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Abstract: The Surface Water and Ocean Topography (SWOT) mission being considered 

by NASA has, as one of its main objectives, to measure ocean topography with centimeter 

scale accuracy over kilometer scale spatial resolution. This paper investigates the impact of 

ocean waves on SWOT’s projected performance. Several effects will be examined: 

volumetric decorrelation, aliasing of ocean waves, backscattering modulation, and the  

so-called surfboard sampling. 
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1. Introduction 

The main oceanographic objective of the proposed Surface Water and Ocean Topography (SWOT) 

mission [1–4] is to characterize the ocean mesoscale and sub-mesoscale geostrophic circulation by 

providing two-dimensional measurements of Sea Surface Height (SSH) for spatial wavelengths of  

15 km and larger. Even when optimally configured, current nadir altimeter constellations can only 

resolve the two-dimensional ocean circulation at resolutions larger than 200–300 km due to gaps 

between the altimeter tracks (e.g., [5]), although somewhat smaller scales can be resolved in the along-

track direction . Fundamental questions on the dynamics of two-dimensional ocean variability at scales 

shorter than 300 km, the mesoscale and submesoscale processes such as the formation, evolution, and 

dissipation of eddy variability (including narrow currents, fronts, and quasi-geostrophic turbulence) 
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and its role in air-sea interaction, are to be addressed by these new observations. Global studies of the 

circulation in the scales between 15 and 300 km are essential for quantifying the kinetic energy of 

ocean circulation and the ocean uptake of climate relevant tracers such as heat and carbon [4]. The 

SWOT mission will the first spaceborne mission to provide direct measurements of SSH at these 

scales, opening a new window on these dynamics. 

The primary instrument enabling the SWOT measurement is the Ka-band Radar Interferometer 

(KaRIn) [3,4] which is complemented with a nadir-looking altimeter and a three-frequency microwave 

radiometer, as well as a GPS receiver and a DORIS transponder for precise orbit determination. Several 

error sources limit the accuracy of the measurement, most notably thermal noise, waves, baseline roll 

drift, and wet tropospheric path delay errors. These can be loosely split into those creating random errors, 

which are destructive in nature and cannot be corrected on the ground, and systematic errors, which 

could be theoretically removed if all fields (waves, media, spacecraft attitude, etc.) were perfectly 

known. This paper focuses on the impact of surface waves on SWOT’s projected ocean accuracy.  

Since radar range resolution is basically timing resolution [6], two spatially separated points that 

arrived at the same time at the radar receiver cannot not be resolved and the two points are said to be 

“laid-over” [6]. The problem of surface layover in interferometry is well known [7,8], and leads to an 

increase in the random noise due to decorrelation and to biases in the estimated height. To first order, 

if the radar footprint is large compared to the spatial scale of height variability, the effect of ocean 

waves on scattering can be viewed as being due to an effective volume scattering layer. Under this 

approximation, Rodríguez and Martin [7] were able to derive a formula for the height biases (including 

the well-known electromagnetic or EM bias), as well as for the increase in random height noise due to 

volumetric decorrelation.  The contribution of the present paper consists of examining the case when 

the ocean surface wavelength is not smaller than the radar range footprint, but on the same order or 

larger. We show that when sampling in the near-range direction, additional non-linear effects appear 

which have not been discussed previously in the literature. When the angle of incidence is smaller than 

the wave slope (i.e., for incidence angles of a few degrees, depending on sea state [9]) the iso-range 

plane will cut the wave field at multiple points, like a long surfboard in choppy seas. We call this  

non-linear sampling effect surfboard sampling, which is not only relevant to SWOT but also applies to 

other near-nadir systems, such as AirSWOT (an airborne calibration/validation platform for SWOT). 

In this paper, we argue that the surfboard sampling introduces two distorting effects. The first one is 

due to the relation that exists between sampling using planes tilted relative to the horizontal reference 

versus uniform spatial sampling, which occurs along planes orthogonal to the horizontal. The tilted 

plane sampling will intersect the surface at irregular spatial intervals, but evenly spaced range. For 

high-resolution interferometers, this effect is usually accounted for by using the high-resolution phase 

to geolocate the unevenly sampled points and regrid them via interpolation. Unfortunately, to reduce 

data downlink, SWOT uses an Onboard Processor (OBP) to average the interferogram to 250 m–1 km 

sampling, and in this averaging step information is lost that would allow the high-resolution 

resampling step. In effect, SWOT assumes that the ocean’s surface is flat enough so that points that are 

evenly sampled in range are also evenly sampled in space. This approximation introduces spectral 

distortion errors, discussed below. The second effect occurs when the tilted planes intersect the surface 

at multiple points which have different heights, giving rise to “layover” [6]. To first order, this layover 

effect reduces interferometric correlation and increases height noise, as described in [7]. However, 
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unlike volume scattering from homogeneous layers, the spatial aliasing introduced by this many-to-one 

mapping results in distortions of the measured SSH spectrum, which can introduce artificial spectral 

“bumps” even at the low frequencies where the SSH mesoscale and submesoscale signals reside. This 

uneven sampling also impacts the electromagnetic bias in interferometry, since it samples certain 

slopes of the waves preferentially, so that it couples to the hydrodynamic and tilt modulations [10]. In 

this paper, the impact of backscatter modulation is also incorporated. 

There have been previous studies of the measurement of elevations of surface wave fields, most 

notably [11–17]. However, these studies were done for high resolution systems sampling at moderate 

incidence angles. Furthermore, for SWOT we are concerned with effects that are centimetric or 

smaller, so the effects described in this paper would not have been important for the previous studies. 

We also note that many of the studies done previously deal with the distortions due to forming 

synthetic apertures over times that are significant relative to the wave period (see, for instance [13]), 

leading to wave bunching effects in the azimuth direction [14]. For SWOT, only very short apertures 

are formed (250 m azimuth resolution), so that these nonlinear azimuthal effects can be neglected 

compared to the distortions introduced by range sampling. 

The paper is organized as follows. Sections 2–4 explain the nature of the ocean wave induced 

errors. Section 5 includes results of extensive simulations using spectra from a wave prediction model, 

namely WAVEWATCH-III, which is routinely used by the National Oceanic and Atmospheric 

Administration (NOAA) for marine weather forecasting and the U.S. Navy for fleet operations 

planning [18]. Finally, Section 6 presents an assessment of the impact of waves on the projected 

SWOT error. An approximate first-order mathematical derivation for the surfboard sampling and 

backscattering modulation is included in the Appendix. 

