit from the use of
multiple GLC reference datasets. Using available reference datasets, this study assesses spatial
accuracy of recent GLC maps and compares methods for creating an improved land cover
(LC) map. Spatial correspondence with reference dataset was modeled for Globcover-2009,
Land Cover-CCI-2010, MODIS-2010 and Globeland30 maps for Africa. Using different scenarios
concerning the used input data, five integration methods for an improved LC map were tested and
cross-validated. Comparison of the spatial correspondences showed that the preferences for GLC
maps varied spatially. Integration methods using both the GLC maps and reference data at their
locations resulted in 4.5%–13% higher correspondence with the reference LC than any of the input
GLC maps. An integrated LC map and LC class probability maps were computed using regression
kriging, which produced the highest correspondence (76%). Our results demonstrate the added
value of using reference datasets and geostatistics for improving GLC maps. This approach is useful
as more GLC reference datasets are becoming publicly available and their reuse is being encouraged.
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1. Introduction

Multiple global land cover (GLC) maps have been produced over the past decades. These maps
are used for various applications such as climate modeling, food security, biodiversity, ecosystem
services and environmental monitoring [1]. Currently, GLC map production is progressing towards
higher resolution maps, namely the Land Cover-CCI (LC-CCI) maps at 300 m resolution and the Fine
Resolution Observation and Monitoring (FROM-GLC) and Globeland30 maps at 30 m resolution [2,3].
However, these maps were developed using different input data and methods [4], and as a
consequence, considerable disagreements amongst GLC maps have been found [4,5]. Despite efforts
in advancing GLC mapping approaches, the accuracy of GLC maps has not improved significantly
and continues to be around 70% [6]. Such accuracies mostly do not meet the requirements of GLC
map users [7] and thus, there is a need to improve GLC maps.

A common approach to improving GLC maps has been the integration of existing GLC maps
using a variety of methods [8,9]. In map integration, pixels are assigned to land cover classes
based on class labels from multiple GLC maps, sometimes in combination with other data sources.
For example, Jung et al. [8] created the SYNMAP by assigning the land cover (LC) class that multiple

Remote Sens. 2015, 7, 15804–15821; doi:10.3390/rs71215804 www.mdpi.com/journal/remotesensing



Remote Sens. 2015, 7, 15804–15821

GLC maps agreed upon. Iwao et al. [10] adopted a LC class favoured by the majority of GLC maps
and a LC class with highest accuracy in case of no majority. Tuanmu and Jetz [11] created a GLC
map specifically for biodiversity and ecosystem modeling applications by integrating the reported LC
class accuracies and the map resolution. Other researchers focused on map integration for cropland
and forest biomass datasets [12,13]. For example, Fritz et al. [13] created a 1 km global cropland
percentage map by integrating several cropland maps at global to national scales along with national
crop statistics. Ge et al. [12] generated a biomass map for Eastern Africa by fusing existing biomass
maps using weights associated with the accuracy of source maps. This approach was improved and
applied to a larger area to create an integrated pan-tropical biomass map using multiple reference
datasets [14].

Existing reference datasets that were built for calibrating and validating GLC maps can be
re-used in the integration of GLC maps. However, only a few studies have considered these datasets
for integration. For example, Kinoshita et al. [15] assessed the presence probability of LC classes using
logistic regression and the Degree Confluence Project (DCP) dataset and used this for integration.
See et al. [9] created hybrid GLC maps using Geo-Wiki reference data within a geographically
weighted kernel approach [16]. Similarly, Schepaschenko et al. [17] created a global hybrid forest
cover map based on different forest and land cover maps and a dataset collected though the Geo-Wiki
platform. The above studies made limited use of existing GLC reference datasets for integration and
reported improvements on the integrated maps. Currently, several GLC reference datasets are being
made accessible via the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD)
reference data portal and Geo-Wiki platform [18,19] and this enables assessment of their utility for
improving existing GLC maps.

