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Abstract: The application of crop residue has become increasingly important for providing 

a barrier against water and wind erosion and improving soil organic matter content, 

infiltration, evaporation, temperature, and soil structure. The objectives of this work were to: 

(i) estimate maize residue cover (MRC) from Landsat-8 OLI images using seven vegetation 

indices (VIs) and eight textural features; and (ii) compare the VI method, textural feature 

method, and combination method (integration of textural features and spectral information) 

for estimating MRC with partial least squares regression (PLSR). The results showed that 

the normalized difference tillage index (NDTI), simple tillage index (STI), normalized 

difference index 7 (NDI7), and shortwave red normalized difference index (SRNDI) were 

significantly correlated with MRC. The MRC model based on NDTI outperformed (R2 = 0.84 

and RMSE = 12.33%) the models based on the other VIs. Band3mean, Band4mean, and 

Band5mean were highly correlated with MRC. The regression between Band3mean and MRC 

was stronger (R2 = 0.71 and RMSE = 15.21%) than those between MRC and the other 

textural features. The MRC estimation accuracy using the combination method (R2 = 0.96 and 

RMSE = 8.11%) was better than that based on only the VI (R2 = 0.88 and RMSE = 11.34%) 

or textural feature (R2 = 0.90 and RMSE = 9.82%) methods. The results suggest that the 

combination method can be used to estimate MRC on a regional scale. 
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1. Introduction 

The application of crop residue to agricultural fields after harvest is important for protecting the soil 

surface against water and wind erosion [1–4]. This agricultural practice also helps improve the soil 

structure and increase the organic matter content in soil [5], thereby facilitating the biodegradation of 

pollutants [6]. Thus, management of crop residues is an integral part of many conservation tillage systems. 

The Conservation Technology Information Center (CTIC) has classified different tillage management 

strategies (intensive tillage, reduced tillage, and conservation tillage) based on the percentage of crop 

residue cover [2]. Long-term use of conservation tillage practices can lead to increased soil organic 

carbon, improved soil structure, and increased aggregation compared with intensively tilled soils [5]. 

Crop residue estimates are also a critical parameter for soil carbon estimations and in modeling and 

monitoring improvements in carbon sequestration that result from changes in land management approaches. 

Therefore, it is important to estimate crop residue cover (CRC) on agricultural land at a regional scale. 

However, the traditional survey-based methods for quantifying CRC over large areas are time consuming, 

unsuitable, and costly [7]. 

Remote sensing is a useful tool to efficiently quantify CRC on a regional scale and provides spatial 

information of CRC within crop fields [7–11]. Early attempts to estimate CRC using remote sensing 

techniques began in 1975 [12]. Over the past few decades, several methods have been used to estimate CRC 

in different regions based on multispectral and hyperspectral remote sensing data and spectroradiometric 

ground measurements of soil type, residue type, and residue percentage [7–11,13,14]. McNairn and 

Protz [15] analyzed the relationship between CRC and the normalized difference index (NDI) under 

different soil conditions using Landsat-5 Thematic Mapper (TM) data; the results presented a strong 

linear relationship between NDI and maize residue cover (R2 = 0.65–0.84). van Deventer et al. [16] 

studied the relationships between the simple tillage index (STI), normalized difference tillage index 

(NDTI), and CRC using bands five and seven of Landsat-5 TM data, and good relationships were 

exhibited between these parameters. Daughtry [8] proposed the cellulose absorption index (CAI) based on 

cellulose and lignin absorption features near 2100 nm to discriminate crop residue from soil using in situ 

spectra acquired with the GER 3700 spectroradiometer. Furthermore, Daughtry et al. [9] showed that 

CRC was linearly related to CAI (R2 = 0.89). High estimation accuracy (R2 = 0.91) between the 

normalized difference senescent vegetation index (NDSVI) and fractional senescent vegetation cover 

was achieved using a two-component linear unmixing analysis [17]. Crop residue cover has been 

estimated and mapped on agricultural land using hyperspectral and IKONOS data to demonstrate the 

strong relationship between predicted and measured CRC (index of agreement (D) = 0.92) [10]. The 

shortwave infrared normalized difference residue index (SINDRI) derived from ASTER bands six and 

seven is strongly related to CRC (R2 = 0.74) [14]. Pacheco and McNairn [7] estimated CRC based on 