2. Volumetric Wave Decorrelation 

At Ka band there is practically no penetration of the radar radiation into the water. However, the 

scatterers follow the surface topography, which in the case of waves presents high variability within a 

range resolution cell, especially in the near range. To first order, if the radar footprint is large compared 

to the spatial scale of height variability, the effect of ocean waves on scattering can be viewed as due to 

an effective volume scattering layer. In order to quantify the impact of the volume scattering introduced 

by the waves, and following a similar approach as presented by Rodriguez and Martin [7], we model the 

statistics of the ocean surface height with a Gaussian probability function, 𝑓𝑠(ℎ) =
1

√2𝜋𝜎ℎ
2

𝑒
−

ℎ2

2𝜎ℎ
2
 where h 

is the topographic mean height at a given point, and 𝜎ℎ is the ocean height standard deviation, which is, 

relative, related to the significant wave height as 𝑆𝑊𝐻 = 4𝜎ℎ  [19]. The interferometric phase, 𝛷, is 

approximately given by [7,8]: 

𝛷 ≈ 𝜅𝑧ℎ (1) 

where  𝜅𝑧 =
𝑘0𝐵 cos 𝜃0

𝑟 sin 𝜃𝑖
, 𝜃0is the look angle for a target at a given range distance, 𝑟, 𝜃𝑖 is the incidence 

angle, 𝐵 is the baseline length, and 𝑘0 is the RF signal wavenumber. 

The volumetric decorrelation between the interferometric channels, which determines the height 

noise increase due to surface waves [7], can then be shown to be given by: 
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𝛾𝑆𝑊𝐻 ≅ ∫ 𝑒𝑗𝜅𝑧ℎ𝑓𝑠(ℎ)𝑑ℎ = 𝑒−
1
2

𝜅𝑧
2𝜎ℎ

2

 (2) 

Figure 1 illustrates the decorrelation due to volume scattering from a Gaussian distributed layer as a 

function of cross track distance for different values of significant wave height (SWH) [9,10]. As a 

comparison, the black dashed curve shows the SWOT’s projected correlation due to noise only. From 

these curves it becomes apparent that this effect can have substantial impact on the random height 

performance in the near swath as the SWH increases. Using the probability density function for SWH, 

which has been derived from one year of WAVEWATCH-III spectra (shown in the insert), the 

expected volume scattering decorrelation averaged over global SWH conditions is computed and 

shown in black. This expected value roughly matches the curve for SWH = 3, which incidentally is 

approximately the 1-sigma (68%) value for the SWH distribution. 

 

Figure 1. Decorrelation due to volume scattering from a Gaussian distributed layer as a 

function of cross track distance for different values of significant wave height (SWH). The 

black solid curve is the expected volume scatter correlation averaged over global SWH 

conditions modeled using one year of WAVEWATCH-III data (insert contains the SWH 

probability density function). The black dashed curve illustrates the decorrelation due to 

noise only for comparison. The total decorrelation is the product of these two decorrelation 

factors, and also the smaller geometric/angular decorrelation [20]. 

3. Wave Spectrum Aliasing 

A conventional SAR measures the location of a target in a two-dimensional coordinate system, with 

one axis along the flight track (“along-track direction”) and the other axis defined as the range from the 

SAR to the target (“range direction”). A SAR resolves targets in the range direction by measuring the 

time it takes a radar pulse to propagate to the target and return to the radar. The along-track location is 

determined from the Doppler frequency shift that results whenever the relative velocity between the 

radar and target is not zero [21–24]. To obtain three-dimensional position information, an additional 

measurement of elevation angle is needed. Interferometry using two or more SAR images provides a 

means of determining this angle [7,8].  
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The raw echo data rate is determined by the sampling frequency; the number of bits used to digitize 

the analog signal, the pulse repetition frequency (PRF), and swath extent. For KaRIn, this totals about 

3.5 Gbps. Since it is prohibitive to downlink this amount of data over the global ocean, a critical 

component of KaRIn is an on-board processor (OBP) that produces the complex interferogram and 

SAR amplitude images averaged down to a resolution of 1 km with 1 km posting, reducing the 

downlink data rate by about three orders of magnitude. This averaging step comprises filtering to the 

1km resolution and decimation to a 1 km posting. Most of the wave energy is concentrated at 

wavelengths less than ~300 m, with the dominant wavelength dependent on wind speed. However, the 

frequency response of a finite length filter exhibits sidelobes beyond the cut-off frequency [25,26], and 

some of the wave spectrum energy at short wavelengths will be aliased to longer wavelengths during 

the decimation step, introducing a residual height error, the so-called wave spectrum aliasing height 

error. In this section we present a simplified derivation of the effect. A comprehensive analysis is 

included in the Appendix. 

The height measured by KaRIn is approximately given by the convolution of the ocean wave height, 

ℎ(𝑥, 𝑦), and KaRIn’s interferometric point target response (PTR) [7,8]. For simplicity, let us consider a 

one dimensional wave field (it is straightforward to generalize the result to an arbitrary wave field), so 

the measured height, ℎ𝑚, can be expressed as: 

ℎ𝑚(𝑥0) ≈ ∫ 𝑑𝑥 ℎ(𝑥) 𝜒(𝑥 − 𝑥0) (3) 

where 𝜒(𝑥) is KaRIn’s interferometric PTR along 𝑥. The average height over a resolution cell using a 

spatial weighting function 𝑤(𝑥) is obtained as follows: 

ℎ𝑚
̅̅ ̅̅ (𝑥𝑜) = ∫ 𝑑𝑥 𝑤(𝑥 − 𝑥0)ℎ𝑚(𝑥) (4) 

where 𝑤(𝑥) is normalized such that ∫ 𝑑𝑥 𝑤(𝑥) = 1. 

For a one-dimensional continuous wave spectrum, the surface height can be written as:  

ℎ(𝑥) =
1

2𝜋
∫ 𝑑𝑘 ℎ̃(𝑘)𝑒𝑖𝑘∙𝑥 (5) 

where k is the ocean wave-number, and ℎ̃(𝑘) is the complex wave amplitude, related to the wave 

spectrum, 𝑆ℎ(𝑘), by < ℎ̃(𝑘)ℎ̃∗(𝑘′) >= 𝑆ℎ(𝑘)𝛿(𝑘 − 𝑘′).  

