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Abstract: The coastal shallow water zone can be a challenging and costly environment in 

which to acquire bathymetry and other oceanographic data using traditional survey methods. 

Much of the coastal shallow water zone worldwide remains unmapped using recent 

techniques and is, therefore, poorly understood. Optical satellite imagery is proving to be a 

useful tool in predicting water depth in coastal zones, particularly in conjunction with other 

standard datasets, though its quality and accuracy remains largely unconstrained. A common 

challenge in any prediction study is to choose a small but representative group of predictors, 

one of which can be determined as the best. In this respect, exploratory analyses are used to 

guide the make-up of this group, where we choose to compare a basic non-spatial model 

versus four spatial alternatives, each catering for a variety of spatial effects. Using one 

instance of RapidEye satellite imagery, we show that all four spatial models show better 

adjustments than the non-spatial model in the water depth predictions, with the best predictor 

yielding a correlation coefficient of actual versus predicted at 0.985. All five predictors also 

factor in the influence of bottom type in explaining water depth variation. However, the 

prediction ranges are too large to be used in high accuracy bathymetry products such as 

navigation charts; nevertheless, they are considered beneficial in a variety of other 
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applications in sensitive disciplines such as environmental monitoring, seabed mapping, or 

coastal zone management.  
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1. Introduction 

The term, “remote sensing” encompasses a series of well established procedures for bathymetric 

surveys of the seabed [1,2], but these procedures are not without limitations in terms of both the sensors 

and those imposed by the environment [3]. Remote sensing for bathymetry can be subdivided into active 

and passive techniques. Active remote sensing for bathymetry is generally represented by ship borne 

multi-beam echo sounding (MBES) sensor arrays [4]. MBES surveys produce accurate depth 

measurements along transects on the seabed but this method is constrained by high operating costs and 

an inability to survey in very shallow waters, marine protected areas or endangered habitats such as coral 

reefs [5]. Additionally, ship-borne surveys are time consuming and swath widths can be very narrow in 

shallow waters. Although single beam surveys are less costly than their multi-beam alternative, their low 

sampling density requires advanced interpolation (or prediction) techniques [6] to estimate seabed 

topography, and, therefore, are generally not used for high accuracy surveys but rather commissioned 

by local interest groups as an interim measure. A second non-imaging method known as satellite 

altimetry can be used to measure the geoidal height and marine gravity field which, in turn, can be used 

to determine the water depth from the linear relationship between the gravity anomaly and square of the 

depth [7]. This method is only suitable for deep sea, for example, surveying large sea mounts [8]. Other 

active methods such as airborne bathymetric LiDAR (Light Detection and Ranging) have achieved a 

spatial resolution of 4 m (horizontal) and 20 cm in vertical accuracy at depths of over 30 m. However, 

LiDAR is not ideal for all water types, as experience gained in Irish waters from the INFOMAR [9] 

research program demonstrates. These tests resulted in very poor seabed detection along the east coast 

of Ireland and limited penetration in the west coast up to 15 m. Satellite LiDAR (e.g., ICESat) has been 

employed by Arsen [10] in conjunction with imagery from Landsat 5 and 7 to ascertain the water levels 

of inland lakes but this type of LiDAR platform is not designed for high-resolution, high-accuracy 

bathymetric surveys. 

Although [11] has employed spatial video to monitor wave patterns to calculate near shore 

bathymetry, passive remote sensing for bathymetry is predominantly performed using multispectral 

satellite imagery. Multispectral imagery is preferable because electromagnetic radiation at different 

wavelengths can penetrate the water column to different depths and the land–water interface can be 

clearly defined. Bathymetry is calculated using analytical [12,13] or empirical methods [14,15], based 

on the statistical relationships between image pixel values and ground truth depth measurements and is 

applicable in shallow coastal waters. Accuracy is high using these methods for depths of water 

penetration not exceeding 20 m but becomes less accurate in deeper waters [16]. Turbidity is an issue 

for imagery derived bathymetry in all water types, as [17] have demonstrated in their study of high 

sediment rivers in tidal inlets [18], and summarized by Gao [16]. Hyperspectral satellite data can provide 

an important insight into the water column properties when deriving satellite bathymetry (e.g., turbidity, 
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oceanographic) [19] due to the greater number and narrower bands, however, the spatial resolution is 

generally much larger than with multispectral (1 or 2 orders of magnitude). 

Optical multi-spectral satellite-derived bathymetry (SDB) that implements analytical or empirical 

methods, based on the statistical relationships between image pixel values and field measured water depth 

measurements, apply the general physical principle that sea water transmittances at near-visible 

wavelengths are functions of a general optical equation depending on the intrinsic optical properties of sea 

water. A variety of empirical models have been proposed, from linear functions [20], band ratios to log 

transformed regression models [21], and non-linear inverse models [22] with varying degrees of 

corrections applied (atmospheric, sun glint, seafloor). The evolution of empirical models has been largely 

linked to the chronology of satellite platforms: coarse spatial resolution using Landsat TM [13,23,24]; 

medium spatial resolution SPOT images in shallow waters [15,25] or RapidEye in lakes [26]; and high 

spatial resolution with the use of commercial satellites such as WorldView [27,28], QuickBird [29,30] 

and IKONOS [31]. 

The first and most popular approach for deriving bathymetric estimates from remote sensing imagery 

was proposed by Lyzenga [20] in clear shallow waters using aerial photographs, identifying that the 

reflectance from the seabed is dependent on the bottom type and the water depth. Since then, a wide variety 

of empirical models have been proposed, although depth penetration is limited, water turbidity is an issue 

and the models require calibration, particularly in areas of variable bottom type. Although [32] have 

demonstrated an artificial neural network that is not influenced by bottom type or vegetation on the 

seabed. The Lyzenga method [20] is not restricted to imagery from a single satellite—imagery from 

Landsat TM [13,21,23,24], QuickBird [29,30], SPOT [15,25] and WorldView-2 [27,28] have all been 

employed. Nor is the source of the imagery limited to satellites—Flener [33] have performed a 

comparison between mobile laser scanners and UAV imagery for bathymetric surveys of rivers. Due to 

the reduced viewing distance achievable with a UAV, this high resolution imagery can result in a ground 

sampling distance as low as 5 cm. Work presented by Lyons [30] has demonstrated that not only is the 

Lyzenga method [20] suitable for determining bathymetry but it is also suitable for classifying features 

on the sea bed such as sea grass. 

