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Abstract: Airborne hyperspectral and thermal infrared imagery acquired in 2013 and 

2014, the second and third years of a severe drought in California, were used to assess 

drought impacts on dominant plant species. A relative green vegetation fraction (RGVF) 

calculated from 2013–2014 Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 

data using linear spectral unmixing revealed seasonal and multi-year changes relative to a 

pre-drought 2011 reference AVIRIS image. Deeply rooted tree species and tree species 

found in mesic areas showed the least change in RGVF. Coastal sage scrub species 

demonstrated the highest seasonal variability, as well as a longer-term decline in RGVF. 

Ceanothus species were apparently least well-adapted to long-term drought among chaparral 

species, showing persistent declines in RGVF over 2013 and 2014. Declining RGVF was 

associated with higher land surface temperature retrieved from MODIS-ASTER Airborne 

Simulator (MASTER) data. Combined collection of hyperspectral and thermal infrared 

imagery may offer new opportunities for mapping and monitoring drought impacts  

on ecosystems. 
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1. Introduction 

California has been subjected to a multi-year, extreme drought, with tree ring records indicating that the 

drought may be the most severe in the last millennium [1]. Both warmer temperatures and greatly reduced 

wet season precipitation over multiple years [2] have increased stress on vegetation. Long-term, severe 

drought can cause canopy dieback and mortality in woody plants, resulting from loss of hydraulic 

conductance, depletion of non-structural carbohydrate reserves, and secondary stress by insect attack [3–7]. 

Plant senescence, canopy dieback, and mortality result in a reduction of leaf area and fraction of the ground 

surface covered by green vegetation. Drought impacts will vary by species, however, based on factors 

such as leaf structure, root depth, and cavitation resistance [8–14]. 

Hyperspectral data have capabilities for estimating vegetation biophysical and biochemical 

parameters [15–18] and mapping vegetation species [19–24]. These complementary capabilities give 

hyperspectral data strong potential for monitoring drought impacts on vegetation [25,26], but a paucity of 

hyperspectral time series datasets has prevented the development of drought monitoring applications. 

Thermal infrared time series data also have considerable potential for monitoring drought due to drought 

impacts on evapotranspiration and canopy temperature [27–30]. NASA has proposed the Hyperspectral 

Infrared Imager (HyspIRI) satellite mission, which would combine a hyperspectral imaging spectrometer 

covering the visible, near infrared, and shortwave infrared spectral regions (VSWIR) with a multispectral 

thermal infrared (TIR) sensor [31]. HyspIRI would provide new opportunities for global monitoring of 

terrestrial ecosystems [32], potentially including seasonal monitoring of drought stress on vegetation. 

The California drought has coincided with data collection for NASA’s HyspIRI Preparatory 

Campaign, a campaign designed to acquire data using VWSIR- and TIR-like airborne instruments. 

Data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) [33] and the MODIS-ASTER 

Airborne Simulator (MASTER) [34] were acquired from an airborne platform over key ecosystems in 

California in 2013 and 2014, providing a valuable dataset for quantifying the impacts of the persistent 

drought on vegetation. This effort uses these newly available data to identify the initial impacts of a 

long-term drought on dominant plant species in the Santa Barbara region of southern California. 

Seasonal changes in fractional vegetation cover calculated from AVIRIS data and land surface 

temperature (LST) retrieved from MASTER data reveal differences in how individual species are 

responding to long-term drought. 

2. Methods 

2.1. Study Area 

The study area includes the Santa Barbara Coast and portions of the Santa Ynez Mountains and 

Santa Ynez Valley (Figure 1). This area spans an elevation range from sea level to 1300 m, with 

coastal sage scrub and grassland communities dominating at lower coastal elevations, oak forest, and 
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chaparral shrublands at higher elevation, riparian forest in mountain drainages, and oak savanna, coastal 

sage scrub, and grassland in drier inland areas. Precipitation and soil moisture data collected from a station 

in the study area [35] demonstrate reduced monthly precipitation and decreasing soil volumetric moisture 

content (VMC) since the last winter with above average precipitation, 2010–2011 (Figure 2). 