For illustrative purposes, let us assume 𝜒(𝑥) is a sinc-squared function of intrinsic resolution 𝐵𝑥, 

𝜒(𝑥) =
1

𝐵𝑥
sinc2 𝑥

𝐵𝑥
  [7]. It can be shown that the average height error due to wave spectrum aliasing is 

given by: 

< ℎ𝑚
̅̅ ̅̅ 2

>≈
1

2𝜋
∫ 𝑑𝑘 𝑆ℎ(𝑘) |𝑊(𝑘)Λ (

𝐵𝑥

2𝜋
𝑘)|

2∞

𝜋
𝑃⁄

 (6) 

where Λ(𝑘)  is the triangular function defined as Λ(𝑘) = max (1 − |𝑘| , 0) , 𝑊(𝑘)  is the Fourier 

transform of 𝑤(𝑥), and 𝑃 is the posting (1 km). 

The window length is determined by the desired ocean pixel final resolution, where resolution is 

defined such that the auto-correlation at ± half the pixel resolution is 0.5. This ensures an equivalent 

number of independent pixels such that if further multi-looking (during ground post-processing) is 

performed, the resulting variance of the multi-look pixel is inversely proportional to the number of 

pixels used. Posting is defined as distance between consecutive pixels. Equation (6) indicates that the 
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amount of wave energy that is aliased into the measured signal is determined by the system resolution, 

the radar transfer function, the averaging window, and the posting.  

In order to assess the impact of the aliased height, a wind driven Pierson-Moskowitz wave spectrum 

for fully developed seas [27] is assumed in the following calculations in worst case conditions, namely 

that the waves are traveling along a single direction aligned with the averaging direction. Figure 2a 

illustrates the residual height error due to wave aliasing for two different windows, a rectangular 

window and a Blackman-Harris [26] window (Figure 2b), as a function of significant wave height 

(SWH). By using a smoothing window, the error is reduced by several orders of magnitude relative to 

the unweighted (rectangular) case. Note that for a rectangular window, the window length equals the 

pixel resolution, whereas for a Blackman-Harris window, the window length is roughly twice the pixel 

resolution, so computations are performed over overlapping segments. 

 

(a) 

 

(b) 

Figure 2. (a) Residual height error due to wave spectrum aliasing for rectangular (blue) 

and Blackman-Harris (red) windows as a function of SWH. (b) Spectral response for 

rectangular (blue) and Blackman-Harris (red) windows in comparison to ocean wave 

energy as predicted by a Pierson-Moskowitz wind driven spectrum (in black, normalized to 

maximum) for SWH = 3 m. 

4. Tilted Plane Sampling and Backscattering Modulation 

Radars sample three-dimensional space by intersecting spheres that are the loci of points arriving 

at the same time at the radar receiver, and cones that are the loci of points having the same Doppler 

shift [21–24]. Radar interferometers add an additional dimension, the interferometric phase difference, 

to provide the additional degree of freedom needed to map from radar space into physical space [7,8]. 

While this mapping function is generally a well behaved one-to-one mapping, it can breakdown in 

special points, called “layover” points, when multiple points in physical space map to a single point in 

radar space [7,8,15].  

In most situations, one images away from the nadir point, and acquires data close to zero Doppler. 

In these circumstances, which apply to patches of SWOT data over which the incidence angle can be 
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regarded as approximately constant, the sampling in the range direction can be visualized as given by 

the intersection of the surface and a set of parallel planes, or surfboards, with a tilt equal to the angle 

of incidence relative to the mean surface. This geometry is illustrated in Figure 3a for a single 

realization of a wave field with Pierson-Moskowitz spectrum and significant wave height of about 3 m, 

for two incidence angles that roughly correspond to SWOT’s near and far range. Two effects are 

readily apparent from this picture. First, and especially for the shallower incidence angle, the same 

sampling plane can cut the surface at multiple locations, giving rise to layover points (red circles, in 

the figure). The separation between layover points (up to 100 m in this example) depends on the radar 

incidence angle, SWH, and the ocean wave peak wavelength. The second effect is due to the fact that 

the wave slopes facing the radar are sampled with different frequency than the slopes facing away 

from the radar, so faces that normally point towards the radar are foreshortened, while the faces 

pointing away are stretched. Figure 3b exemplifies the measured height compared to the true height, 

where the apparent smoothing is the result of the convolution of the surface impulse response with the 

point target response. When layover is prevalent, the surface height is underestimated and severely 

distorted by the averaging of surface heights separated by large distances. However, even when no 

actual layover occurs, the waves are distorted because the faces pointing towards the radar have 

significantly smaller sample density compared to the ones pointing away from the radar. This is further 

demonstrated in Figure 3c, where, assuming a noiseless measurement, the measured heights were used 

to estimate the true cross-track coordinate. When there is significant layover, as for the small incidence 

angle and for the faces pointing towards the radar, the estimated cross-track coordinate, which is the 

average of the cross-track coordinate of the layover points, is not valid. When no layover is present, we 

see that using the estimated cross-track coordinate allows the faithful reconstruction of the surface, 

albeit with non-uniform sampling: the faces pointing towards the radar have significantly smaller 

sample density compared to the ones pointing away from the radar. This non-uniform sampling will 

also have implications on the EM bias. 

 

(a) 
 

(b) 

Figure 3. Cont. 
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(c) 

Figure 3. (a) Simulated Pierson-Moskowitz ocean wave field (U10=10m/s) propagating in 

the range direction (blue) and sampled by a set of parallel planes (dashed gray) separated 

by 20 m in range. The top figure represents the sampling when the local incidence angle is 

1°, while the bottom figure shows the same wave field when the incidence angle is 4°. The 

intersection of a sample plane with the mean level is shown as a black square, while the 

sampled heights are shown as red circles. The radar is on the left and the radar pulses 

propagate from left to right. (b) True (blue) and measured (red) heights for wave field 

presented in (a) for a system with finite resolution bandwidth (surface impulse response), 

plotted as a function of the intersection of the range coordinate with the mean surface. (c) 

Estimated height as a function of estimated cross track, assuming a noiseless measurement. 

The spectral content of the wave spectra is concentrated at wavelengths well below 2 km (i.e., twice 

the posting), which is filtered by a weighted average filtering stage as discussed in the previous 

section. However, due to the surfboard sampling, the measured height is a nonlinear function of the 

wave height, which introduces nonlinear spectral distortions. Powers of the wave height are equivalent 

to convolutions of the wave spectrum with itself. Therefore, nonlinear products of the wave height 

result in wave energy spreading to wavelengths greater than 2 km, which are not filtered and become a 

significant contribution to the height error. 