The methodology used in this research with respect to the remotely sensed imagery has its roots in that 

applied by Stumpf and Holderied [21] which introduced an algorithm available in ENVI™ that uses a ratio 

of reflectance to retrieve depths from IKONOS imagery even in deep water (> 25 m) contrary to a standard 

linear transform algorithm. Su et al., [22] successfully automated the methodology of Stumpf and 

Holderied [21], tested with IKONOS images, and implemented it as a module tool within the ArcGISTM 

environment. For prediction model choice, we significantly extend that conducted in the related study of 

Su et al., [34], where the (spatial) geographically weighted regression (GWR) model [35] was shown to 

provide superior accuracy over a (non-spatial) multiple linear regression (MLR).  

For many spatial prediction studies, there exists a wide range of models to choose from (e.g., [36]), 

and as such, it is rarely sufficient to only compare two models. The skill is to choose a small but 

representative group of predictors, one of which can be taken as the best. In this respect, exploratory 

analyses with our study data indicated that the key relationship between the multibeam bathymetry and 

the reflectance data is not constant across the study area (i.e., the relationship is non-stationary), but also 

that significant spatial autocorrelation effects are present. Thus, GWR is still considered a good predictor 

choice, as it accounts for such spatially-varying relationships. However, as autocorrelation effects are 
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also present, we aim to demonstrate a possible improvement to the study by Su et al., (2014) [34] above, 

by expanding the model comparison from two to five models. One predictor is a hybrid between GWR 

and kriging (GWRK) [37,38] that captures both spatial effects. The other two predictors stem from the 

kriging with an external drift (KED) model (e.g., [39]), which, provided it is calibrated within a local 

neighbourhood (i.e. KED-LN), similarly captures both spatial effects; whilst KED within a global 

neighbourhood (i.e., KED-GN) only caters for stationary relationships, as with MLR [37,40]. Although 

this particular model comparison is not novel in the wider literature (e.g., see [37,38]), its use in this 

study’s context is. 

Thus, a key study aim is to determine to what degree we need to account for our observed exploratory 

findings in order to provide the most accurate water depth predictions. Are the spatial non-stationarity and 

spatial autocorrelation effects, equally important (i.e., prefer a KED-LN or GWRK fit)? Alternatively, is 

one effect significantly more important than the other (i.e., choose GWR in preference to KED-GN or  

visa-versa)? The MLR fit is not expected to perform well, and simply acts as a benchmark predictor, which 

the other four models would default to, if spatial non-stationarity and spatial autocorrelation effects were 

entirely absent in the data. Thus, our study objectives can be summarized as follows: 

 Evaluate the overall suitability of RapidEye satellite data for deriving coastal bathymetry in a 

representative C-shaped bay environment, through application of a blue/green band ratio and 

statistical models using ground calibration points. 

 Determine the most suitable prediction model for the data analysed using a non-spatial, 

multivariate model versus four spatial alternatives, each catering for a variety of spatial effects. 

 Demonstrate the value in comparing a range of predictors, carefully chosen via a suitable 

exploratory analysis. 

 Discuss the spatial patterns of the best model’s predictions in relation to the bay’s physical 

characteristics. 

2. Study Area and Datasets 

The following sections introduce the study area, the satellite imagery employed, the multibeam depth 

data that was used to calibrate the model and validate it, and the seabed classification maps. 

2.1. Study Area  

The study area (Figure 1) is located in the inner part of Dublin Bay on the east coast of Ireland. The 

region investigated is a C-shaped inlet, a designated UNESCO Biosphere and covers an area of 

approximately 50 km² (10 km long and 5 km wide) with water depths ranging from 0–15 m. The bay is 

joined and bisected by the river Liffey in the south and north. The intertidal region extends in a broad 

arc around most of the bay, giving a total intertidal area of some 20 km², in a relatively flat topography 

interrupted by tidally controlled related features, such as drainage channels and inlets. Beyond the intertidal 

region, the topography of the bay is characterized by a gentle E-W regional slope not exceeding 0.5°. Near 

the northern shoreline, off the Howth peninsula, slopes can be, locally, steep up to 5°. The Liffey channel 

extends ca. 6 km E-W and has a U-shape section, with a width between 300 and 1200 m, heights ranging 

from 6–8 m and wall slopes averaging 1–3°. A number of man-made structures such as pipelines, buoys 
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and anchorage sites are present in the study area described in the nautical charts. Descriptions of Dublin 

Bay and its intertidal environment are given in earlier papers by several authors [41,42]. 

The study area has been chosen as a representative test with similar characteristics in terms of 

geomorphology (e.g., C-shaped bay, estuaries) and socio-environmental factors (e.g., dense city, sea 

level rise) to other embayment areas worldwide. Data availability issues with recent hydrographic 

bathy2metry surveys together with suitable satellite imagery have also been a key factor. 

 

Figure 1. Study Area—Dublin Bay, East coast of Ireland. The Liffey channel is clearly 

centrally located. 

2.2. Multibeam Bathymetry Data 

The groundtruthing water depth (WD) data used in this study was acquired during June–September 

in 2009 as part of INFOMAR, the Irish national seabed mapping program (www.infomar.ie). The system 

employed onboard the R.V. Keary was the multibeam Kongsberg-Simrad MBES (EM3002) operating 

at circa 300 kHz [43]. Data was collected using differential GPS and tidal corrections were applied in 

the post-processing. Depths were reduced to LAT (Lowest Astronomical Tide) and deemed suitable for 

hydrographic charts. The complete system was capable of measuring water depths between 0 and 15 m 

with a vertical accuracy of less than 10 cm RMS and a horizontal positioning accuracy of less than 1 m. 

These data are used as the response variable in our study models. 

2.3. Satellite Imagery 

The (model predictor) image used for this study was acquired by the RapidEye satellite constellation. 