The accuracy of GLC maps is often expressed in terms of global accuracies assessed from
statistical sampling. Global accuracies do not inform about spatial variability in map accuracy,
yet classification errors are not distributed evenly across the map [20]. Spatial variation of
map accuracy can be modeled using indicator kriging [21,22]. Carneiro and Pereira [20] and
Kyriakidis et al. [21] used indicator kriging to assess spatial accuracy of regional scale land cover
maps. These types of assessments require a large number of reference sample sites with a good
geographical spread, which explains why spatial variability of GLC map accuracies has hardly been
studied. However, See et al. [9] assessed spatial correspondence of GLC maps with the Geo-Wiki
volunteer based reference data using geographically weighted kernel approach. With the available
GLC reference datasets from the GOFC-GOLD and Geo-Wiki platform, the number of reference
sample sites increases substantially and a combined reference dataset could be used to model the
spatial variability of accuracy of large-scale LC maps.

The objective of this paper is to analyze and compare the spatial correspondence of recent
GLC maps and to integrate available GLC maps and reference datasets for generating a LC map
with improved correspondence to reference LC. Firstly, we assess the spatial correspondence of the
recent GLC maps for the year 2010 ˘ 1 with available GLC reference data. Our analysis involved
the Globcover 2009, LC-CCI 2010, MODIS 2010 and Globeland30 maps. The assessment focuses on
Africa—a continent with complex heterogeneous landscapes that are known to causes inconsistencies
among GLC maps [23,24]. Secondly, we test five different integration methods to create an improved
LC map. Three of these methods are based on integration of GLC maps and reference datasets, one
method is based on the GLC maps only and the other method is based on the reference datasets
only. We assess the performance of the integration methods by cross-validation. Finally, we create
an improved LC map using the method selected by cross-validation and discuss the use of available
reference datasets for integration.
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2. Data

2.1. Global Land Cover Maps

The GLC maps included in this study are: Globcover, LC-CCI, MODIS and Globeland30 maps
for the year 2010 (2009 for Globcover). The Globcover project of the European Space Agency (ESA)
provided a GLC map for 2009 based on 300 m resolution MERIS satellite data [25]. This map has
an LCCS (United Nations Land Cover Classification System) based legend with 22 classes and the
thematic overall accuracy of the Globcover-2009 was reported as 70.7% based on 1484 homogenous
sample sites [26].

Recently, ESA’s Land Cover-CCI (LC-CCI) project delivered three consecutive GLC maps for
the epochs of 2000, 2005 and 2010 at 300 m resolution using the MERIS data archive [27]. These maps
were specifically targeted to meet the requirements of climate modelers. The maps also have an LCCS
based legend with 22 classes. The overall thematic accuracy of the LC-CCI 2010 map was 74.4% based
on the same reference sample as the Globcover-2009 validation.

Using data from the Moderate Resolution Imaging Spectroradiometer (MODIS), Boston
University provided annual MODIS Collection-5 GLC maps at 500 m resolution [28]. The MODIS
GLC maps have five legends including a legend based on the International Geosphere-Biosphere
Programme (IGBP) classification scheme with 17 classes. The accuracy of the MODIS GLC map of
2010 has not yet been assessed. However, based on cross-validation using the training dataset, Friedl
et al. [28] reported an overall accuracy of 74.8% for the 2005 map.

The GlobeLand30 project of the Ministry of Science and Technology of China generated a GLC
map for the year 2010. The GlobeLand30 map was derived from 30 m resolution multispectral images
of Landsat TM and ETM+ as well as the Chinese Environmental Disaster Alleviation Satellite (HJ-1).
We used the 250 m resolution version of Globeland30, which contains LC class fraction information.
This map has 10 LC classes. The overall accuracy of the map has been reported to be 83.5% [3].
All above-mentioned map accuracies concern the global extent, and for specific regions such as Africa
different accuracies are expected. Table 1 [3,26–28] provides a summary of the used GLC maps.

Table 1. A summary of GLC maps used for comparison.