Another nonlinear contribution to the height error arises from the backscattering modulation. For  

near-nadir scattering at Ka-band, it is appropriate, to lowest order, to use the geometrical optics backscatter 

cross section [28]. The effect of the large-scale waves is to provide a tilt modulation as follows: 

𝜎0 ≅
𝑅2

𝑠2
𝑒

−
(𝜃𝑖−ℎ𝑠)2

𝑠2  (7) 

where 𝑅2 is the Fresnel reflectivity factor, 𝑠2 is the surface wave slope variance, 𝜃𝑖 is the incidence 

angle for the mean surface, and ℎ𝑠 is the long wave slope. The geometrical optics cross section is thus 

modulated by the value of the wave slope in two ways. First, the large-scale surface wave determines 

the local incidence angle and results in the cross section tilt modulation [10,17]. In addition, the  



Remote Sens. 2015, 7 14517 

 

small-scale wave slope variance, which is the principal contributor to 𝑠2, is modulated by the large-

scale waves, resulting in an additional hydrodynamic modulation. In this paper, we assume a simple 

model for the hydrodynamic modulation [10,17], namely that the normalized backscattering,  

𝛿𝜎 =
𝜎0−𝜎0̅̅̅̅

𝜎0̅̅̅̅
, is modulated by the normalized wave height, 

ℎ

𝜎ℎ
, as [10]: 

𝛿𝜎 = −4𝛽
ℎ

𝜎ℎ
 (8) 

This simplified model is a good approximation to the mean modulation of the cross section observed (or 

modeled) to contribute to the EM bias, although for any given wave realization there will be deviations 

(uncorrelated with the height) due to non-linearity of the wave interactions. Although only approximate, 

this model is sufficient to demonstrate the non-linear sampling phenomena we are examining. A full 

assessment of realistic EM bias will require better models for both tilt and hydrodynamic modulations to 

take into account non-linear ocean features in modulation and slope [10,19]. 

It follows from this model that the parameter 𝛽 [19] relates the EM bias and the SWH as: 

𝐸𝑀𝑏𝑖𝑎𝑠 = 𝛽 ∙ 𝑆𝑊𝐻 (9) 

where it is implicit that the bias is negative. Measurements at Ka band indicate the EM bias ranges 

from 1% to 3% of the SWH [19]. 

The backscattering in Equation (8) modulates the radar response such that measured height is a 

nonlinear function of the wave height, in a similar fashion as the surfboard sampling, also spreading 

the wave energy to longer wavelengths that are not filtered. 

A first-order mathematical formulation for the impact of the surfboard and the backscattering 

modulation is included in the Appendix. We show that the surfboard height error is approximately 

inversely proportional to the ground range, and that there is no impact on the electromagnetic bias 

associated with the surfboard sampling. Our theory also predicts that the effect is stronger for waves 

aligned with the cross track direction, and vanishes for waves aligned in the along-track direction. The 

backscattering modulation height error is approximately independent of wave direction and ground 

range, and the EM bias follows to first order Equation (9). The height errors due to the surfboard 

sampling and the backscattering modulation add in an root mean square (RMS) fashion. 

However, for large wave fields and in the near range, some of the first order theory assumptions are 

no longer valid. First, the interferometric phase cannot be assumed to be linearly proportional to height 

as in Equation (1), and therefore averaging the interferogram (i.e., ~𝑒𝑗𝛷) is not equivalent to averaging 

the heights. In fact, the phase might even undergo multiple 2 wraps within an averaging interval. 

With interferometry and sufficiently high signal to noise ratio (SNR), the true location of the targets 

could be obtained and this effect partially mitigated, but this is not possible for SWOT’s OBP due to 

the computational complexity and the level of thermal noise. In addition, layover is strong and is 

coupled with the brightness modulation. These second order effects result in height errors and biases 

that approximately increase as the inverse of ground range distance squared. A more detailed analytical 

investigation of these second order effects will be the subject of future investigation, but the 

simulations in this and the following sections illustrate the magnitude of this error. 

Ocean waves have complex two-dimensional spectra with wave energy spreading both in frequency and 

space. However, a better understanding of the impact of the surfboard can be gained by studying the height 

error for a one-dimensional spectrum at different wave directions relative to the spacecraft boresight 
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direction. In this section we assume a Pierson-Moskowitz spectrum. The radar response has been 

characterized using an interferometric simulator that also includes the response of the on-board processor.  

 

(a) 

 

(b) 

Figure 4. Swath average height standard deviation (a) and bias (b) as a function of SWH 

for unidirectional ocean wave field following the Pierson-Moskowitz spectrum for waves 

aligned with the boresight (0 deg) in solid and the along track (90 deg) directions in dashed, 

computed using radar simulations for the Surface Water and Ocean Topography (SWOT) 

geometry, radar parameters and on board radar processing. Four cases of brightness 

modulation are assumed, 𝛽 = 0  and no tilt modulation in blue, 𝛽 = 1.7%  and no tilt 

modulation in green, 𝛽 = 3% and no tilt modulation in red and 𝛽 = 3% and including tilt 

modulation in cyan. The dotted black lines in (b) correspond to the theoretical expression in 

Equation (9) for 𝛽 = 1.7% and 𝛽 = 3%. 

We define the height bias, 〈ℎ𝑚〉, and the height standard deviation, 𝜎ℎ𝑚
, as the ensemble average 

and standard deviation of the measured height, ℎ𝑚, for multiple realizations of a particular ocean wave 

spectrum. Figure 4 illustrates the RMS over the swath of the height standard deviation (a) and bias (b) 

as a function of SWH due to systematic wave error sources (wave aliasing, surfboard sampling and 

backscatter modulation), without including the additional height error due to coherence loss, for waves 

aligned in the cross track direction (solid) and waves aligned in the along-track direction (dashed). It is 

evident that, even though the height error is stronger for waves aligned with the cross track direction 

due to the surfboard, there is also appreciable height error associated with waves aligned with the 

along-track, even without backscattering modulation. The backscattering modulation adds an 

additional error source, nearly independent of the cross track distance. The height bias follows, to first 

order, Equation (9), but as the wave height increases and in the near range, this expression is no longer 

valid (see also discussion in the following section).  

Figure 5 shows the height error, both standard deviation (a) and bias (b), as a function of cross track 

for SWH = 3 m for four different wave directions, where 0 deg means that the wave is aligned with 

boresight, and 90 deg means that it is aligned in the along-track direction. The dotted curves 

correspond to no backscattering modulation. In this case, when the ocean wave is aligned with the 

cross track, the error increases as the inverse of ground range, as predicted by the first-order theory, 
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whereas in the along-track direction it grows as the inverse of ground range squared, which is 

consistent with higher order effects. Even without backscattering modulation, there is some height bias 

associated with second order effects, which increases in the near range and for large waves. The 

backscattering modulation has a first order contribution that is nearly constant across the swath, both 

for the height standard deviation and the height bias. The dashed black line in Figure 5b corresponds to 

the theoretical value from Equation (9). Deviations from that in the far range are mostly due to the 

impact of the tilt modulation. 