RapidEye imagery was selected because it was the most suitable in terms of spatial and spectral 

resolution and also time of image capture. Figure 2 displays the RGB RapidEye image of the study area, 

characterized by calm sea conditions and a cloud free atmosphere (2% cloud-cover).  
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Figure 2. Study imagery, a RapidEye RGB Image of Dublin Bay, East coast of Ireland.  

1 June 2009 at 12:13 UTC. 

2.3.1. Spatial Resolution 

There are five pushbroom satellites in the commercial RapidEye constellation, providing a daily  

off-nadir repeat cycle and a 5.5 day repeat cycle at nadir. The ground sampling distance of the 

multispectral sensors on board these satellites is 6.5 m but this is re-sampled to provide users with a 5 m 

spatial resolution for Level 3a orthorectified imagery. A 5 m spatial resolution will enable subtle changes 

in bathymetry to be identified and quantified (such as bedforms and channels), whereas larger pixel sizes 

such as a 30 m Landsat 8 pixel will cause a greater degree of generalisation/smoothing to be introduced 

and steep submerged gradients may not be resolved, leading to errors in bathymetric charts. The 5 m 

spatial resolution also corresponded with the 5 m MBES grid spacing and each pixel could then be 

matched with a corresponding MBES point. 

2.3.2. Spectral Resolution 

The spectral range of the RapidEye satellite begins at 440 nm, a comparable wavelength with the 

coastal/aerosol band of Landsat8 (433 nm), maximising radiance measurements from the seabed. 

Although RapidEye has a dedicated “Red-Edge” band at 690 nm–730 nm for vegetation studies that is 

sensitive to changes in chlorophyll content, we used the NIR band (760 nm–850 nm) in this study, as it 

outperformed the “Red Edge” band in delineating the land–sea interface. 

2.3.3. Time of Imagery 

The image employed in these tests was captured on 1 June 2009. RapidEye’s sun-synchronous orbit and 

a 12:13 UTC image capture would correspond with low tide in Dublin Bay on that day (12:05 UTC). There 

were three important considerations when choosing the date of the imagery: ensuring the image 

corresponded as closely as possible with the date of the INFOMAR MBES survey, coinciding with low 

tide to minimize the distance light would have to penetrate through the water column and a high 

illumination angle which would have the same effect. 
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2.4. Seabed Classification Data 

Seabed type information was derived from the seabed geological maps and databases published by 

the Geological Survey of Ireland (www.gsi.ie). These maps, produced by interpreting multibeam 

bathymetry and backscatter data, inform about seabed type and geomorphological factors. Data points 

showing similar characteristics are grouped into discrete classes (see Table 1). Sediment samples are 

used to label these classes with geological descriptors. This dataset provides a further predictor variable 

in our study models. Fine-grained sediments (classes 3, 4 and 5) account for over 92% of the Bay’s 

seafloor. Hardgrounds (class 1) and Channel class (class 2) account for 4% each.  

Table 1. Seabed type and descriptions. 

Class Name Description Topography 
MBES 

Backscatter 

1 Hardground Rock outcrops and mixed gravelly sediments Rough High 

2 Channel 
Topographically controlled class with mixed 

fine-grained sediments 
Rough High 

3 Fine sediments I Featureless fine sediments Smooth Moderate 

4 Fine sediments II Featureless fine sediments Smooth Low 

5 Fine sediments III 
Fine sediments with bedforms and possible 

tidal control 
Smooth Very Low 

3. Methodology 

3.1. Satellite Image Processing  

3.1.1. Radiometric and Geometric Corrections 

Satellite imagery such as Landsat or RapidEye are generally stored in a database and classified by the 

degree of processing. This ranges from Level 0, a raw, uncorrected image up to Level 4, where all 

corrections have been applied and a series of analyses (such as vegetation indices) have been applied to 

the imagery. The RapidEye imagery used in this study was provided at Level 3a, meaning that all 

radiometric and sensor corrections had been performed. Level 3a imagery has also been aligned to a 

cartographic map projection and geometric corrections applied using fine DEMs with a post spacing of 

between 30 and 90 m and Ground Control Points (GCPs). RapidEye satellite images are collected with 

a bit depth of up to 12 bits and stored on-board the satellites. They are then scaled to a 16 bit dynamic 

range. Scaling converts relative pixel DNs into values directly related to absolute at-sensor radiances. A 

scaling factor is applied so that these post-processed single DN values correspond to 1/100th of a W/m2 

sr µm. The digital numbers of the RapidEye image pixels represent the absolute calibrated radiance 

values for the image. 

3.1.2. Atmospheric Corrections  

The main focus of this research was to assess the suitability of a number of spatial models to predict 

relative water depth (WD) using an already tested band ratio algorithm and calibration data. Atmospheric 

corrections may pose unnecessary bias in accurately assessing the spatial models due to cumulative 
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increase in error uncertainty. Several studies focusing on measuring water quality using Landsat sensors 

have questioned the advantage of using atmospherically corrected data when attempting to describe the 

variability of optical water properties [44,45]. Additionally, by using a single satellite image, and with 

the atmospheric conditions present, it is a reasonable assumption that they will not be noticeably different 

across the test area.  

3.1.3. Contribution of Sun-Glint as an Error Source 

Sun-glint can appear at the slope of waves and this potentially influences the returned signal. Sun-glint 

is a problematic issue in bathymetric surveys with satellite imagery. For example, Goodman (2008) [46] 

demonstrated that sun-glint in high resolution imagery can result in errors of up to 30% of the water 

depth. It is most common where the sensor is facing towards the sun [47], however, with a relative 

azimuth of 51° (solar illumination elevation angle minus the satellite view angle) significantly less than 

90°, it can be anticipated that sun-glint was not a significant issue for this RapidEye image [48]. To 

further confirm this conclusion, three additional tests were carried out:  

(a) A visual inspection of the image—the RGB image of the test site was inspected to identify the 

presence of sun-glint. None were apparent. However the spatial resolution could potentially have 

masked the effect. 