GLC Map Globcover LC-CCI MODIS Globeland30

Spatial resolution at
the Equator 300 m 300 m 500 m 250 m

Input data
MERIS: Bi-monthly

from 10-day
composites

MERIS global SR
composite,

SPOT-VGT time
series (for updating)

MODIS: Monthly
EVI, LST and 7 bands

from 8-day
composites

Landsat TM, ETM+
and HJ-1

multispectral images

Time of data
collection 2009 2008–2012 2010 2010 ˘ 1 year

Classification method

(Un)supervised
spatio-temporal

clustering;
expert-based labeling

Unsupervised
spatio-temporal

clustering; machine
learning classification

Supervised decision
tree boosting

Integration of pixel
and object based
classification and
Knowledge based

interactive
verification

Classification scheme LCCS based:22
classes

LCCS based: 22
classes

5 different legends
including the IGBP

(17 classes)
10 classes

Reference [26] [27] [28] [3]

All the GLC maps were cropped to the extent of Africa. The MODIS and Globeland30 maps were
resampled to 0.00278 degrees resolution using nearest neighbor assignment to match the resolution
of the Globcover and LC-CCI maps. The legends of the GLC maps were harmonized into eight
general LC classes following the approach of Herold et al. [4], which provides a table for harmonizing

15806



Remote Sens. 2015, 7, 15804–15821

input classes into 13 general LC classes using LCCS-based legend translation protocols. Since the
Globeland30 map does not have detailed forest classes, we used a single general forest class only
(Table 2). Figure 1 presents the four GLC maps with the harmonized legend.

Table 2. General land cover classes and corresponding classes of the GLC datasets.

Code Land Cover Class Globcover LC-CCI
IGBP (MODIS,

STEP and
VIIRS)

GLC2000 Geo-Wiki GLCNMO

1 Forest 40–110, 160,
170

50–100, 160,
170 1–5, 8, 9 1–10 1 1–5

2 Shrubland 130 120 6, 7 11, 12 2 7

3 Grassland 120, 140 110, 130, 140 10 13 3 8, 9

4 Cropland (incl.
mixtures) 11–30 10–40 12, 14 16–18 4 11, 12, 13

5 Wetland vegetation 180 180 11 15 6 15

6 Urban/built up 190 190 13 22 7 -

7 Bare/sparse
vegetation 150, 200 150, 200 16 14, 19 9 10, 16, 17

8 Water and
Snow/Ice 210, 220 210, 220 15, 17 20, 21 8, 10 -
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Figure 1. Global land cover maps used in the analyses.

2.2. Reference Datasets

The reference datasets used in this work are denoted as: GLC2000rd, GLCNMOrd, Geo-Wikird,
MODIS/STEPrd, VIIRSrd and the Globcover-2005rd. The subscript “rd” is added here to avoid
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potential confusion between LC maps and reference datasets. GLC2000rd concerns the consolidated
version (11 LC classes) of the reference dataset generated for validating the Global Land Cover 2000
map [29,30]. GLCNMOrd refers to the calibration dataset of Global Land Cover by National Mapping
Organizations, which was used to generate a GLC map for 2003 [31]. This dataset employs 14 LC
classes, which were assigned to sample sites by international experts. MODIS/STEPrd has been used
to calibrate the MODIS collection 4 and 5 GLC maps [28]. This dataset was developed and updated
by Boston University and it has 17 LC classes according to the IGBP legend. Boston university also
created VIIRSrd (Visible Infrared Imaging Radiometer Suite), which was used to validate the VIIRS
surface type products [18,32]. The reference LC of this dataset was assigned by visual interpretation of
very high-resolution images using the same classes as MODIS/STEPrd. Geo-Wikird was developed
through a volunteer based online platform and volunteers’ interpretation of the reference LC was
validated by a group of experts [33]. Globcover 2005rd is a re-interpreted version of the reference
dataset that was built for validating the Globcover 2005 GLC map [6,34]. Detailed information on the
characteristics of the available reference datasets are provided in [35]. Although there are temporal
differences between the used datasets, we deemed these to be of minor importance, since errors
owing to LC changes over the time frame are negligible compared to misclassification errors of the
GLC maps.

These reference datasets are publicly accessible through the GOFC-GOLD Reference data portal,
Geo-Wiki portal and International Steering Committee for Global Mapping [18,31,33].

To cope with differences in sample site areas across the reference datasets, we assumed that the
LC of the sample site corresponds to the LC of the centroid of that sample sites. Reference data were
then compared to the LC classes of the GLC maps at the centroids of the reference sites. For the
combined reference dataset, the legends of all reference datasets were harmonized into the eight
general classes listed in Table 2 to correspond with GLC map harmonization as given in Section 2.1.