2.2. Image Data 

Data from AVIRIS and MASTER were acquired over the study area on 19 July 2011, providing a 

pre-drought baseline. New data acquisitions occurred in April, June, and November/December 2013, 

and April, June, and August 2014. All data acquisitions occurred on a single date except for 

November/December 2013 (two flights separated by nine days) and June 2014 (two flights separated by 

two days). AVIRIS data cover a spectral range of approximately 350–2500 nm with 224 10 nm spectral 

bands [33]. An AVIRIS surface reflectance product at a uniform 18 m spatial resolution was provided by 

the Jet Propulsion Laboratory (JPL). Apparent surface reflectance was retrieved using ATREM as 

described by [36]. Surface reflectance images for each date were registered to an 18 m spatial resolution 

orthoimage basemap to improve co-registration between dates. Registration spatial error was required to be 

less than one pixel for all areas containing reference polygons. MASTER has 50 bands covering the visible 

through TIR [34]. A land surface temperature (LST) product retrieved from the TIR bands at a mean 35 m 

spatial resolution was provided by JPL. Temperature-emissivity separation required for retrieving LST 

used a water vapor scaling method described by [37]. Root mean square error of LST retrieval has been 

estimated at 1.2 K for ASTER data by [38] and at 0.7 K for MASTER data [39]. LST data were registered 

to the same 18 m orthoimage basemap and were resampled to 18 m spatial resolution using nearest 

neighbor resampling.  

2.3. Ground Reference Data 

Patches dominated by 13 vegetation species, including one case of two intermixed species, were 

used to construct a set of reference polygons covering 12 species classes (Table 1). Reference 

polygons were mapped using methods adapted from [40]. Homogeneous vegetation patches were 

manually delineated on high spatial resolution imagery, and a high-powered spotting scope was 

combined with in situ inspection to estimate species dominance within each patch. Reference polygons 

were required to be at least 75% dominated by a single species (or in one case by intermixed Artemisia 

californica and Salvia leucophylla) and to have a minimum approximate size of 40 m by 40 m. 

Reference polygons were mapped within the study area in 2003, 2009, and 2012 (Figure 1), and were 

collected from outside of areas burned by recent fires in the Santa Ynez Mountains. Reference data 

collection is described in further detail in [21] and [41]. 

2.4. Analysis 

Linear spectral unmixing (also known as spectral mixture analysis) models reflectance spectra as a 

linear mixture of endmembers representing pure cover types [42]. Unmixing assigns a fractional 

composition to each endmember, with green vegetation (GV), non-photosynthetic vegetation (NPV), soil, 
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and shade representing typical endmember types used for vegetation analysis [43]. In a previous adaption 

of linear spectral unmixing, relative endmember fractions were modeled by unmixing time series data [44]. 

 

Figure 1. The study region covering the Santa Barbara Coast and portions of the Santa 

Ynez Mountains and Santa Ynez Valley, California. An AVIRIS images acquired in July 

2011 is shown in a 1651 nm (red), 831 nm (green), 658 nm (blue) false color composite. 

Reference polygons dominated by plant species are marked by yellow dots. 

Table 1. Species, code, functional type, and number of pixels sampled per date. 

Species/Vegetation Type Code Functional Type N Pixels 

Adenostoma fasciculatum ADFA evergreen chaparral 2727 

Artemisia californica-Salvia leucophylla ARCA-SALE coastal sage scrub 1548 

Arctostaphylos glauca/glandulosa ARGL evergreen chaparral 342 

Ceanothus cuneatus CECU evergreen chaparral 318 

Ceanothus megacarpus CEME evergreen chaparral 720 

Ceanothus spinosus CESP evergreen chaparral 957 

Eriogonum fasciculatum ERFA coastal sage scrub 1212 

Pinus sabiniana PISA evergreen tree 1203 

Platanus racemosa PLRA deciduous tree 720 

Quercus agrifolia QUAG evergreen tree 1536 

Quercus douglasii QUDO deciduous tree 2769 

Umbellularia californica UMCA evergreen tree 249 
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Figure 2. Precipitation and soil moisture measured at Sedgwick Ranch, California. (a) 

Monthly precipitation; (b) percent of each month with a volumetric moisture content 

(VMC) greater than 0.08 at a depth of 15 cm. The 0.08 VMC threshold was empirically 

determined to be just above the wilting point in this soil type; and (c) percent of each 

month with a VMC greater than 0.08 at a depth of 46 cm. 