SPOT and Landsat-5 TM data, and good consistency between the predicted and measured CRC was 

obtained using the spectral unmixing method. Zheng et al. [18,19] applied the minimum NDTI 



Remote Sens. 2015, 7 14561 

 

 

(minNDTI) to estimate CRC based on a time series of Landsat TM and Enhanced TM Plus (ETM+) data 

(R2 = 0.89). Bocco et al. [20] estimated CRC using neural network (NN) and crop residue index 

multiband (CRIM) models from Landsat TM and ETM+ image data, and the results showed that both 

methodologies were appropriate for estimating CRC from Landsat data (R2 = 0.95 for the NN model and 

R2 = 0.87 for the CRIM model). 

The textural feature method can be used to extract textural features through image processing 

techniques and to analyze texture either quantitatively or qualitatively [21]. Image texture analysis 

involves measuring heterogeneity in the tonal values of pixels within a defined area of an image [22], 

and this method has been used to estimate parameters of vegetative structure [23,24]. Empirical models 

have been developed to study the relationships between vegetation indices (VIs) and CRC on regional 

scales. However, the use of textural features for estimating CRC has not been thoroughly investigated. 

Darvishzadeh et al. [25] reported that using full spectral subsets or the maximum amount of spectral 

information available will require more computation time but is not likely to increase estimation 

accuracy. Moreover, several features are sufficient for obtaining the essential information to estimate 

LAI, nitrogen concentration, and vegetation classification [26–29]. 

Maize is the main crop in the Songnen Plain, which is an important food production base in China. 

The estimation of maize residue cover (MRC) for this crop is important for agricultural production  

and management in this region. The distribution of MRC throughout an agricultural field can be highly 

heterogeneous, so it is difficult to effectively obtain MRC at a regional scale. Moreover, previous studies 

have failed to clearly describe the CRC estimation accuracy using Landsat-8 OLI imagery data. Therefore, 

the main purpose of this study was to accurately estimate MRC using Landsat-8 OLI imagery data in 

the Songnen Plain. The specific objectives of this study were to: (1) investigate the potential of Landsat-8 

OLI images for MRC estimation using seven VIs and eight textural features; and (2) compare the VI, 

textural feature, and combination (combination of VIs and textural features) methods for estimating 

CRC with partial least squares regression (PLSR). The results provide a guideline for estimating MRC 

based on spectral information and textural features on a regional scale. This method to measure percent 

MRC is, thus, adequate for policy and program development, land management decision-makers, and 

carbon modelers. 

2. Material and Methods 

2.1. Study Area 

The study area was located between Changchun (43°5′N–45°15′N, 124°18′E–127°2′E), Jilin Province, 

and Suihua (45°3′N–48°2′N, 124°13′ E–128°30′E) in Heilongjiang Province, Northeast China (Figure 1). 

This area is part of the Songnen Plain, which is the main distribution area of spring maize. Maize 

cultivation covers about 80% [30] of the arable land in the Songnen Plain. This area is under a typical 

semi-humid northern temperate monsoon continental climate. The average maximum temperature is  

23.5 °C in the summer, and the average minimum temperature is −13.3 °C in the winter. The average 

annual precipitation ranges from 522 to 615 mm, and the average frost-free period lasts for 120 to 150 d. 