In total, 3887 sample sites within Africa were used in this study. Based on this reference dataset,
model-based geostatistical analysis was used since in contrast to design-based inference it does not
require a probability sampling design. Figure 2 shows the sample distribution of each reference
dataset (left) and the reference LC classes (right).
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3. Method

3.1. Spatial Correspondence Assessment

To assess spatial accuracy (spatial variation in map accuracy) we analyzed the spatial
correspondence of the GLC map with the reference dataset. Correspondences between GLC maps
and reference data were indicator coded. If the LC class of the reference sample site matched with
that of a map, an indicator code 1 was assigned to that sample site. Conversely, an indicator code 0
was given to sites where the mapped LC differed from the reference class. Next, we analyzed spatial
autocorrelation of the indicator-coded data (correspondence with reference LC) using indicator
semivariograms. Nested variogram models were fitted to experimental semivariogram data obtained
by the method of moment approach with binning of 3–5, 10–15 and intervals of 25 km [36].
Variograms were fitted by weighted least squares using Nj/h2

j as weights, where Nj denotes the
number of point pairs in the j-th lag and hj is the corresponding lag distance.

Spatial correspondence maps were created for each GLC map for Africa at 0.00278 degrees
resolution (300 m at the Equator) by indicator kriging [37] using the gstat package in R [38]. The
spatial correspondence maps depict the local correspondence values ranging between 0 and 1,
which denotes the local probability that a particular map is correct. Figure 3 demonstrates the
semivariograms of spatial correspondence for the GLC maps and used fitted models for the indicator
kriging. To restrict the size of the kriging system, kriging was done with the nearest 50 observations.
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Figure 3. Semivariograms and fitted models for spatial correspondence of the Globcover (a);
LC-CCI (b); MODIS (c); and Globeland30 (d) maps (model parameters: partial sills, range
and nugget).

3.2. GLC Dataset Integration

Analyzing the local variation in map accuracy is useful for obtaining information on where
a map is accurate and where not, and this information can be valuable in creating an improved
GLC map. Previous integration efforts of GLC maps did not focus on the local variation in map
accuracy except the work of See et al. [9], who analyzed GLC maps with highest correspondence
at a coarser grids of 0.25 degrees using geographically weighted kernel approach. However, the
resulting integrated maps have artifacts in the pattern of LC classes that are caused by the coarse grid
kernels [9].

Our study extends the principle of considering local variation of map accuracies and LC class
probabilities for creating an improved LC map. We used a geostatistical approach to assess and
model the spatial dependence of map accuracy and class probabilities. We compared different
integration methods, as depicted in Figure 4, which represent a variety of choices concerning the
use of input datasets. These include methods based on spatial correspondence of the GLC maps,
agreement amongst input maps and the LC class presence probabilities, i.e., using both the GLC
maps and the reference datasets. In addition, methods based on a conventional voting approach [10],
i.e., without using reference data, and a geostatistical method that relies only on the reference data,
i.e., without using the GLC maps, were also compared. We first applied all methods to the sample
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locations. After selecting the integration method with highest correspondence by cross-validation
(see Section 3.2.6), the latter was applied to the full extent of Africa.
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The following subsections describe the integration methods used in this study.

3.2.1. Voting

This integration method only uses the GLC maps as input. At each pixel location, the LC class
corresponding to the majority of the mapped LC classes of the four input maps was assigned. In case
of a tie, the LC class of a map that has the highest overall reported accuracy was assigned. Since there
is no information on the accuracy of these maps in Africa, the reported global confusion matrices of
the maps (see Table 1 for reference) were converted into confusion matrices for the eight generalized
classes and the corresponding overall accuracy was calculated. The global accuracies at generalized
class level were computed as 66%, 75.3%, 85.4% and 83.5% for the Globcover, LC-CCI, MODIS and
Globeland30, respectively. Accordingly, the MODIS LC class was assigned in case of ties.

3.2.2. Spatial Correspondence (SC)

This method (SC) uses both the GLC maps and reference datasets as inputs. Based on the
spatial correspondence map for each GLC map resulting from the method described in Section 3.1, we
selected the LC class of the map that has the highest spatial correspondence value at a pixel location.