 

(a) 

 

(b) 

Figure 5. Height standard deviation (a) and mean bias (b) for a 3 m SWH unidirectional 

ocean wave field with the Pierson-Moskowitz spectrum for various directions relative to 

the boresight (0 deg is aligned with boresight, 90 deg is in the along-track direction) 

computed using radar simulations for the SWOT geometry, radar parameters, and on board 

radar processing. Solid is for 𝛽 = 3%  and tilt modulation, and dotted is for no 

backscattering modulation. The dashed black line in (b) corresponds to the theoretical EM 

bias in Equation (9). 

5. WAVEWATCH-III Simulation Results 

The error associated with the surfboard sampling effect is highly dependent on the ocean wave 

spectrum; not only its magnitude, but also its orientation and peak wavelength, and a one-dimensional 

Pierson-Moskowitz spectrum is not a sufficiently realistic representation of actual wave spectra, 

including swell traveling in directions not aligned with the wind direction. In order to quantify the 

impact of the waves on the projected SWOT performance, we have used a relatively large number 

(~300) of uniformly distributed locations on the globe for which WAVEWATCH-III global model 

spectra are available, and simulated the height error at different times of the year, corresponding to 

various conditions of SWH and wave energy distribution, for a total of ~1200 spectra. Each of these 

includes simulation of 25 different wave realizations of the spectrum. Since the wave direction is not 

isotropic across the globe, the predicted on-orbit spacecraft heading relative to the waves at that 

location has been used for each spectrum. In these simulations, we include the hydrodynamic 

modulation with 𝛽 = 3% and the tilt modulation. 
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Figure 6a illustrates the RMS over the nominal swath from 10 km to 60 km of the height standard 

deviation as a function of SWH. As a comparison, the red curve indicates the height error as a function 

of SWH that is used to project SWOT performance, which is computed as the mean variance for each 

SWH. As in Section 4, this height error only presents the systematic error component, and does not 

include any increase in random error due to decreased coherence. These results also incorporate the 

error due to wave aliasing, although this is a small fraction of the total error, which is largely 

dominated by the surfboard and backscattering modulation. By comparing the results of Figure 5a with 

Figure 6a, it is evident that the unidirectional wave spectrum is highly pessimistic, and statistically the 

height error averages down to a smaller value for a two-dimensional wave scene.  

The spread in values for the error at a particular SWH that Figure 6a exhibits is due to the fact that 

the error is highly dependent on the spectral distribution of the wave field, both in frequency and 

space. We have found that the error is particularly correlated with the spectrum wavelength centroid, 

as illustrated in Figure 6b, since more energy around the centroid is transferred on to longer 

wavelengths, thus corrupting the 1km x 1km pixels. 

The first order theory in the Appendix predicts that the electromagnetic bias, 〈ℎ𝑚〉, is not impacted 

by the surfboard sampling, and that it follows the expression 〈ℎ𝑚〉 = 〈ℎ𝛿𝜎〉. For 𝛿𝜎 = −4𝛽
ℎ

𝜎ℎ
, as 

assumed in the simulations, the result is 〈ℎ𝑚〉 = −𝛽 ∙ 𝑆𝑊𝐻. Figure 7a shows the simulated RMS over 

the swath of the height bias as a function of SWH (in blue), which is roughly approximated by the 

results predicted by the first order theory (in red). However, this theory is not valid in the near range, 

as shown in see Figure 7b, which displays the height bias as a function of SWH for three different 

ground ranges, 10 km (blue), 20 km (green) and 60 km (red). The solid black line corresponds to the 

theoretical bias. Beyond 20 km, the height error is fairly well represented by the theoretical expression. 

 

(a) 

 

(b) 

Figure 6. (a) Swath average height error for 1 km × 1 km pixels as a function of SWH for 

multiple WAVEWATCH-III spectra. The red curve is the height error as a function of 

SWH that is used to project SWOT performance. (b) Swath average height error for 1 km x 

1 km pixels as a function of the spectrum wavelength centroid.   
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(a)  (b) 

Figure 7. (a) Swath average electromagnetic bias as a function of SWH (blue), compared 

with the first order theory (red). (b) Electromagnetic bias at 10 km (blue), 20 km (green) 

and 60 km (red) as a function of SWH, compared with Equation (9) in black. Note the 

positive slope in (a) is due to the fact that the RMS value is computed.  

6. Impact of Surface Waves on Projected SWOT Performance 

Ocean waves degrade the projected performance of the proposed SWOT mission, especially in the 

near range. This is not a phenomenon unique to radar interferometry, and altimeter performance has 

also been shown to be impacted by waves [29]. The height variance, 𝜎ℎ𝑚

2 , due to the surface waves 

(not including volumetric decorrelation) can be modeled as a function of ground range, 𝑥, as a constant 

term, 𝐶𝜎0
, which is due to the backscatter modulation, and as a term that varies as the inverse of the 

ground range squared, which is attributed to the surfboard as follows: 

𝜎ℎ𝑚

2 = 𝐶𝜎0
+

𝐶𝑆𝐹

𝑥2
 (10) 

The two coefficients, 𝐶𝜎0
 and 𝐶𝑆𝐹, have been derived as a function of SWH by fitting the simulated 

WAVEWATCH-III data presented in Section 5, and are plotted in Figure 8a. Equation (10) agrees 

with the conclusions of the first order theory included in the Appendix (see Equation (23)). 

Figure 8b compares the height error due to random effects (thermal, volumetric decorrelation due to 

waves, geometric and angular decorrelation, and pointing errors [Error! Reference source not 

found.]) to the systematic error due to waves (wave aliasing, surfboard and backscattering 

modulation), which follows Equation (10). SWOT’s performance requirement is specified for a SWH 

of 2 m, which is identical to what has been traditionally imposed on the Jason series of nadir 

altimeters. For that SWH, the systematic height error due to the ocean waves is small (2.4 cm swath 

average total error, compared to 2.2 cm without including the surfboard and backscattering 

modulation), but as the wave energy increases, the error due to the waves becomes a significant 

portion of the total height error. Indeed, for SWH larger than  

4 m, the surfboard and backscattering modulation become the dominant error source.  
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(a) 

 

(b) 

Figure 8. (a) Coefficients that best fit the WAVEWATCH-III results for height variance 

versus cross track distance, according to Equation (10) (b) Height error for 1 km × 1 km 

pixels as a function of cross track due to random noise (solid) and the nonlinear wave 

energy transfer (dotted) for several SWH. The legend indicates the swath average height 

error for each SWH. 