Local maize cultivars are planted and harvested in May and October, respectively. 
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Figure 1. Sample locations (false color composite Landsat-8 image, acquired on  

4 November 2014; R/G/B vs. band5/band4/band3). 

2.2. Field Measurements 

The MRC at field sites was measured using the line transect method [31] from 31 October to  

6 November 2014 (Figure 2). We used a 100-ft (29.85 m) measuring tape, which could be easily divided 

into 100 parts with 1 ft intervals, shown as red markings, to make the measurements. At each sampling 

site, the tape was stretched diagonally across rows [32] and the number of markings intersecting crop 

residue was counted. Percent cover was calculated as the average of the marking numbers. In addition, 

we used a UniStrong G3 GPS unit (positional accuracy < 5 m) to record the location of each measurement 

site, acquire photographs, and record information for each site. We measured a total of 36 fields. In this 

study, each sample plot is an adequate representation of a much greater area (>50,000 m2). The area  

of each sample plot was ~1781.68 m2. The MRC data were randomly divided into two parts using SPSS 

software (16.0, SPSS, Chicago, IBM, Armonk, NY, USA): a calibration dataset with 24 samples and  

a validation dataset with 12 samples. The calibration dataset was used to establish the regression equations 
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between MRC and vegetation indices. The validation dataset was used to evaluate the consistency 

between the predicted and measured MRC. The statistics of each subset for MRC are summarized in 

Table 1. As shown in Table 1, the MRC for the calibration dataset ranged from 10.00% to 95.00%,  

with an average of 60.04% and a standard deviation of 27.19%. Similarly, the corresponding values for 

the validation dataset were 10.90%, 89.00%, 59.60%, and 27.69%, respectively. Table 1 showed that 

the calibration dataset and the validation dataset differed. The range of the calibration dataset was larger 

than the range of the validation dataset. The mean of the calibration dataset was higher than the mean  

of the validation dataset. However, the standard deviation of the calibration dataset was higher than the 

standard deviation of the validation dataset. 

2

2
2

2

 

Figure 2. Maize residue cover sampling design in this study. 

Table 1. Descriptive statistics of maize residue cover (%) in the study area. 

Dataset Samples Max Min Mean Standard Deviation 

Calibration dataset 24 95.00 10.00 60.04 27.19 

Validation dataset 12 89.00 10.90 59.60 27.67 

2.3. Remote Sensing Data and Pre-Processing 

Two Landsat-8 OLI satellite images were obtained from the United States Geological Survey (USGS) 

website (http://glovis.usgs.gov/). The corresponding lines and rows were 118 and 028, and 118 and 029 

on 4 November 2014. The Landsat-8 OLI satellite images were processed (including radiometric calibration, 

atmospheric correction, and geometric correction) using ENVI 4.7 software. Land surface reflectance 

was then retrieved using the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 

module. Each Landsat-8 OLI image was co-registered with a geo-referenced Landsat TM image at  

a geometric accuracy of <0.5 pixels. Since the area of each sample plot was ~1781.68 m2, nine pixels of 

Landsat-8 OLI satellite image data were corrected to match the ground sample plot. 
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2.4. Methods 

2.4.1. Vegetation Indices 

Our study included seven vegetation indices (VIs). Six were derived from previous studies, and the 

remaining one was developed in this study (Table 2, [15–17,33]). The previous studies indicated that the 

six VIs were correlated with CRC. 

Table 2. Summary of selected satellite optical vegetation indices, wavebands, and references 

for crop residue cover estimation. 

Vegetation Index Abbreviation Formula References 

Simple tillage index STI B6/B7 [16] 

Normalized difference tillage index NDTI (B6 − B7)/(B6 + B7) [16] 

Modified crop residue cover MCRC (B6 − B3)/(B6 + B3) [33] 

Normalized difference index 5 NDI5 (B5 − B6)/(B5 + B6) [15] 

Normalized difference index 7 NDI7 (B5 − B7)/(B5 + B7) [15] 

Shortwave red normalized difference index SRNDI (B7 − B4)/(B7 + B4) In this paper 

Normalized difference senescent vegetation index NDSVI (B6 − B4)/(B6 + B4) [17] 

Note: B2 (0.450–0.515 μm); B3 (0.525–0.600 μm); B4 (0.630–0.680 μm); B5 (0.845–0.885 μm);  

B6 (1.560–1.660 μm); B7 (2.100–2.300 μm): Landsat-8 OLI bands 2–7, and corresponding Landsat TM and 

ETM+ bands 1–5 and 7. 