3.2.3. Weighted Voting (WeVo)

Weighted voting (WeVo) also uses both the GLC maps and the reference datasets. We created
normalized weight maps using the spatial correspondence maps of the GLC maps. Let sci(x) denote
the spatial correspondence of the i-th GLC map (i = 1, . . . , 4) at location x. Wi(x), the weight assigned
to map i at location x, is then:

Wi pxq “
sci pxq

ř4
i“1 sci pxq

(1)

LC classes were dummy coded into multiple 1 or 0 indicators, where 1 indicates that a LC class
k (k = 1, . . . , 8) is present and 0 means k is absent. Using these indicator values, we assigned the

15810



Remote Sens. 2015, 7, 15804–15821

weights to the classes mapped on each of the GLC maps. For each LC class k, a total weight of the
LC class at x location was created by summing the class weights of the four GLC maps (Equations (2)
and (3)).

wi,k pxq “ Wi pxq ˚ ki pxq (2)

Wk pxq “
4
ÿ

i“1

wi,k pxq (3)

where k is the LC class, Wk(x) is the total weight of the LC class at location x, and Wi,k(x) is class
weight of the GLC map. A LC class with highest total weight at a location (Wk(x)) was then selected
for this method.

3.2.4. Regression Kriging (RK)

Regression kriging (RK) similarly uses both the GLC maps and the reference datasets.
The general trend of probabilities of presence of LC classes were predicted using a multinomial
logistic (MNL) regression model. These were locally adjusted by interpolating indicator residuals by
simple kriging (Equation (4)).

pk pxq “ πk pxq ` εk pxq (4)

where pk(x) denotes the presence probability of a LC class at location x, πk(x) is a predicted probability
trend of an LC class that was obtained by MNL regression [39] and εk(x) is the indicator residuals for
that class. The latter was obtained by simple kriging. MNL regression also uses indicator values of
the LC classes. There is an indicator variable for all but one class [39]. The MNL regression estimated
a separate binary logistic regression model for each of these indicator variables. For each indicator
variable (k = 2, . . . , 8), the log odds function for predicted probability is:

ηk pxq “ log
ˆ

πk pxq
1´ πk pxq

˙

“ β0k ` β1kh1 pxq ` β2kh2 pxq ` . . .` β jkhj pxq (5)

where hj (with j = 1, . . . ,4) are the explanatory variables (LC class of the four GLC maps at sample
locations), β1k . . . βjk are the regression coefficients and β0k is the intercept. To ensure that all
probabilities are in the interval [0,1] and that the probabilities sum to 1, Equations (6) and (7) were
used [39].

πk pxq “
exp pηk pxqq

ř8
k“2 exp pηk pxqq

(6)

π1 pxq “ 1{
8
ÿ

k“2

exp pηk pxqq (7)

where exp(ηk(x)) denotes the odds of class k at location x. This was implemented using the nnet
package in R [40].

Next, regression residuals at sample locations were calculated and simple kriging was used
to interpolate the regression residuals (εk(x)) at un-sampled locations for all classes except water.
For the water class, no spatial correlation was observed on the regression residuals based on the
experimental semivariogram. Semivariograms were fitted using the same method as described in
Section 3.1. Figure 5 demonstrates the semivariograms of regression residual for the LC classes and
fitted variogram models used for kriging.
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Figure 5. Semivariograms and fitted models for residual kriging.

After adjusting the predicted probabilities with residual kriging, any probability outside the
interval [0, 1] was set to the closest bound, zero or one. Subsequently, the estimates pk(x) k = 1, . . . , K
were normalized by their sum to meet the condition

řK
k“1 pk pxq “ 1 [22]. A pixel was assigned to

the LC class having the highest probability.

3.2.5. Indicator Kriging (IK)

For comparison, the last integration method was based on indicator kriging that uses only the
reference datasets. Based on these indicator variables for LC classes, the presence probability of LC
classes was modeled at the test locations of the cross validation (see next section).