(b) In theory, energy in the NIR portion of the spectrum should be absorbed in water, and therefore 

any NIR that is recorded over water is due to sun-glint. In reality, there is always a small portion 

of NIR recorded by the sensor and it rarely equates to a DN of 0 [49]. The NIR values for the test 

site were inspected looking for significant variation which would imply areas of sun-glint. None 

were identified. 

(c) A final dual-wavelength test was designed to ensure no sun-glint was present in the area. A 

process developed by Hedley et al., [50] demonstrates a method for removing sun-glint and this 

was adapted and used to assess whether sun-glint was a significant contributory factor. An area 

of deep water, where the spectral brightness could be considered as homogenous, was located. 

The values for the Blue band in the visible portion of the spectrum and the NIR were then plotted 

against each other and a linear regression line was applied to the data. Here a very low correlation 

of 0.08 between NIR and Blue band values implied that minimal sun-glint is present, as the NIR 

values do not increases as the Blue band values increase. The slope of the linear regression line 

is used by Hedley et al., [50] to apply a de-glinting correction to the pixels. However, our results 

and the clear shallow slope of the linear regression line from the test area demonstrate that this 

is not necessary. 

3.1.4. Log Ratio Algorithm for Satellite Derived Relative Depth 

The method to derive the relative radiance for the satellite data was based on the methodology adopted 

by Stumpf and Holderied [21]. The Relative Water Depth tool enabled in ENVI™ 5 suite was used to 

extract the log ratio between the green band (520–590 nm) and the blue band (440–510 nm). The 

algorithm uses a ratio of observed reflectance and two constants to calculate satellite derived relative 

depth (SDRD), as follows:  
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𝑆𝐷𝑅𝐷 = 𝑚1

𝑙𝑛(𝑛𝑅𝑤(𝜆𝑖))

𝑙𝑛 (𝑛𝑅𝑤(𝜆𝑗))
 − 𝑚0 (1)  

Rw is the observed reflectance of the wavelength (ë) for bands i and j, the ratio of which forms the 

basis for depth extraction. The blue (λi) and green (λj) bands were used for the ratio input as they have 

the greatest penetration though the water column. The constant, n, is a fixed value, chosen to keep the 

ratio positive given any reflectance value input. The output must still be calibrated to field data to 

estimate actual depth. m1 is a tunable constant to scale the ratio to depth, while m0 is the offset correction 

when the output should be zero (i.e., SDRD = 0), used most recently by Pattaniak et al., [51] and Jawak 

and Luis [52] for Indian Ocean and Antarctic Ocean coastal surveys. The application of this band ratio 

algorithm has led to improvements in the water depth empirical models, particularly dealing with 

seafloor reflectance issues or water column issues [53]. However, limitations in the implementation are 

still hampered by its complexity, particularly on the physics of light transmission within turbid  

waters [17,54] and in biota covered bottoms as details in Lyons et al., [30]. The output SDRD data was 

exported to vector point data using the pixel centroid as the geo-reference locator. 

3.2. Data Integration 

The geo-referenced SDRD values (our first predictor variable) were combined with the multibeam 

WD (response) data, together with the categorical seabed type (our second predictor variable), using the 

nearest neighbor algorithm in ArcGIS™ 10. This resulted in a full data set of 12,665 observations. In 

order to efficiently compare the accuracy of our prediction models with respect to reduced computational 

overheads, we then decimated this data by randomly removing 80% of the observations. For objective 

model comparison, this decimated data set was then randomly split into a model calibration data set of 

632 observations and a set-aside model validation data set of size 1898 observations. Here, we choose a 

25:75% split as some aspects of model calibration are still computationally expensive (but not 

prohibitively so). Data processing operations were conducted within the R statistical computing 

environment (http://www.r-project.org), as were the implementation of the prediction models in the 

following sections. 

3.3. Prediction Models 

We calibrate and assess five multivariate prediction models, each of which try to accurately predict 

multibeam WD using SDRD data and seabed-type, as two predictor variables. Preliminary analyses 

indicated that spatial autocorrelation effects are present and that the relationship between WD and SDRD 

changes across the study waters. With these initial findings in mind, we choose the following predictors 

for evaluation: (1) MLR; (2) GWR; (3) KED-GN; (4) KED-LN; and (5) GWRK (i.e., kriging with GWR 

as its trend component). Essentially, MLR assumes stationary (constant) relationships between the 

response and predictor data, as does KED-GN. On the other hand, GWR, KED-LN and GWRK each 

model the same relationships, as non-stationary. In addition, KED-GN, KED-LN and GWRK each 

account for spatial autocorrelation effects, whilst MLR and GWR do not. Thus, MLR is the only  

non-spatial model of the five; and only KED-LN and GWRK model both non-stationary relationships 
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and autocorrelation effects. A summary of these properties is given in Table 2. The five study predictors 

are now formally described. 

Table 2. Core properties of this study’s prediction models. 

Model 
Are Spatial Effects 

Modelled? 

How are Spatial Relationships 

Modelled? 

Is Spatial Autocorrelation 

Accounted for? 

MLR No Stationary No 

KED-GN Yes Stationary Yes 

GWR Yes Non-stationary No 

GWRK Yes Non-stationary Yes 

KED-LN Yes Non-stationary Yes 

For a response variable z and predictor variables 𝑦1, 𝑦2, ⋯ , 𝑦𝑘, the MLR model has this form: 𝑧𝛼 =

 𝜒0 + ∑ 𝜒𝑘
𝐾
𝑘=1 𝑦𝛼𝑘 + 𝑟𝛼 with sample data denoted by α = 1, ⋯ , 𝑛; and where 𝑟𝛼 are the residual data. 