2.4.2. Textural Features 

Textural features were statistically obtained with a gray level co-occurrence matrix (GLCM). Many such 

metrics can be derived from this matrix. In this study, we selected eight textural feature metrics, including 

the mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation [22]. 

We calculated the textural features of each Landsat-8 OLI image by analyzing the eight metrics with a 

window size of 3 × 3 pixels, which matched the scale at which our MRC data were collected from the ground. 

2.4.3. Extraction of Maize Cultivation Area 

The maximum likelihood method was used to extract the maize cultivation area from the Landsat-8 

OLI satellite image data and remove the effect of built-up areas, water, forests, and roads. This technique 

assumes that the statistics for each class of each band are normally distributed and calculates the probability 

that a given pixel belongs to a specific class [34]. Unless a probability threshold is selected, all pixels  

are classified. Each pixel is assigned to the class with the highest probability. If the highest probability  

is smaller than the threshold specified, the pixel will remain unclassified. The ENVI 4.7 software completed 

the classification according to 280 field survey points with known land cover types. The overall accuracy 

of the extracted maize cultivation area was 94%, which satisfied the requirements of this study. 

2.4.4. Partial Least Squares Regression 

The PLSR technique generalizes and combines regression modeling (multiple linear regressions), 

data structure analysis (principal component analysis, PCA), and correlation analysis between two sets 
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of variables (canonical correlation analysis). The method is a powerful modeling tool that reduces large 

numbers of measured collinear VIs to a few non-correlated latent variables or factors [35,36]. The noise 

and collinearity in the original spectra are thus significantly eliminated from the condensed components. 

The optimal number of factors in PLSR analysis is determined by minimizing the prediction residual error 

sum of the squares statistic. Compared with PLSR, PCA only summarizes the information of independent 

variable, and does not consider the relationships between the independent variables and dependent 

variables; therefore, it loses useful information when extracting the principal component. The PLSR 

technique not only considers the information of the independent variable, but it also considers the 

relationships between the independent and dependent variables. Therefore, the stability of PLSR is better 

than that of PCA. 

PLSR models are an extension of multiple linear regression models (e.g., multiple or general stepwise 

regressions). This method is particularly useful when one needs to predict a set of dependent variables 

from a large set of independent variables. In its simplest form, a linear model specifies the (linear) 

relationship between a dependent (response) variable y and a set of predictor (x) variables [37]: 

y = b0 + b1x1 + b2x2 + b3x3 + ... + bpxp (1) 

where b0 is the regression coefficient for the intercept and the bi values are regression coefficients (for 

variables 1 to p) computed from the data. 

2.5. Statistical Analysis 

The relationships between MRC and VIs/textural features were analyzed. The coefficient of determination 

(R2) and root mean square error (RMSE) were used to quantify the amount of variation explained by  

the developed relationships and the accuracy of the relationships. Generally, the performance of a model 

is determined by comparing the differences in the R2 and RMSE values. Higher R2 values correspond to 

lower RMSE values and a higher precision and accuracy of a model for predicting MRC [38]. 

3. Results 

3.1. Relationship between Maize Residue Cover and Vegetation Indices 

We found significant relationships between the VIs and MRC based on linear and nonlinear regressions 

(Table 3). The NDTI-MRC and MCRC-MRC regressions had the highest and lowest R2 values (0.84 and 

0.50, respectively). The order of the VIs from highest to lowest with respect to the R2 values of the MRC 

regression relationships was NDTI, STI, NDI7, SRNDI, NDI5, NDSVI, and MCRC. Of the R2 values, 

one was above 0.80, four were above 0.70, and two were below 0.6. The MCRC was fit to a linear 

equation; NDI5, NDI7, SRNDI, and NDSVI were fit to exponential equations; and STI and NDTI were 

fit to power equations. These R2 values were adjusted, as the adjusted R2 values better demonstrate  

the relationships between MCR and VIs. To validate the estimation accuracy of the MRC regression 

equations, we compared the predicted and measured MRC values. The RMSE values ranged from 

12.33% to 21.16% (Table 3). These results suggested that NDTI, STI, NDI7, and SRNDI can be used to 

estimate MRC (Table 3 and Figure 3). 
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Table 3. Relationships between maize residue cover and vegetation indices. 