Figure 6 shows the semivariograms and the fitted models used for modeling LC classes presence
probability based on indicator kriging (Section 3.1). A LC class with highest modeled probability was
selected for this method.
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3.2.6. Cross-Validation

The performance of these methods was analyzed using 10 fold cross-validation. The reference
sample sites were partitioned into 10 random subsamples. Nine subsamples (3498 ˘ 1 sample sites)
were used to train the integration methods and one subsample (389 ˘ 1 sample sites) was used to
validate the method performance by assessing the overall correspondence between the reference LC
and LC from method outputs. This step was repeated 10 times so that each subsample was used
for method training as well as validation and each sample site was used for validation exactly once.
The median percentage of integrated LC classes locally corresponding with reference subsamples
was then calculated. Note that these values should not be confused with the overall accuracy
of LC maps since they are based on cross-validation using a heterogeneous sample rather than
comparison against an independent reference dataset obtained by probability sampling. Based on the
cross-validation results, the integration method having the highest correspondence with the reference
LC was selected for creating an improved LC map.

4. Results and Discussions

4.1. Spatial Correspondence of GLC Maps in Africa

The spatial correspondences of the GLC maps based on indicator kriging are provided in
Figure 7. In terms of the spatial correspondence with reference LC, all four maps show similar trends.
The Sahara desert and tropical rainforest regions were mapped with high correspondence, whereas
the Sahel, and dry and moist savannah regions were generally mapped with low correspondence.
In the latter regions, some differences in terms of spatial correspondence of the maps could be
observed. For instance, the LC-CCI showed higher spatial correspondence related to cropland areas
in Morocco and northern Algeria, Ethiopia, Eritrea, Sudan, Zambia, Zimbabwe and Angola. In other
regions, the LC-CCI map tends to over-represent the cropland class. The MODIS map had higher
correspondence in Somalia, Kenya, Mozambique, Namibia, Botswana and western part of South
Africa as it has more shrubland areas. The Globeland30 map had higher correspondence in the
tropical forest regions of western Africa, Chad, Uganda, Tanzania, Madagascar, and eastern part of
South Africa related to grassland areas. A general tendency of over-representing the grassland class
was also observed for the Gloebeland30 in other regions. These differences are also highlighted in
Figure 7f, which illustrates the maps with highest correspondence at a given location. The strengths
of the GLC maps over one another in different regions show the potential of creating an improved
GLC map by integrating them.
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Figure 7e shows the maximum spatial correspondence of the four maps and this demonstrates
that the Sahel and dry savannah regions of Africa were mapped with the lowest spatial
correspondence in all four maps. This could be due to the presence of multiple LC classes (i.e.,
heterogeneous landscapes) in transition zones of major ecosystem, which are difficult to classify
correctly, owing to spectral and thematic similarity. GLC maps often do not agree in these
regions [4,24]. These regions should be the main focus of map improvement efforts including the
development of new GLC maps.

Information on the spatial variation in map correspondence is useful in uncertainty assessments
of applications that use GLC maps and in map improvement efforts. It also provides confidence
in using the GLC maps for regions with high map spatial correspondence and limited regional
data availability.

In terms of correspondence with reference LC classes aggregated over the entire African
continent, MODIS had highest correspondence (63%) followed by Globeland30 (57.2%), LC-CCI
(55.5%) and finally Globcover (50.8%).

4.2. GLC Dataset Integration Methods

The result of the 10 fold cross-validation assessing the performances of the integration methods
for an improved GLC map is presented in Figure 8. The medians of correspondence of integrated
LC with reference data varied from 62.3%–76% across different integration methods (Figure 8).
The integration method based on only the GLC maps (Voting) resulted in the lowest correspondence
of 62.3%, which is less than the 63% of the MODIS map. A possible explanation is that the voting rule
will assign a pixel to a wrong class if the majority of input maps agrees to that class.
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Figure 8. Correspondence of integrated LC with reference sample LC (10-fold cross validation).

The integration methods based on both the GLC maps and reference datasets resulted in
67.5%–76% correspondence with the reference LC, which is at least 4.5%–13% higher than the
correspondence of the input maps. The RK method produced the highest correspondence (76%)
compared with the other integration methods. The RK method ensures to reduce the classification
errors as much as possible by exploiting the “best” of the available data i.e., modeling global trends
of the LC class probabilities using the GLC maps as explanatory variables and calculating the local
deviations from the global trends near reference points using spatial correlation of the residuals
between trends and reference data [41]. The smaller sill values of the fitted models for residual kriging
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compared to that of the indicator kriging (Figures 5 and 6) are indicative of the contribution of MNL
regression in explaining the LC class probabilities [41]. This also justifies the use of residual kriging
to model the remaining unexplained spatial variation of LC class probabilities.