Using ordinary least squares to find the estimator �̂�, a prediction from MLR at a target location 𝐱 is 

found from: 

   0

1

ˆ
K

MLR k k

k

z y 


 x x  (2) 

The GWR model can be defined as 𝑧𝛼 =  𝜒0(𝒙𝛼) + ∑ 𝜒𝑘
𝐾
𝑘=1 (𝐱𝛼)𝑦𝛼𝑘 + 𝑟𝛼 , where 𝜒𝑘(𝐱𝛼)  is a 

realisation of the continuous function 𝜒𝑘(𝐱) at sample location α. In particular, a localised MLR is 

calibrated at any location 𝐱, where observations close to 𝐱 are geographically weighted (GW) according 

to some kernel function. Thus, GWR parameters are estimated using a weighted least squares (WLS) 

approach with weights changing according to location. A prediction from GWR at a target location 𝐱 is 

found from: 

       xxxx k

K

k

kGWR yz 



1

0
ˆ   (3) 

For this study, the weighting matrix in GWR is specified using a bi-square kernel whose optimal 

bandwidth is found in an adaptive form using leave-one-out cross-validation. Here, the squared 

prediction error (or cross-validation (CV) score) is calculated for a range of bandwidths and the 

bandwidth that gives the minimum CV score is considered optimal. 

All forms of kriging stem from the linear predictor �̂�(𝐱) − 𝑚(𝐱) = ∑ 𝜆𝛼
𝑛
𝛼=1 (𝐱)[𝑧(𝐱𝛼) − 𝑚(𝐱𝛼)], 

where 𝜆𝛼(𝐱) is the kriging weight assigned to 𝑧(𝐱𝛼); and where 𝑚(𝐱) and 𝑚(𝐱𝛼) are the means of the 

random variables 𝑍(𝐱) and 𝑍(𝐱𝜶), respectively. The prediction error is also defined as a random variable 

�̂�(𝐱) − 𝑍(𝐱), where the variance of this prediction error 𝜎𝐸
2(𝐱) = 𝑉𝐴𝑅{�̂�(𝐱) − 𝑍(𝐱)} is minimized 

under the constraint that E{�̂�(𝐱) − 𝑍(𝐱)} = 0. The weights 𝜆𝛼(𝐱) are found by solving a system of 

linear equations calibrated with parameters of the covariogram, which is a model of the data’s spatial 

autocorrelation. Thus, decomposing 𝑍(𝐱)  into a mean 𝑚(𝐱) plus residual 𝑅(𝐱)  component; 𝑅(𝐱)  is 

modelled as a stationary random function with E{𝑅(𝐱)} = 0 and covariogram COV{𝑅(𝐱), 𝑅(𝐱 + 𝐡)} =

E{𝑅(𝐱), 𝑅(𝐱 + 𝐡)} = 𝐶𝑅(𝐡), where 𝐡 is the separation distance vector, 𝐡 = 𝐱𝜶 − 𝐱𝜷. For details, see, 

for example, Goovaerts [55]. 

For KED, 𝑚(𝐱) is modelled as an unknown using the linear function 𝑚(𝐱) = ∑ 𝜒𝑘
𝐾
𝑘=0 𝑦𝑘(𝐱) (i.e., a 

MLR fit with 𝑦0(𝐱) = 1), where it is filtered from the linear predictor by using constraints to give: 
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as a KED prediction at 𝐱. If 𝑚(𝐱) is modelled as an unknown constant, then an ordinary kriging (OK) 

prediction at 𝐱  results: �̂�𝑂𝐾(𝐱) = ∑ 𝜆𝛼
𝑂𝐾𝑛

𝛼=1 (𝐱)𝑧(𝐱𝛼). The GWRK predictor at a target location 𝐱 is the 

sum of the GWR prediction from Equation (3) and the OK prediction of the residual: 

     xxx OKGWRGWRK rzz ˆˆˆ   (5) 

GWRK is an explicit model where the mean and residual processes are dealt with separately in a  

two-stage procedure. KED deals with the mean and residual processes in an implicit fashion where all 

model equations are solved at once. 

Kriging is always defined with the residual covariogram 𝐶𝑅(𝐡), but when the mean is taken as some 

constant with OK, only the raw data covariogram 𝐶(𝐡) is needed. Furthermore, and as is common practice, 

we find variograms 𝛾(𝐡) instead of covariograms (where 𝛾(𝐡) = 𝐶(0) − 𝐶(𝐡) is used to relate the two). 

Restricted maximum likelihood (REML) is used to find relatively unbiased variogram parameters for 

KED. Parameterization via REML is not suited to GWRK and as such, the residual variogram 𝛾𝑅(𝐡) from 

the GWR fit is first estimated with the usual classical estimator (e.g., [56], pp.153–154) and then modelled 

using a WLS fitting approach. After some initial experimentation, only exponential variogram model-types 

are considered, i.e., 𝛾(ℎ) = 𝑐0 + 𝑐1(1 − exp (−ℎ/𝑎)); which caters for a (small-scale) nugget variance 

𝑐0; a (large-scale) structural variance 𝑐1 (where 𝑐0 + 𝑐1 = 𝜎2); and a correlation range α. 

All forms of kriging can be applied using local prediction neighbourhoods as opposed to a unique, 

global prediction neighbourhood; an approximation that can account for local mean fluctuations and 

ease computational burden. In this study, KED is not only applied in its correct and unbiased form using 

a global neighbourhood (KED-GN), but also applied using local neighbourhoods (KED-LN), as this 

usefully caters for relationships that may vary across space (as now the MLR component fit is also local). 

An optimal neighbourhood for KED-LN is found using a cross-validation procedure that is analogous to 

that used in GWR for finding its bandwidth (but where the root mean squared error, RMSE, is reported 

instead). Further details on the calibration of all five study models can be found in Harris et al. [37,57]; 

Harris and Juggins [38]. 

Observe that we model spatial non-stationarity as a first-order mean-response effect (via GWR or the 

trend components of GWRK and KED-LN), whilst spatial autocorrelation is a second-order  

variance-response effect (modelled via the residuals in GWRK and KED); but as in any single realization 

process, their exists an analytical impasse in identifying one spatial effect from the other, that can never 

be satisfactorily resolved (e.g., [55,56]). One consequence of which is that a localised predictor such as 

GWR will often similarly account for spatial autocorrelation effects even though it is not specifically 

designed to do so. This is analogous to how a basic predictor such as inverse distance weighting will 

often provide comparable results to a more sophisticated predictor such as simple or ordinary kriging 

(e.g., see Cressie [58]). Finally, we do not attempt to model anisotropic effects, either with respect to the 

shape of the kernel in GWR or the variogram in kriging. 