Vegetation Index Regression Equation R2 RMSE (%) 

NDTI y = 577.2x1.379 0.84 ** 12.33 

STI y = 9.579x4.428 0.78 ** 13.71 

NDI7 y = 40.15e3.538x 0.72 ** 14.63 

SRNDI y = 101.7e−3.89x 0.71 ** 14.71 

NDI5 y = 96.90e5.429x 0.63 ** 17.65 

NDSVI y = 463.9e−6.24x 0.57 ** 18.56 

MCRC y = 243.4x − 43.49 0.50 ** 21.16 

Note: ** indicates a significant relationship at the 0.01 probability level. 
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Figure 3. Regression between MRC and (a) NDTI; (b) STI. 

3.2. Relationship between Maize Residue Cover and Textural Features 

Eight textural feature indicators (i.e., mean, variance, homogeneity, contrast, dissimilarity, entropy, 

second moment, and correlation) were calculated to examine the regression relationships between  

each textural feature indicator and MRC. The results showed that 10 textural feature indicators were 

significantly correlated with MRC (Table 4). All of the textural feature indicators were highly correlated 

with MRC, with the exception of Band3dissimilarity and Band3homogeneity. Band3mean and Band3dissimilarity had  

the strongest (R2 = 0.71) and weakest (R2 = 0.21) relationships with MRC, respectively. The R2 values  

of the 10 textural feature metrics ranged from 0.21 to 0.67, and the corresponding order of the textural 

feature-MRC regression relationships from lowest to highest was Band3dissimilarity, Band3homogeneity, Band3entropy, 

Band3second moment, Band3correlation, Band6mean, Band2mean, Band5mean, Band4mean, and Band3mean. Again, these 

R2 values were adjusted, as the adjusted R2 values better demonstrate the relationship between MCR  

and textural features. To validate the estimation accuracy of the MRC models, the predicted and 

measured values were compared. The RMSE values ranged from 15.21% to 26.35% (Table 4). The RMSE 

values indicate the prediction power of the estimation equation for MRC. The lower RMSE values 

show that the estimation equation for MRC had better prediction accuracy. These statistical criteria  

(R2 and RMSE) were comprehensively considered to select the best fitting regression equation for 

estimating MRC. Therefore, Band3mean–Band5mean were used to estimate MRC (Table 4 and Figure 4). 
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Figure 4. Regression between MRC and (a) Band3mean, and (b) Band4mean. 

Table 4. Relationships between maize residue cover and textural feature indicators. 

Texture Feature Indicators Regression Equation R2 RMSE (%) 

Band3mean y = 9.773x1.551 0.71 ** 15.21 

Band4mean y = 11.07x1.493 0.67 ** 19.45 

Band5mean y = 5.116x1.485 0.65 ** 20.02 

Band2mean y = 0.463x3.260 0.52 ** 16.92 

Band6mean y = 30.42x − 1004 0.43 ** 21.72 

Band3correlation y = −31.77x + 75.72 0.42 ** 21.81 

Band3second moment y = −27.9ln(x) + 39.94 0.37 ** 23.31 

Band3entropy y = 26.05x + 39.2 0.36 ** 22.43 

Band3homogeneity y = −101.8x + 146.4 0.26 * 24.43 

Band3dissimilarity y = 40.99x + 46.75 0.21 * 26.35 

Note: Band2mean represents the mean texture of Band2; Band3mean, Band3homogeneity, Band3dissimilarity, Band3entropy, 

Band3second moment, and Band3correlation represent the mean, homogeneity, dissimilarity, entropy, second moment, 

and correlation texture of Band3, respectively; Band4mean represents the mean texture of Band4; Band5mean 

represents the mean texture of Band5; Band6mean represents the mean texture of Band6; ** and * indicate  

a significant relationship at the 0.05 and 0.01 probability levels, respectively. 