Figure 8 shows that all methods using reference data produced higher correspondence than the
Voting method. This could have been expected, since more data are being used. However, even
IK that uses only reference data produced better correspondence than Voting. This underlines
the importance of reference data in map improvement efforts. The spread in the cross-validation
results obtained by IK is expected, since cross-validation repeatedly removes difference subsets
of the reference data while IK is based on the reference data only. The intermediate positions
of SC and WeVo can be explained by the fact that they employ map spatial correspondence and
agreements amongst input maps, rather than class specific probabilities as considered in the RK
method. Using different methods, See et al. [9] also observed limitations in using map spatial
correspondence and agreement amongst map for integration. Our results demonstrate the advantage
of using both the GLC maps and the reference data for integration where data abound while relying
on the GLC maps only in places where the reference data is sparse.

4.3. Integrated LC and LC Probability Maps of Africa

Since the RK integration method had the highest correspondence with reference LC (see
Section 4.2), we used this method to create an integrated LC map of Africa using the input GLC
maps and reference datasets (Figure 9). The integrated map had similar pattern to the input maps in
terms of forest and bare/sparse vegetation classes. The main difference between the integrated map
and the input maps is the fact that more area of shrubland and relatively less area of cropland and
grassland are present. On the other hand, the general patterns of the LC classes were similar to those
of the reference data (Figure 2 right).
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Figure 9. Integrated LC map based on RK method. Figure 9. Integrated LC map based on RK method.

Table 3 compares class-specific correspondences of RK integration and the input maps with the
reference dataset. All LC class correspondences were derived by cross-validation (see Section 4.2).
The RK method improved class correspondences for LC classes excluding forest, cropland, grassland
and built-up. The forest, grassland and cropland classes were over-represented in the MODIS,
Globeland30 and LC-CCI maps, respectively.
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Table 3. Class-specific correspondences of RK integration and the input GLC maps with
reference data.

Globcover LC-CCI MODIS Globeland30 RK

Forest 71.1 67.3 90.2 63.7 84.9
Shrubland 11.9 21.3 26.9 17.3 70.8
Grassland 18.4 18.9 27.1 70.4 41.1
Cropland 57.7 79.2 66.7 76.0 75.0
Wetland 25.0 31.5 59.8 52.2 67.0
Built-up 74.5 91.5 78.7 91.5 89.4

Bare/sparse vegetation 76.0 78.5 75.0 72.0 87.6
Water and snow/ice 80.0 80.0 70.0 78.0 86.7

Total 50.7 55.4 62.8 57.1 76.3

Probability maps for each LC class produced by means of RK are shown in Figure 10.
While distinct high probability areas of forest, bare/sparse vegetation and water and snow/ice
classes can be observed in Figure 10, the Sahel and savannah areas are represented by multiple classes
such as shrubland, grassland and cropland, which had similar probabilities.
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As the LC classes of the integrated map were selected based on the maximum presence
probability, shrubland class superseded the grassland class by having a higher probability value in
these regions and therefore more area of shrubland is observed in Figure 9. This can be observed in
Figure 11, which shows the combination of class probabilities of shrubland (red), grassland (green)
and cropland (blue). Substantial areas in orange color highlight the combination of shrubland and
grassland as probable classes with the presence probability of shrubland is higher than that of
grassland (Figure 11). In contrast, the extent of areas with only shrubland as probable class (red)
is considerably less. The combination of grassland and cropland as probable classes is shown in
cyan color that can mostly be observed in the northern part of Sahel and eastern part of South
Africa. Figure 11 illustrates the complexity of landscape with multiple probable class in the Sahel and
savannah areas. For studies regarding these areas, consulting with the presence probability maps of
the LC classes are recommended.
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Figure 11. RGB image of class probabilities of shrubland, grassland and cropland. Dark shades
represent areas where none of these three classes has a presence probability.

The presence probability maps of the LC classes are helpful in understanding the uncertainties
in class assignment in the integrated maps as well as the complexity of heterogeneous landscapes.