3.4. Model Validation 

The prediction accuracy of each study model is measured by: 
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for the mean prediction error (MPE), the root mean squared prediction error (RMSPE), and the mean 

absolute prediction error (MAPE), respectively. The correlation coefficient (Cor-Coef) between 𝑧(𝐱𝑣) 

and �̂�(𝐱𝑣) is also found. Here, 𝑧(𝐱𝑣) refers to the actual WD data at the model validation sites, whilst 

�̂�(𝐱𝑣) refers to the predicted WD data at those sites, and 𝑁 = 1898 is the size of the study validation 

data set. These model validation statistics are supplemented with various plots and maps to provide a 

rich picture of a given model’s prediction accuracy. 

4. Results  

4.1. Exploratory Analyses with the Calibration Data  

In the first instance, a box-cox transformation of the SDRD data (renamed to SDRD.T) is applied, as 

it very slightly improves the linearity between it and WD (with a small correlation improvement of −0.87 

to −0.88). The transform results in an estimated exponent of lambda = 2.5 (i.e., this transform is applied, 

SDRD2.5). Regardless of whether a transform is applied or not, it is clear that the SDRD data will be a 

strong predictor of WD. Histograms and scatterplots of this analysis are given in Figure 3a–e. Note also, 

that the correlations between WD and the coordinate data are −0.69 and 0.23 for Eastings and Northings, 

respectively. This confirms the expected East-West trend in WD, as WD in the Bay generally increases 

towards the East, as we move further from the shore. 

Conditional boxplots for WD and SEABED display a worthy WD discriminating value for this 

predictor variable, especially for seabed class 2 (Figure 3f). The use of this categorical predictor variable 

in addition to SDRD.T also provides a stronger exploratory MLR fit; The Akaike Information Criterion 

(AIC) without this variable is 395.3, whilst AIC with this variable is reduced to 375.5. Thus, SEABED 

is retained as a predictor variable in addition to SDRD.T, and all five study prediction models will be 

calibrated as such. The spatial distributions of WD, SDRD.T and SEABED are given in Figure 4. 

Visually, both predictor variables appear suited to help explain the variation in WD, in some way. 

In order to investigate relationship non-stationarity, GW correlations are found for WD versus 

SDRD.T, firstly using (a narrow) 10%, and secondly using (a wide) 50% bandwidth (each with bi-square 

kernels). Note that the bandwidths for the GW correlations are user-specified and are not optimally 

found. Details on how to conduct a GW correlation analysis can be found in Harris et al., [59], and 

follow a similar procedure to a GWR analysis. From Figure 5, it can be seen that this relationship varies 

across space, where the relationship tends to get weaker as water depth increases (see Figure 4a). This 

local analysis confirms the value in a calibrating a non-stationary relationship predictor (i.e., GWR, 

GWRK and KED-LN). Observe that we have not explored the non-stationary relationship between WD 

and SEABED. 
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Figure 3. Exploratory analysis: (a) histogram of WD, (b) histogram of SDRD, (c) histogram 

of SDRD.T, (d) scatterplot of WD versus SDRD, (e) scatterplot of WD versus SDRD.T, and 

(f) conditional box-plots for WD versus SEABED. 
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Figure 4. Maps of the study variables: (a) WD, (b) SDRD.T, and (c) Seabed class (see Table 1). 

  

Figure 5. GW correlations between WD and SDRT.T using: (a) 10% and (b) 50% bandwidths. 
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4.2. Model Calibration 

To calibrate GWR and GWRK, an optimal bandwidth is first found for GWR via cross-validation. The 

same GWR fit is then used as the trend component of GWRK, and the corresponding residual variogram 

is found for GWRK. To calibrate the KED models, residual variogram parameters are found via REML, 

which are then used to parameterize both KED forms, but where an optimal local neighbourhood is found 

for KED-LN via cross-validation. Variograms for KED and GWRK (Figure 6a,b), both exhibit spatial 

structure, indicating some value in accounting for spatial autocorrelation effects. Similarly, the  

cross-validation functions (Figure 6c,d) for the bandwidth in GWR and the neighbourhood in KED-LN, both 

reach a minimum, indicating some value in accounting for non-stationary relationship effects. As is expected, 

the variogram structure is much stronger for KED than for GWRK, and the bandwidth/neighbourhood 

function is much steeper for GWR than for KED (see discussions given in Harris et al. [37]). 

Interrogating model calibration functions is important, as it provides context to model implementation, 

as well as helping to interpret the results. Note that for a visual comparison only, we have presented the 

KED and GWRK variograms using the same WLS variogram fitting procedure, but KED actually used 

a REML variogram fit. 

  

  

Figure 6. Model calibration plots: (a) empirical residual variogram for KED with WLS fit, 

(b) empirical residual variogram for GWRK with WLS fit, (c) GWR bandwidth function 

with optimum at 55 nearest neighbours, (d) KED neighbourhood function with optimum at 

135 neighbours. 
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4.3. Prediction Accuracy at the Validation sites  

The prediction accuracy results for the five study models are given in Table 3, indicating that KED-

LN is clearly the best predictor of water depth, in this instance. For model choice, this result concurs 

with the simulation study of Harris et al. [37] using the same set of prediction models. Thus, it is 

important to cater for non-stationary relationship effects (at least between WD and SDRD.T, but also for 

WD and SEABED) and for spatial autocorrelation effects—both of which KED-LN does. GWRK also 

does both aspects, but clearly not as well. The poor performance of GWRK can be explained by its focus 

on modelling non-stationary relationship effects, rather than spatial autocorrelation effects (as shown by 

the well-behaved GWR bandwidth function in Figure 6c, combined with the weak structure of its 

residual variogram in Figure 6b). Considering the relatively good performance of KED-GN (our second 

best predictor), it is clear that, in this instance, accounting for spatial autocorrelation effects is much 

more important than accounting for non-stationary relationship effects. As expected, MLR is the poorest 

performer, and we observe also that GWRK only provides a marginal improvement over the simpler 

GWR fit (which again can be attributed to the observed weak structure in the GWRK residual variogram 

in Figure 6b). 