Changes in GV fraction over the AVIRIS time series were modeled using a relative linear spectral 

unmixing technique. The July 2011 AVIRIS image was selected as a reference date because it 

represents a high rainfall year for which shrub and tree canopy spectra would reflect peak growth 

conditions expressed by high near infrared/red contrast and minimum levels of exposed stems, 

branches, and soil. For each pixel in the study area, the July 2011 spectrum was used as a GV 
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endmember representing a baseline green vegetation cover. An empirically-determined normalized 

difference vegetation index (NDVI) threshold of 0.3 was used to mask out non-vegetated pixels 

(Figure 3). For each date in 2013 and 2014, each pixel was modeled as a linear combination of its July 

2011 spectrum representing the GV endmember, a non-photosynthetic vegetation (NPV) endmember 

from a lab spectrum of bare branches, and a zero reflectance shade endmember. Singular value 

decomposition was used to calculate the fractions of GV, NPV, and shade endmembers for the 2013 

and 2014 dates, providing a relative GV fraction (RGVF) based on change relative to the July 2011 

spectrum. RGVF was shade-normalized to correct for solar zenith effects by dividing by the sum of the 

non-shade fractions. 

 

Figure 3. An NDVI threshold of 0.3 was empirically determined using spectra extracted 

from species reference polygons (GV) and from areas with senesced grassland and soil 

cover (non-GV). Non-GV cover was identified based on appearance in high resolution 

orthoimagery and manual inspection of spectral shape in the July 2011 AVIRIS image. 95% 

of GV-type spectra were above the 0.3 NDVI threshold, while only 12% of non-GV-type 

spectra were above the same threshold. 

Use of a relative fraction calculated on a per-pixel basis accommodates spectral variability that 

occurs by species and over space [45]. Thus RGVF represents change from a previous baseline for 

each pixel, rather than an absolute measure of vegetation cover. RGVF was used rather than a relative 

NPV or soil fraction due to the high spectral contrast between green vegetation and other sub-pixel 

components. This minimizes the impact of spectral confusion between NPV and soil on RGVF [43,46]. 

Since the GV endmember used to model each pixel is fixed, RGVF avoids problems with best fit 

endmembers potentially changing over time in a multiple endmember spectral mixture analysis-type 
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model [20,47]. Use of a four-endmember model for RGVF calculation (including a soil endmember in 

addition to the GV endmember from the 2011 image plus NPV and shade endmembers) was 

attempted, but similarity between soil and NPV endmembers resulted in unrealistically large changes 

in soil and NPV fractions from date to date in response to changes in the spectral shape of modeled 

pixels. Since the NPV endmember best captured the dominant signal of canopy dieback and mortality, 

it was chosen over the soil endmember for the three endmember model used to calculate RGVF. 

Increased soil cover associated with canopy dieback and mortality will increase NPV fraction in the 

three endmember model due to the spectral similarity of soil and NPV. 

Severe drought impacts on vegetation canopies, representing die-back or mortality, would result in 

decreased RGVF compared to the 2011 baseline. The reference polygons were used to extract RGVF 

values for each species. Distributions of RGVF for each date were calculated. Decreased GV cover 

relative to July 2011 would result in a RGVF below one, while increased GV cover would result in a 

RGVF greater than one. RGVF was also compared to LST extracted from MASTER data using the 

same reference polygons. 

3. Results and Discussion 

RGVF exhibited broad, seasonal decreases over both 2013 and 2014 (Figure 4). Agriculture (Figure 5a) 

and fire scars (Figure 5c) provided areas with RGVF values that were sometimes higher than one, 

indicating increased vegetation cover relative to July 2011. In the case of agriculture, higher RGVF 

values resulted from irrigation. Scars of the 2008 Gap and Tea fires and 2009 Jesusita fire have higher 

GV cover relative to 2011 in the April and June images, due to continued vegetation recovery since 

July 2011. Higher elevation chaparral areas (Figures 4 and 5b,c) showed the strongest declines in 

RGVF through the time series. In the April 2013 image, RGVF was close to one in the Santa Ynez 

Mountain areas untouched by recent fires. RGVF moved to negative values in June 2013 and to 

strongly negative values in November 2013 (Figure 2). Relative fraction values in the Santa Ynez 

Mountains did not recover to near neutral values in the following April. A short period of high 

precipitation in late February/early March 2014 did result in less change in RGVF between April and 

June 2014, compared to 2013. 