4.4. On the Use of Available Reference Datasets for Integration

This study made use of GLC reference datasets that were developed from different initiatives.
The combined reference dataset has rather dense spatial distribution over a large portion of the
African continent, which is beneficial for geostatistical interpolation. In the Sahara desert, sample
density was lower. Nevertheless, correspondence with the reference LC was high in this region
(Figure 7) as bare areas are usually mapped with high accuracy [4]. One should be cautious when
integrating different reference datasets as they may have discrepancies in their legends, sampling
design and response design (i.e., sample site area) [35]. To reduce the legend discrepancies of the
reference datasets, we harmonized their legends into a common system with 8 general classes.
However, there may be some inconsistencies in the reference datasets due to the discrepancies in
the definition of LC classes.

Another issue is that reference datasets use different spatial supports. Our approach of using
the centroids of reference sites provided a practical solution. However, differences in spatial
support among reference data sets (and maps) are often a source of uncertainty about the true land
cover. Block kriging and area-to-point [42,43] have been proposed for dealing with different spatial
supports. Note that area-to-point kriging requires semivariograms at the fine spatial resolution,
which may be difficult to acquire. Last, but not least, the integration approach of the reference
datasets demonstrated in this study can be used for other studies that use geostatistical approaches.
Since some reference datasets are not based on probability sampling, design-based statistical inference
cannot be used. Moreover, design-based statistical inference using multiple reference datasets with
different statistical sampling designs requires known inclusion probabilities [44].
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5. Conclusions

This study utilized the available GLC reference datasets from the GOFC-GOLD, Geo-Wiki and
the International Steering Community for Global Mapping. These datasets were originated from
various institutions and the diversity of the reference datasets characters (e.g., legend and sample site
area) makes them challenging to be integrated and reused for other studies. Our study provides
an example of dealing with such diversities by harmonizing the thematic and spatial support
differences of the reference datasets and using them for model-based geostatistical estimations.
Further initiatives on generating better and more consolidated GLC maps can be useful to reduce
discrepancies and uncertainty caused by legend harmonization. The advantages of including
different reference datasets for integration were demonstrated in this study. Such information is
useful as more reference datasets are becoming available to the public thanks to GLC mapping and
validation communities [18,19].

Our study analyzed and compared the spatial variation in thematic correspondence of GLC
maps, namely the Globcover 2009, LC-CCI 2010, MODIS 2010 and Globeland30, with the reference
datasets. Based on the spatial autocorrelation structure of map correspondence, we modeled the
spatial correspondence of the GLC maps as a measure of spatial accuracy. The comparison of the
spatial correspondence maps demonstrated generally uncertain areas in LC mapping in Africa that
need attention for improvement efforts while the preferences for GLC maps varied spatially. This
finding demonstrates a motivation of integrating GLC maps based on their spatial variation in map
correspondence in order to create an improved GLC map.

Aiming to create an improved LC map, we tested five different methods which are based on
multiple GLC maps and reference datasets. The integration methods that employed both the GLC
maps and the reference datasets resulted in 4.5%–13% higher correspondence with the reference LC
classes than that of the input GLC maps. These methods exceeded the other two methods by making
best use of the available data by calibrating the GLC maps with the help of reference datasets and
relying on the GLC maps in places where the reference dataset is sparse. This result illustrates
the benefit of using existing reference datasets and geostatistical approaches for map integration.
In contrast, integration based on the agreement amongst the input maps without questioning their
spatial correspondence did not result in improved correspondence with reference LC. Nevertheless
such approaches are commonly adopted for map integration efforts.

The RK method, which ensures to reduce the classification errors as much as possible through
MNL regression and kriging of the regression residuals, showed the highest correspondence with
reference LC. This method was selected to create an integrated LC map and the LC class probability
maps of Africa. Uncertainty in class assignment was higher in heterogeneous areas with mixtures
of different LC classes than in homogenous areas. In heterogeneous areas such as the Sahel and dry
and moist savannahs, the LC probability maps can be useful. This study was done for the extent of
Africa. With increasing computational power and more data coming available, the approach can be
extended to global coverage and other datasets can also be included as covariates.
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