Table 3. Prediction accuracy results. 

Model 
(MPE) 

(Should be Zero) 

RMSPE 

(Tend to Zero) 

MAPE 

(Tend to Zero) 

Cor-Coef 

(Should be 

One) 

MLR (−0.041) 1.312 1.002 0.877 

KED-GN (0.001) 0.511 0.313 0.983 

GWR (0.036) 0.779 0.535 0.960 

GWRK (0.038) 0.761 0.522 0.962 

KED-LN (0.027) 0.470 0.283 0.985 

4.4. Analysis of KED-LN Performance 

Prediction accuracy plots and maps are given for KED-LN in Figure 7a–c. Clearly the largest 

prediction errors occur around the deep channel and can be a result of both over- and under-prediction 

(Figure 7b). There is a significant change in polarity from the western mouth (negative) to the eastern 

(positive), coupled with a decrease in the amount of anomalous points. A significant number (circa 0.4%) 

of over-predictions also occur to the far edges, mostly north and to a lesser extent south (Figure 7b). A 

GW correlation map of actual WD (i.e., the MBES WD data at the validation sites) versus predicted WD 

(i.e., the KED-LN predictions of WD) is given (Figure 7c) and needs to be compared with the 

corresponding global correlation of 0.985 (from Table 2). Again, the poorest correlations are centrally 

located, but an area of poor correlation is also present off Howth (the NE corner). 

Conditional accuracy plots for KED-LN are given in Figure 7d,e, where it appears that in general  

KED-LN’s performance does not strongly depend on depth or seabed type. Some notable residual 

dependencies can be observed though. For example, many of the largest (positive) residuals from  

KED-LN occur in shallow waters, near the channel (i.e., prediction is deeper than it should be); the other 

area, off Howth as mentioned above, shows a small cluster of large positive residuals with similar values, 
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near the shoreline coinciding largely with SEABED class 1. SEABED class 2 which largely coincides 

with the channel (see Figure 4c), also provides the most biased condition boxplot, followed by SEABED 

class 1, largely along the edges of the bay and associated to some rock outcrops and hardgrounds. 

  

  

 

Figure 7. Accuracy plots and maps for KED-LN at validation sites: (a) scatterplot of actual 

WD versus predicted WD, (b) map of residuals (actual WD–predicted WD), (c) GW 

correlation map for actual WD and predicted WD, (d) scatterplot of actual WD versus 

residuals (with useful thresholds), and (e) conditional boxplots for residuals with respect to 

seabed class (with useful thresholds). Observe that WD is always measured negatively. 
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5. Discussion 

5.1. Data Relationships 

The linear relationship between SDRD.T and WD was found to be strong with a high negative 

correlation coefficient of −0.9. This relationship is global reflecting the bay as a whole. However, in 

investigating this relationship locally, it was found to vary across the bay, where the relationship 

weakened according to increasing water depth. This heterogeneity in the SDRD.T to WD relationship 

was thus accounted for in three of the five study predictors (GWR, GWRK and KED-LN), whilst the 

relationship is naively assumed to be homogeneous in the remaining predictors (MLR and KED-GN). 

Seabed class was also found to be a good discriminator of WD but this relationship was not assessed 

across the bay. As such, this relationship was simply modelled locally in GWR, GWRK and KED-LN; 

but globally in MLR and KED-GN. Spatial autocorrelation in the residual data was also observed and 

accounted for (in a global fashion only) in the GWRK, KED-LN and KED-GN predictors. Local, 

heterogeneous autocorrelation was not investigated but could have been using predictors such as those 

presented in Harris et al. [40]. 

5.2. Performance of this Study’s Most Accurate Predictor (KED-LN) 

The spatial distribution of the residuals from KED-LN predictions and the spatial distribution of the 

local (GW) correlations between the actual and predicted WD (presented in Figure 7b,c, respectively) 

shows a distinct spatial pattern linked to the general bay’s geometry, topographic controls and bottom 

type. The local correlations are stronger and more consistent in the southern section, and in a smaller 

extent, in the northern section, both areas characterized by low complex topography and homogeneous 

fine-grained seabed type (classes 3 and 4). Weak correlation and higher residuals patterns are largely 

associated with high relief controls (Liffey channel) and the edges of the bay (very shallow waters or 

occasional hardgrounds in class 1). 

KED-LN’s minor dependency on depth can be observed. Under-prediction occurs mainly in the 

Liffey channel (observe the red dots of negative residuals in Figure 7b and the points on the bottom  

left-hand quarter of Figure 7d). One possible explanation is that the signal reflected is largely absorbed, 

or scattered in the water column, with just a residual component (or inexistent) coming from the seafloor 

bottom albedo. Therefore, the water-leaving signal represents closely the maximum penetration in the 

water rather than true depth to bottom. Differences in water column properties could be the main cause 

for the increase in absorption or scattering effects in these locations. Under-prediction could also be 

caused by local changes in the seabed type.  

Seafloor bottom reflectance is an important component of the overall water-leaving signal in coastal 

waters [24]. The assumption of a uniform bottom type is generally not appropriate in coastal areas due 

to the dynamic environment near the shoreline characterised by complex sediment and oceanographic 

patterns. The inclusion in our models of seabed class, as a categorical predictor variable, provides some 

significant results to further enhance the debate and becomes an initial attempt to better constrain the 

contribution of the bottom reflectance in the overall scheme. 

The central Liffey channel is where the model presents larger uncertainties, larger residuals and 

reduced accuracy. The rough geomorphological characteristics of the channel and the high backscatter 
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levels indicating harder and/ or rougher seafloor can influence the bottom reflectance contribution to the 

water-leaving radiance becoming more complex and generally larger than the more homogenous 

surroundings. Additionally, higher turbidity due to strong sediment fluxes along the navigational channel 

might also play a role increasing local variability in the water column. This is to a certain extent captured 

in the conditional boxplots for SEABED class 2 in Figure 7e, with some large negative residuals 

reflecting large under-predictions. 