3.3. Estimating MRC via Partial Least Squares Regression (PLSR) 

Three methods (VI, textural feature, and combination method) for estimating MRC via PLSR were 

compared (Table 5). For the VI methods, NDTI, STI, NDI7, and SRNDI were selected to estimate MRC 

using PLSR because they had high R2 and low RMSE values, and the R2 and RMSE values of the 

regression equation were 0.87 and 11.36%, respectively. The R2 and RMSE values of the MRC model 

based on all the VIs were 0.88 and 11.34%, respectively. Thus, the addition of MCRC, NDI5, and NDSVI 

to the model did not significantly improve the MRC estimation accuracy. For the textural feature method, 

Band3mean, Band4mean and Band5mean were used to estimate MRC by PLSR because they had high R2 and 

low RMSE values, and the R2 and RMSE values were 0.83 and 12.32%, respectively. The R2 and RMSE 

values of the MRC regression equation based on all the textural features were 0.90 and 9.82%, 

respectively. The MRC estimation accuracy was further improved using PLSR based on all the textural 



Remote Sens. 2015, 7 14568 

 

 

features. For the combination method (the integration of textural features and spectral information), four 

VIs (NDTI, STI, NDI7, and SRNDI) and three textural feature indicators (Band3mean–Band5mean) were 

selected to estimate MRC via PLSR, and the R2 and RMSE values for the model were 0.95 and 8.43%, 

respectively. The combination method based on all the VIs and textural feature indicators were selected to 

estimate MRC via PLSR, and the R2 and RMSE values for the model were 0.96 and 8.11%, respectively. 

The MRC estimation accuracy was higher using the combination method than the VI and textural feature 

methods alone (Table 5 and Figure 5). Thus, the combination method can be used to estimate MRC. 
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Figure 5. Relationships between predicted and measured MRC: (a) VI method; (b) textural 

feature method; (c) combination method; and (d) combination method based on all VIs and 

textural feature indicators. 

Table 5. Comparison of three methods for estimating of maize residue cover using partial 

least squares regression. 

Methods Factor R2 RMSE (%) 

Vegetation indices 
NDTI, STI, NDI7, and SRNDI 0.87 11.36 

STI, NDTI, MCRC, NDI5, NDI7, SRNDI, NDSVI 0.88 11.34 

Texture features 

Band3mean, Band4mean, Band5mean 0.83 12.32 

Band2mean, Band3mean, Band3homogeneity, Band3dissimilarity, Band3entropy, 

Band3second moment, Band3correlation, Band6mean 
0.90 9.82  

Combination 

NDI7, SINDI, STI, NDTI, Band3mean, Band4mean, Band5mean 0.95 8.43 

STI, NDTI, MCRC, NDI5, NDI7, SRNDI, NDSVI, Band2mean, 

Band3mean, Band3homogeneity, Band3dissimilarity, Band3entropy,  

Band3second moment, Band3correlation, Band6mean 

0.96 8.11 
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3.4. MRC Mapping 

The spatial distribution of MRC was estimated based on all VIs and texture feature indicators via  

the combination method (Figure 6). The MRC ranged from 7% to 98% over the entire Songnen Plain. 

The MRC occupying 14.92%, 19.15%, and 20.47% of the maize cultivation area ranged from 7% to 25%, 

from 25% to 50%, and from 50% to 75%, respectively. Of the cultivated area, 22.89% had MRC ranging 

from 75% to 85% and 22.57% had MRC ranging from 85% to 98%. These results were consistent  

with our field observations. The highest and lowest overall MRC was measured in Suihua and Changchun, 

respectively, and the measured MRC in Harbin was between these two values. 