Distributions of RGVF for each dominant plant species demonstrated trends toward decreased 

vegetation cover (Figure 6). Evergreen chaparral species such as ADFA, ARGL, CECU, CEME,  

and CESP (see species abbreviations listed Table 1) showed persistent declines in RGVF;  

April 2014 showed no or little recovery in RGVF for these species compared to November 2013, 

although higher February/March 2014 precipitation did result in similar RGVF distributions in June 

2013 and 2014. Ceanothus species (CECU, CEME, and CESP) had more severe decreases in RGVF 

compared to ADFA, corresponding with Ceanothus canopy dieback observed in the Santa Ynez 

Mountains and other southern California mountain ranges. Among Ceanothus species, CECU seems to 

have been most strongly impacted by drought stress, with RGVF declining across every date in the 

time series. 
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Figure 4. Relative GV fraction for dates in 2013 and 2014. White areas indicate pixels 

with an NDVI less than 0.3 in the July 2011 data. An instrument malfunction resulted in 

missing data for the white strip shown in the 2014-06-04 image. Fire scars for the Gap, 

Jesusita, and Tea fires are indicated by the letters G, J, and T, respectively. The location of 

the Sedgwick Ranch station recording precipitation and soil moisture data shown in  

Figure 2 is indicated by the letter S. 

Tree species (PISA, PLRA, QUAG, QUDO, and UMCA) had narrower distributions in RGVF, and 

exhibited more limited declines during the time series. In all cases, RGVF distributions were similar in 

April 2013 and 2014, indicating recovery of vegetation cover following the wet season. QUDO 

demonstrated the largest decreases in RGVF from spring to summer and fall. QUDO is drought 

deciduous, but RGVF values larger than one in the April images indicate that the green-up and 

senescence of grasses surrounding and underneath QUDO canopies may be the primary contributor to 

seasonal trends. QUAG and PLRA, frequently found in riparian areas, had stable RGVF distributions 

across all dates. 

Coastal sage scrub species (ARCA-SALE and ERFA) had the most variable RGVF distributions. 

ARCA-SALE exhibited RGVF values above one in April 2013. These species are drought deciduous, 

and higher GV fraction in spring 2013 relative to summer 2011 would be expected. ARCA-SALE and 

ERFA both had RGVF below one in April 2014, indicating that reduced winter precipitation in 
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successive years may have reduced GV cover. ARCA-SALE displayed an unusual RGVF distribution 

centered below zero in November 2013. These extremely low relative fractions resulted from a total 

lack of chlorophyll absorption and red edge in ARCA-SALE spectra, indicating complete senescence. 

Coastal sage scrub species had the highest LST values, likely associated with lower vegetation 

cover, lower evapotranspiration, and south-facing slopes typical of coastal sage scrub communities 

(Figure 7). QUAG, a broadleaf evergreen tree species, anchored the lower end of the LST scale. 

Roberts et al. [30] previously found that many species in this study area formed unique clusters in the 

space defined by GV fraction and LST. Species also formed clusters in the space defined by RGVF 

and LST (Figure 7). In April 2013, these clusters had a RGVF close to one and a wider range of LST 

values. Over the remainder of 2013 and all of 2014, the relationship between RGVF and LST skewed 

negative. Coastal sage scrub and chaparral species with large reductions in RGVF relative to July 2011 

tended to have higher LST values, while tree species demonstrated smaller changes in RGVF and 

lower LST values. 

Variability in RGVF corresponded to physiological and environmental characteristics. PLRA and 

UMCA are tree species found in the most mesic areas of the Santa Ynez Mountains, and had minimal 

changes in RGVF during 2013 and 2014. QUAG is very deeply rooted [12], and also demonstrated 

minimal change in RGVF. Among chaparral species, ADFA had less extreme declines in RGVF over 

2013 and 2014 compared to CECU, CEME, and CESP. ADFA has been found to be more deeply 

rooted than Ceanothus species [48]. While Ceanothus species may have a higher cavitation resistance 

than ADFA [14], this did not prevent widespread dieback of Ceanothus species and corresponding 

declines in RGVF. Coastal sage scrub species are the most shallowly rooted [48] and have low 

cavitation resistance [13]. These species exhibited the largest seasonal swings in RGVF. 