The global distribution of SWH indicates that SWH is less than 2.5 m with 50% probability, and 

roughly 3 m with 68% probability (1-sigma). However, locally the SWH can be significantly higher, as 

illustrated in Figure 9a, which shows a geographical map of the 1-sigma value for SWH obtained from 

one year of WAVEWATCH-III simulated data. The predicted swath average height error for SWOT 

for 1 km × 1 km pixels is shown in Figure 9b using the local 1-sigma values for SWH and windspeed, 

which is related to sigma-0. It is evident that, in some regions of the globe, the projected SWOT 

performance will be degraded relative to the performance specified for a SWH of 2 m or, equivalently, 

the effective swath with a certain level of performance will be reduced. 

 

(a) (b) 

Figure 9. (a) Significant Wave Height (SWH) 1 sigma (68%) value based on one year of 

WAVEWATCH-III simulations. (b) Swath average height error for 1 km × 1 km pixels. 
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7. Conclusions and Future Work 

We have presented the various phenomena related to surface waves that degrade the projected 

performance of the proposed SWOT mission. The wave volumetric decorrelation introduces a random 

error, which is destructive and cannot be corrected. The other error sources (aliasing, surfboard, and 

backscattering modulation) are systematic in nature, and knowledge of the wave fields and the 

backscatter both in phase and magnitude would allow partial error mitigation. However, due to the 

temporal and spatial variability of the waves, the error appears as random and can only be 

characterized in a stochastic sense. The only correction that can be applied in practice is the average 

electromagnetic bias. An estimate of the electromagnetic bias could potentially be made with higher 

accuracy by applying some knowledge of the wave spectrum.  

It has been shown that the errors are significant for large waves, and this will impact the accuracy of 

SWOT’s measurements, especially in some regions like the Southern Ocean. It has also been shown 

that SWOT’s projected performance depends on parameters, such as the hydrodynamic modulation, 

for which there are not many measurements. Future work will include validation of the results using 

AirSWOT, an aircraft validation/calibration platform that is currently under development by the 

SWOT mission. 

Future work will also demonstrate that a similar analysis to that presented in the Appendix is valid 

for radial velocity, and the analytical formulation for the errors due to the surfboard and the 

backscattering modulation will be expanded to include higher order effects.  
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Appendix: First Order Mathematical Formulation for the Measured Height in the Presence of 

Surface Waves 

In this Appendix, we derive an approximate first-order mathematical formulation for the measured 

height in the presence of surface waves. The single look interferogram, 𝐼(𝑥0, 𝑦0), after averaging for 
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speckle and removing a reference interferogram, at a given range, 𝑟0 , can be expressed as the 

convolution of the surface reflectivity, 𝜎0(𝑥, 𝑦), and the interferometric phase, 𝑒𝑗𝛷(𝑥,𝑦), with the range, 

𝜒𝑟 and azimuth, 𝜒𝑎𝑧, interferometric point target responses [7,8]: 

𝐼(𝑥0, 𝑦0) = |𝐼0|𝑒𝑗𝛷0 ≈ 𝐴 ∬ 𝑑𝑆 𝐺2(𝑥, 𝑦)𝜒𝑟(𝑟0 − 𝑟) 𝜒𝑎𝑧(𝑦0 − 𝑦)𝜎0(𝑥, 𝑦) 𝑒𝑗𝛷(𝑥,𝑦) (11) 

where 𝑥 is the cross track coordinate, 𝑦 is aligned with the along track and 𝐺(𝑥, 𝑦) is the antenna gain. 

𝜒𝑟  and 𝜒𝑎𝑧  are positive functions, which integrate to unity, and can effectively be considered 

probability density functions. Note that 𝜒𝑟  and 𝜒𝑎𝑧  include not only the intrinsic response at the 

maximum resolution, but also the additional filtering applied in the OBP. 

The interferogram is flattened using a reference surface. For an interferometric phase much less than 

1, which is only approximately valid for small waves and/or at the mid to far range, one can expand the 

exponential on both sides of Equation (7). Furthermore, the interferometric phase is, to first order in ℎ/𝑥, 

proportional to the height above the reference surface (see Equation (1)). To simplify the notation, we 

ignore variations of the antenna gain within the resolution cell (which can be added as an effective 

brightness modulation), and the measured height can then be expressed as a convolution of the ocean 

wave height, ℎ(𝑥, 𝑦), modulated by the brightness, and the interferometric point target response, 

ℎ𝑚(𝑥0, 𝑦0) ≈ ∬ 𝑑𝑆 𝜒𝑟(𝑟0 − 𝑟) 𝜒𝑎𝑧(𝑦0 − 𝑦)
𝜎0(𝑥, 𝑦)

𝜎0̅̅ ̅(𝑥0, 𝑦0)
ℎ(𝑥, 𝑦) (12) 

where: 

𝜎0̅̅ ̅(𝑥0, 𝑦0) ≡ ∬ 𝑑𝑆 𝜒𝑟(𝑟0 − 𝑟) 𝜒𝑎𝑧(𝑦0 − 𝑦)𝜎0(𝑥, 𝑦) (13) 

The range 𝑟 is not only a function of the (𝑥, 𝑦) coordinates, but also of the height above the surface. 

Expanding around (𝑥0, 𝑦0), the range can be written as: 

𝑟(𝑥, 𝑦, ℎ(𝑥, 𝑦)) ≈ 𝑟0 + sin 𝜃𝑖0 [(𝑥 − 𝑥0) + sin𝜑0 (𝑦 − 𝑦0)  −
ℎ(𝑥, 𝑦)

tan 𝜃𝑖0
] (14) 

where 𝜑0 is the azimuth angle and 𝜃𝑖0 is the incidence angle for the mean surface at (𝑥0, 𝑦0). For 

SWOT broadside imaging (approximately perpendicular to the flight track), 𝜑0 ≈ 0 . Defining  

𝜒𝑥(𝑥 − 𝑥0) = 𝜒𝑟(sin 𝜃𝑖0 (𝑥 − 𝑥0)), Equation (8) can be expressed as: 

ℎ𝑚(𝑥0, 𝑦0) ≈ ∬ 𝑑𝑆 𝜒𝑥 ((𝑥0 − 𝑥) +
ℎ(𝑥, 𝑦)

tan 𝜃𝑖0
) 𝜒𝑎𝑧(𝑦0 − 𝑦)