 

Figure 6. Spatial distribution of MRC in the Songnen Plain. 
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4. Discussion 

In this study, the sample data was divided into a calibration set and validation set, which is a method 

that has commonly been used in previous studies. Many scientists have used this method to carry out 

related studies [39–45]. These studies have indicated that this method can be used to obtain good 

estimation results. In this paper, the amount of sample data was suitable for the statistical requirements. 

There were some differences between the two groups, which reflect the stability of the estimation 

model. Finally, the results of the estimation model show that the results of this study are representative. 

All of the investigated VIs were significantly correlated with MRC, particularly NDTI, STI, NDI7, 

and SRNDI (Table 3). Daughtry et al. [9] indicated that two major water absorption bands exist near 

1450 and 1960 nm, and oven-dried and water-saturated residues have the highest and lowest spectrum, 

respectively. Murray and Williams [39] suggested that a broad absorption feature near 2100 nm is also 

evident in the reflectance spectra of all dry crop residues, which is probably associated with lignin  

and cellulose in crop residue. Thus, spectral information at 1450–1960 nm and near 2100 nm is highly 

correlated with CRC and can be used to estimate CRC [4,10,14,16,18,19]. NDTI and STI were calculated 

from bands six (1560–1660 nm) and seven (2100–2300 nm) of the Landsat-8 OLI image data, and the 

NDTI-MRC and STI-MRC regressions yielded R2 values of 0.84 and 0.78, respectively (Table 3). Our 

results were consistent with those of Zheng et al. [18,19] and Galloza et al. [11], indicating that it is 

feasible to estimate MRC using NDTI or STI from Landsat-8 OLI images. The NDI7 values were 

calculated from bands five (845–885 nm) and seven of the Landsat-8 OLI imagery data. Previous results 

have indicated that band five is highly correlated with CRC because of the sensitivity of near infrared 

wavelengths to plant structure [46], meaning that crop residue has a higher reflectance than bare soil in 

this band [15]. Therefore, NDI7 was significantly related to CRC in this study. Qi et al. [17] proposed 

SRNDI based on bands four (630–680 nm) and seven, and our results showed that SRNDI was better 

correlated with CRC than NDSVI (Table 3). Daughtry et al. [8,47] indicated that the cellulose 

absorption index (CAI) is a better proxy than the other VIs for estimating crop residues based on 

cellulose and lignin absorption features near 2100 nm. This may explain why SRNDI performed better 

than NDSVI in this study. Our results also suggested that NDTI, STI, NDI7, and SRNDI can be used to 

estimate MRC on a regional scale. 

Previous findings have indicated that textural features can be used to estimate LAI and improve  

the estimation accuracy of aboveground biomass in forests [48–50]. In the current study, 10 textural feature 

metrics presented a good relationship with CRC. Band3mean, Band4mean, and Band5mean were significantly 

correlated with CRC (Table 4), which is consistent with the results of previous studies [22,51].Thus, the 10 

textural feature indicators investigated in the current study can be used to estimate MRC, which further 

confirms the results of previous studies [48,50]. 

The results showed that NDTI, STI, NDI7 and SRNDI were highly correlated with MRC using PLSR 

(Table 5). This may be because the PLSR method fully considers the relationships between the covariance 

of VIs and MRC variables by applying data compression into regression factors. Previous studies have 

shown that PLSR can be used to improve the estimation accuracy of biophysical and biochemical 

parameters [11,52]. However, our results showed that the addition of MCRC, NDI5, and NDSVI to  

the PLSR did not significantly improve the CRC estimation accuracy. Li et al. [26] and Mutanga et al. [27] 

indicated that the main spectral information (sensitive spectral bands and VIs) is sufficient to obtain  
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high estimation accuracy, and our results were in agreement with their studies. The addition of Band2mean, 

Band3homogeneity, Band3dissimilarity,Band3entropy, Band3second moment, Band3correlation, and Band6mean further 

impoved the estimation accauracy of MRC based on Band3mean, Band4mean, and Band5mean using PLSR 

(Table 5). These results suggested that Band2mean, Band3homogeneity, Band3dissimilarity, Band3entropy, 

Band3second moment, Band3correlation, and Band6mean include useful information for MRC estimations. The results 

also demonstrated that textural feature indicators can be used to estimate MRC by PLSR. The results 

showed that the estimation accuracy of MRC was improved by the textural feature method based on all 

the textural feature indicators compared with the vegetation index methods based on all the VIs (Table 5). 