Deeply rooted species that were least affected by drought in 2013 and 2014 are likely to become 

more severely impacted as the drought continues. In situ data reveal that the continued drought has 

resulted in soil moisture depletion (Figure 2). The percent of each month with soil volumetric moisture 

content (VMC) less than an empirically determined wilting point of 0.08 has declined as the drought 

has persisted, especially at 46 cm depth (Figure 2c). Winter precipitation has not percolated deep 

enough to substantially recharge soil moisture at depth. Continuation of the drought beyond 2015 is 

also likely to worsen drought effects beyond those seen in 2013 and 2014. The lagged response of 

shrub species to precipitation in February/March 2014 demonstrates that both timing and amount of 

precipitation are important for determining drought impacts.  

This study did not differentiate between plant senescence, canopy dieback, and mortality. 

Senescence and dieback should produce seasonal cycles in RGVF, although long-term declines in 

vegetation cover may result from long-term drought stress. Mortality should result in more persistent 

reductions in RGVF, however, recruitment of herbaceous vegetation following mortality could 

introduce more seasonal variability. Hyperspectral VSWIR data have demonstrated the ability to map 

dominant plant species [19–24,30], which could be used to separate senescence and dieback 

(persistence of the same species) from mortality and replacement of one dominant species with another. 

Dominant species cover mapped using hyperspectral data could be used to extend these results 

beyond a limited number of field-assessed reference polygons. In doing so, variation in drought 

impacts on individual species may be found to vary by elevation, aspect, slope, and soil type. Accuracy 

of species mapping, especially in areas where no single species dominates, will need to be assessed to 
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validate trends in RGVF and LST over larger areas. RGVF should be compared to ground measures 

such as leaf area index [49] and canopy cover to determine how canopy structural changes correspond 

to drought-associated decreases in RGVF. 

 

Figure 5. Relative GV fraction for dates in 2013. The areas shown are subsets of the study 

area shown in Figure 4: (a) Agriculture in the Santa Ynez valley; (b) chaparral (top-right of 

subset) and coastal sage scrub and grasslands (bottom-left of subset); (c) the fire scar of the 

2008 Gap fire (top of subset) and agriculture and grasslands (bottom of subset). White 

areas indicate pixels with an NDVI less than 0.3 in the July 2011 data. 

The HyspIRI Preparatory Campaign acquired AVIRIS and MASTER data over an area totaling 

approximately 130,000 km2. Due to the limited availability of pre-drought baseline imagery, our study 

area was limited to a much smaller 650 km2. A satellite mission could provide longer-term monitoring 

of drought conditions, leveraging the complementary abilities of VSWIR data to measure vegetation 

condition and TIR data to measure LST. Models combining VSWIR and TIR data may be useful for 

constraining reductions in evapotranspiration resulting from drought [50]. The capabilities of a 

combined hyperspectral VSWIR and TIR mission for mapping species and monitoring vegetation 

drought impacts could be used to investigate species response to drought along environmental gradients. 



Remote Sens. 2015, 7 14286 

 

 

Figure 6. Relative GV fraction distributions for individual species. Species codes are listed 

in Table 1. Density is the kernel density estimate calculated using the “density” function in 

R statistical software (http://www.R-project.org/). 

 

Figure 7. Land surface temperature versus relative GV fraction for pixels in species 

polygons. Species codes are listed in Table 1. 

4. Conclusions 

RGVF provides a method for measuring per-pixel change in GV fraction over time relative to a 

baseline image. Change in RGVF and LST were examined for dominant plant species in the second 
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and third years of a continuing, severe drought. Species showed a range of responses to drought stress, 

corresponding with physiological and environmental characteristics. Deeply rooted tree species and 

tree species found in mesic areas showed the least change in RGVF relative to a pre-drought image. 

Coastal sage scrub species had the highest seasonal variability during 2013 and 2014, and both 

chaparral and coastal sage scrub species demonstrated long-term decline in RGVF. If the drought 

persists, cumulative, more severe impacts can be expected across a wider range of species. 

Hyperspectral VSWIR and TIR data hold promise for monitoring drought impacts. Improved 

knowledge of species-specific drought impacts may improve understanding of changes in ecosystem 

structure and function resulting from drought-induced mortality of select species [51–53]. 
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