𝜎0(𝑥, 𝑦)

𝜎0̅̅ ̅(𝑥0, 𝑦0)
ℎ(𝑥, 𝑦) (15) 

If the spatial variability of the radar cross section, 𝜎0(𝑥, 𝑦) is ignored, and given that 𝜒𝑟  and 𝜒𝑎𝑧 

integrate to unity, one can write 
𝜎0(𝑥,𝑦)

𝜎0̅̅̅̅ (𝑥0,𝑦0)
 = 1 𝑁𝐿

⁄ , where 𝑁𝐿 is the effective number of layover points for 

that plane. Note that 𝑁𝐿 does not need to be an integer. The measured height can then be understood as 

the average height measured over the different layover areas. As a side note, the measured brightness 

has a similar response, but the power from the different layover areas do not average but add together, 

which gives rise to the bright bands often observed in images with layover. 

Hereafter, we compute the spectrum of the retrieved height for a region around (𝑥0, 𝑦0). The 

presence of the footprint averaged cross section, 𝜎0̅̅ ̅(𝑥0, 𝑦0) , which depends on the (𝑥0, 𝑦0) 

coordinates, highly complicates the analysis. In what follows, we will assume that layover effects can 

be ignored, and we will concentrate on the effects of nonlinear sampling. We will assume that 

𝜎0̅̅ ̅(𝑥0, 𝑦0) = 𝜎0̅̅ ̅ , a constant mean cross section, and define 𝛿𝜎(𝑥, 𝑦)  to represent cross section 

variations relative to the mean cross section, 𝛿𝜎(𝑥, 𝑦) =
𝜎0(𝑥,𝑦)−𝜎0̅̅̅̅

𝜎0̅̅̅̅
. Equation (11) can be then rewritten 
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as a convolution of the instrument range and azimuth point target responses and 𝑍ℎ , the surface 

impulse response: 

𝒉𝒎(𝒙𝟎, 𝒚𝟎) ≈ 𝝌𝒙 ⊗ 𝝌𝒚 ⊗ 𝒁𝒉 
1B(16) 

where ⊗ represents convolution [30] and 𝑍ℎ is given by: 

𝑍ℎ(𝑥0, 𝑦0) = ∬ 𝑑𝑆 𝛿 ((𝑥 − 𝑥0) −
ℎ(𝑥, 𝑦)

tan 𝜃𝑖0
)  𝛿(𝑦 − 𝑦0) (1 + 𝛿𝜎(𝑥, 𝑦)) ℎ(𝑥, 𝑦) (17) 

Taking the Fourier transform of Equation (13), we obtain: 

ℎ𝑚̃(𝑘𝑥, 𝑘𝑦) = 𝜒𝑥̃(𝑘𝑥) 𝜒𝑦̃(𝑘𝑦) 𝑍ℎ̃(𝑘𝑥, 𝑘𝑦) (18) 

𝑍ℎ̃(𝑘𝑥, 𝑘𝑦) = ∬ 𝑑𝑆 𝑒
−𝑗𝑘𝑥(𝑥−

ℎ(𝑥,𝑦)
tan 𝜃𝑖0

)
𝑒−𝑗𝑘𝑦𝑦 (1 + 𝛿𝜎(𝑥, 𝑦)) ℎ(𝑥, 𝑦) (19) 

where the tilde indicates that we are working on the Fourier domain. 

Equation (15) has been derived to first order in ℎ/𝑥 . Furthermore, for SWOT we are mostly 

interested in evaluating the impact of waves at ocean wavelengths larger than 15 km after low pass 

filtering the short wavelengths. Under these conditions, the exponential in Equation (15) can be 

expanded linearly (a solution that does not require this approximation has also been derived for 

Gaussian surfaces [31], but it is not used here for simplicity) to yield: 

𝑍ℎ̃(𝑘𝑥, 𝑘𝑦) ≈ ∬ 𝑑𝑆 𝑒−𝑗𝑘𝑥𝑥−𝑗𝑘𝑦𝑦 (1 + 𝛿𝜎(𝑥, 𝑦)) ℎ(𝑥, 𝑦) (1 + 𝑗𝑘𝑥

ℎ(𝑥, 𝑦)

tan 𝜃𝑖0
) (20) 

Equation (16) demonstrates that the measured height spectrum contains the linear component 

identified in Equation (6) plus a nonlinear term that causes mixing of the wave spectral components, 

and increases in the near range as 1
tan 𝜃𝑖0

⁄ . Modulation of 𝜎0  by the ocean wave height [28] 

introduces an additional nonlinear term.  

Let ℎ̃ and 𝛿𝜎̃ be the Fourier transform for ℎ(𝑥, 𝑦) and 𝛿𝜎(𝑥, 𝑦), respectively. Replacing ℎ(𝑥, 𝑦) and 

𝛿𝜎(𝑥, 𝑦) by their Fourier transform in Equation (16), and integrating over (𝑥, 𝑦), one gets: 

𝑍ℎ̃(𝑘𝑥, 𝑘𝑦) ≈ ℎ̃ + ℎ̃ ⊗ 𝛿𝜎̃ + 𝑗
𝑘𝑥

tan 𝜃𝑖0
(ℎ̃ ⊗ ℎ̃ + ℎ̃ ⊗ ℎ̃ ⊗ 𝛿𝜎̃) (21) 

Assuming that ℎ̃ and 𝛿𝜎̃ are circular Gaussian, and using Isserlis' theorem [32], the measured height 

spectrum, 𝑆ℎ𝑚
, can be obtained from Equation (21). To simplify the notation, we use a simple model 

for the backscattering modulation, 

𝛿𝜎̃ = −4𝛽̃
ℎ̃

𝜎ℎ
 (22) 

In contrast with Equation (8), 𝛽̃  can be a complex number, to account for the hydrodynamic 

relaxation rate [33]. We will also neglect the last term in Equation (21), 𝑗
𝑘𝑥

tan 𝜃𝑖0
ℎ̃ ⊗ ℎ̃ ⊗ 𝛿𝜎̃, since 

that’s a second order effect, product of two first order effects. The measured height spectrum, 𝑆ℎ𝑚
, can 

be then expressed as a function of the ocean wave spectrum, 𝑆ℎ, as follows: 