This may be because (1) the number of textural feature indicators was more than the number of VIs; 

(2) the addition of Band2mean, Band3homogeneity, Band3dissimilarity, Band3entropy, Band3second moment, 

Band3correlation, and Band6mean contributed more useful information to MRC estimations than the 

addition of MCRC, NDI5, and NDSVI. The MRC estimation accuracy based on the VI or textural 

feature methods was improved with PLSR. This suggests that PLSR fully consider the covariance of VIs 

or textural features and MRC. The combination method obtained higher estimation accuracy of MRC 

based on the four VIs (NDTI, STI, NDI7, and SRNDI) and three textural feature indicators (Band3mean, 

Band4mean, and Band5mean) or all VIs and textural feature indicators using PLSR. The results show that 

the estimation accuracy of MRC was slightly improved based on all the VIs and textural feature 

indicators. In addition, the four VIs (NDTI, STI, NDI7, and SRNDI) and three textural feature indicators 

(Band3mean, Band4mean, and Band5mean) were enough to obtain a high estimation accuracy of MRC. The 

results suggest that PLSR provides a better explanation in the same time of MRC, VIs, and textural 

feature indicators. Thus, PLSR is a useful tool that can be used to estimate several response variables 

simultaneously, while accounting for collinear variables. The combination method resulted in a stronger 

MRC model than that based on only spectral information (Table 5). Berberoglu et al. [48] and Kelsey 

and Neff [51] indicated that the combination of textural features and spectral information can further 

enrich the effective information. Thus, the combination method can be used to further improve MRC 

estimation accuracy (Table 5). In addition, this proved that it is feasible to estimate MRC by combining 

textural features and spectral information. Finally, the spatial distribution of MRC was mapped using 

the combination method. The crop residue cover mapping was used to classify tillage management 

strategies based on the spatial distribution of MRC. In soil carbon models, the spatial distribution of MRC, 

when implemented within a geographic information system, provides important boundary conditions 

on the dynamics of soil organic matter across landscapes. Our results provide a method for estimating 

MRC based on spectral information and textural features from remotely sensed signals in a regional 

scale. In some countries, the crop residue is spread evenly as the crop is harvested with a combine 

harvester. In this study, the maize residue cover (MRC) was estimated based on spectral information 

and textural features from Landsat-8 OLI images. Previous results have indicated differences in the spatial 

distribution of crop residue even when crops were harvested with a combine harvester, [2,10,14,47]. 

Therefore, this method can be used to estimate the uniform distribution of crop residue on a field scale. 

It is important to note that this study was limited to the two Landsat-8 OLI images obtained between 

Changchun in Jilin Province and Suihua in Heilongjiang Province, China. Future studies should obtain 

more Landsat-8 OLI images to verify the applicability of our results to different crops and environments. 
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5. Conclusions 

Textural features and VIs were investigated to determine the most accurate model for estimating 

MRC. The results showed that NDTI, STI, NDI7, and SRNDI were highly correlated with MRC.  

In particular, NDTI had a strong regression relationship with MRC, and the corresponding R2 and 

RMSE values of regression equation were 0.84 and 12.33%, respectively. Band3mean had a stronger 

relationship with MRC than the other textural features, and the corresponding R2 and RMSE values  

of regression equation were 0.71 and 15.21%, respectively. Band3mean, Band4mean, and Band5mean were 

significantly correlated with MRC. The MRC estimation accuracy based on the combination method  

(R2 = 0.96 and RMSE = 8.11%) was better than that based on the VI (R2 = 0.88 and RMSE = 11.34%) 

and textural feature (R2 = 0.90 and RMSE =9.82%) methods. 
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