𝑆ℎ𝑚
(𝑘𝑥, 𝑘𝑦) = |𝜒𝑥̃(𝑘𝑥) 𝜒𝑦̃(𝑘𝑦)|

2
(𝑆ℎ + 2 |−4

𝛽̃

𝜎ℎ
+ 𝑗

𝑘𝑥

tan 𝜃𝑖0
|

2

𝑆ℎ ⊗ 𝑆ℎ) (23) 

Equations (17) and (18) indicate that, even when the ocean wave spectrum is filtered in the SWOT 

OBP, there is potentially spectral leakage at long ocean wavelengths due to convolutions of the wave 

spectrum with itself.  
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One can identify three contributions in Equation (23). The first term is the wave spectrum aliasing 

error introduced in Section 3. The second contribution, proportional to 𝛽̃, is not dependent on wave 

direction or incidence angle, and only occurs in the presence of backscattering modulation. The last term, 

proportional to 
𝑘𝑥

tan 𝜃𝑖0
, which is a direct consequence of the surfboard sampling, is largest for waves 

aligned in the range direction, vanishes for waves purely aligned in the flight direction and increases in 

the near range as the incidence angle is reduced. There are also crossed terms of 𝛽̃ and 
𝑘𝑥

tan 𝜃𝑖0
, when 𝛽̃ has 

an imaginary component, but that is bound to be small. Under that assumption, the height errors from the 

surfboard and the brightness modulation can be RSS’ed (root of sum of squares) together. 

One additional concern associated to the nonlinearity of the surfboard effect, besides spectral 

distortions, is the potential impact to the electromagnetic bias. To compute the expected value of the 

measured height over realizations of the ocean wave spectrum, we take the average of Equation (15) 

and compute the following: 

〈𝑒
𝑗𝑘𝑥

ℎ(𝑥,𝑦)
tan 𝜃𝑖0  (1 + 𝛿𝜎(𝑥, 𝑦)) ℎ(𝑥, 𝑦)〉 ≅ 〈𝑒

𝑗𝑘𝑥
ℎ(𝑥,𝑦)
tan 𝜃𝑖0

+𝛿𝜎(𝑥,𝑦)
  ℎ(𝑥, 𝑦)〉

=
tan 𝜃𝑖0

𝑗𝑘𝑥
𝜕𝜂 〈𝑒

𝑗𝜂𝑘𝑥
ℎ(𝑥,𝑦)
tan 𝜃𝑖0

+𝛿𝜎(𝑥,𝑦)
 〉|

𝜂=1

≅
tan 𝜃𝑖0

𝑗𝑘𝑥
𝜕𝜂 (𝑒

−
1
2(

𝜂𝑘𝑥𝜎ℎ
tan 𝜃𝑖0

)
2

+𝑗
𝜂𝑘𝑥

tan 𝜃𝑖0
〈ℎ𝛿𝜎〉

)|
𝜂=1

= (−𝑗
𝑘𝑥𝜎ℎ

2

tan 𝜃𝑖0
+ 〈ℎ𝛿𝜎〉) 𝑒

−
1
2(

𝑘𝑥𝜎ℎ
tan 𝜃𝑖0

)
2

+𝑗
𝑘𝑥

tan 𝜃𝑖0
〈ℎ𝛿𝜎〉

 

(24) 

where 𝜎ℎ  is the height variance and ℎ and 𝛿𝜎 are assumed to be Gaussian, and 𝛿𝜎 ≪ 1. Since this is 

independent of 𝑥, it can be moved outside the integral, which then yields a factor of 2𝜋𝛿(𝑥), which, 

after integrating over 𝑘𝑥  means that the contribution due to the surfboard, which is multiplied by 𝑘𝑥, 

vanishes. The final result is:  

〈ℎ𝑚〉 = 〈ℎ𝛿𝜎〉 (25) 

which is the familiar formula for the EM bias from nadir altimetry [28].  Given our assumption of  

constant 𝜎0̅̅ ̅, this result for the EM bias only holds when layover can be ignored. When layover is 

strong, additional terms appear due to multiple sampling of the wave surface that can affect the 

magnitude of the EM bias.  

The surfboard sampling will also generate ringing in the coherence. Following a parallel approach 

to the one described above, we obtain:  

𝛾 ≈ 1 −
1

2
𝜅𝑧

2 (∫ 𝑑𝑆 𝜒𝑥 ((𝑥0 − 𝑥) +
ℎ(𝑥, 𝑦)

tan 𝜃𝑖0
) 𝜒𝑎𝑧(𝑦0 − 𝑦)

𝜎0(𝑥, 𝑦)

𝜎0̅̅ ̅(𝑥0, 𝑦0)
ℎ2(𝑥, 𝑦)

− (∫ 𝑑𝑆 𝜒𝑥 ((𝑥0 − 𝑥) +
ℎ(𝑥, 𝑦)

tan 𝜃𝑖0
) 𝜒𝑎𝑧(𝑦0 − 𝑦)

𝜎0(𝑥, 𝑦)

𝜎0̅̅ ̅(𝑥0, 𝑦0)
ℎ(𝑥, 𝑦))

2

) 

(26) 

Note that without including the surfboard effect, the previous expression reduces to the volumetric 

formulation outlined in Section 3, where we showed that 𝛾𝑆𝑊𝐻 ≈ 1 −
1

2
𝜅𝑧

2𝜎ℎ
2. 

In order to validate the first order theory presented in this Appendix, we computed the spectrum for 

the simulated data using the Pierson-Moskovitz ocean wave spectrum for SWH = 3 m with no 

brightness modulation (see Section 4), and compared it to the theoretical prediction. Figure 10 shows 
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the input spectrum (green), the spectrum from the simulated data (blue) and the first order theory (red). 

To reduce the computational complexity of the radar simulations, only wavelengths longer than 30 m 

were used to generate the input wave scene. Only the ground range interval from 50 km to 60 km was 

used in the comparison, which shows good agreement between the analytical results and the 

simulations. However, below 50 km higher order effects increasingly impact the results. The original 

wave spectrum decays rapidly for wavelengths longer than a few hundred meters, and, as demonstrated 

in Section 3, weighted averaging to 1 km would filter out the wave energy. However, the measured 

spectrum clearly exhibits frequency content at lower frequencies that are not filtered out, and as a 

consequence, there is a significant contribution to the height error. 

 

Figure 10. Comparison between the simulated spectrum for the radar retrieved height 

(blue) and the first order theory in the Appendix (red) given an input Pierson-Moskovitz 

ocean wave spectrum (SWH = 3 m) aligned in the cross-track direction (green), where 

ocean wavelengths smaller than 30 m have been removed for computational purposes. The 

spectra are computed using data for the ground range interval from 50 km to 60 km. 
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