Rock outcrops and hard bottoms are present in the region approximately covering 5% of the study 

area. These hard seafloor patches, mostly falling in seabed class 1, should have a larger component from 

the seafloor bottom albedo than the surroundings primarily due to the greater optical contrast in the 

water-seabed interface. This is true in the rock outcrops from the northern sector, where the KED-LN 

predictions generally show consistently positive residuals (prediction is deeper than it should be). 

The southern half of the bay is where the KED-LN model preforms better with high (actual WD 

versus predicted WD) correlation coefficients (r ≥ 0.98), low residuals (residuals ± 0.5 m) and the 

narrowest residual boxplot (class 3, in Figure 7e). This area is characterised by a smooth topography, 

largely featureless and with homogenous sediment type. Additionally, the area also benefits from a low 

dynamic environment compared to the other areas, linked to stable water properties. These conditions 

are all favourable for a robust model fit. 

5.3. The Value of our Model Comparison Exercise and Its Transferability 

It has been worthwhile to compare a number of statistical predictors, each covering a range of attributes; 

attributes decided upon via a focused global and local exploratory analysis. We chose models that could 

account for: (i) global relationships between our variable of interest (WD) and its predictors (SDRD.T and 

SEABED class); (ii) local relationships between the same variables; and (iii) spatial autocorrelation effects. 

Via a comprehensive model accuracy assessment, a standard geostatistical model (KED-LN) was found to 

be the best predictor of water depth. This model was one of two study models (the other being the relatively 

new, GWRK model) that could capture both local relationships and spatial autocorrelation. 

This study’s group of five prediction models should be readily transferable to similar embayment 

studies with similar physical characteristics, for predicting water depth. However, it should not be 

expected that KED-LN would similarly provide the best predictions at all times, but only that one 

predictor of the group is likely to provide similar and worthwhile levels of accuracy as that found here. 

Thus the transferability of our approach refers to group of five models as a whole, and not one individual 

model in particular. That said, our experience suggests that KED will tend to provide the best results; 

reflecting its theoretical property as an optimal linear predictor (e.g., [39]). Observe also that our 

approach is suited only to situations where ground measurements exist so that the models can be 

calibrated; the parameters of this study’s models are not transferable to ungauged areas and should never 

be considered so. 

5.4. Expected Effects of Reduced Model Calibration Sample Size on Prediction Performance 

It is useful to discuss the likely effects of reduced model calibration sample size on each of our study 

predictors. As sample size decreases, the prediction accuracy of all predictors would degrade, but not 

necessarily in a uniform manner across the five model fits. Here, a reduction in sample size is likely to 
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create a problem in selecting the bandwidth for GWR and similarly the neighbourhood for KED (i.e.,  

non-stationary relationships cannot be determined due to diminishing local information). As a result, the 

optimal bandwidth or neighbourhood will tend to a global form. Thus, GWR prediction accuracy would tend 

to that of the corresponding MLR model, whilst KED-LN prediction accuracy would tend to that of the 

corresponding KED-GN model. These effects will be more pronounced in KED-LN as its trend component 

can be viewed as GWR with a box-car kernel whose localness is determined using only un-weighed 

local data subsets; whereas GWR with a distance-decay kernel, such as the bi-square, can still model 

locally whist utilising all available information (see Harris et al.) [57]. In addition, KED’s residual 

variography would also suffer from diminishing information, ultimately resulting in a pure nugget 

variogram. Thus, KED’s prediction accuracy would also then tend to MLR in this instance. Similar 

remarks can be made with respect to GWRK whose prediction accuracy would also tend to that of MLR 

as sample size reduces. Overall, MLR would be the least affected by a reduction in model calibration 

size, as its non-spatial form requires the least information for reliable model parameter estimation. 

5.5. Further Considerations 

Further work could refine this modelling approach to provide accurate prediction confidence intervals 

using a Bayesian construction of the KED model (e.g., Pardo-Igúzquiza and Dowd [60]. In this study, 

we deliberately chose not to report these intervals, as it is well-known that those from the standard KED 

model are of little practical use (e.g., Harris et al., [57]). Assessing predictions at different time periods 

would also be worthwhile, where the predictors of this study could either be re-applied at each time 

interval, or alternatively, a full space-time prediction model could be used, again using Bayesian 

concepts (e.g., [61]). More detailed investigations of the satellite reflectance data may also be worthy, 

with possible extensions to hyperspectral imagery. Considering the localised theme of this study, a local 

dimension reduction technique for such high-dimensional imagery may be useful; for example, a GW 

principal components analysis (e.g., [62]). Finally, if it is known that the study area exhibits well defined 

discontinuities, then the prediction models should be tailored accordingly. For example, the GWR model 

could be adapted following that outlined in Gribov and Krivoruchko [63]. 

6. Conclusions  

RapidEye multispectral sensors were primarily designed for land applications, however, in this study 

they are used satisfactorily for bathymetric mapping in a representative coastal embayment. This study 

presents a promising statistical methodology for predicting coastal bathymetry from the water-leaving 

radiance signal and field calibration data (i.e., water depth measurements and seabed classification). The 

results confirm that RapidEye datasets are well suited to infer depths up to 12 m using spatial prediction 

models calibrated with a limited number of water depth measurements (50 depth measurements /km²). 

The best model’s prediction accuracy, within a range of ±1 m, is 95.0%. 

Our assessment reveals that the four spatial models of this study show better adjustments in the basic 

non-spatial model in the predictions. Prediction accuracy results indicate that a kriging with an external 

drift model using local kriging neighbourhoods is clearly the best predictor, stressing the importance of 

catering for both spatial autocorrelation and non-stationary relationships. For this predictor, the 

correlation coefficient between the actual and predicted water depth data is very strong at 0.985. 
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In coastal areas, ship-based multibeam or LiDAR bathymetry surveys attaining 100% coverage are 

sometimes unavailable or prohibitively expensive, while the dynamic nature of the coast makes precision 

and repeatability a challenge. Spatial prediction models can provide reasonable and error controlled 

water depth predictions in an inexpensive and efficient manner from a relatively low number of 

groundtruthing points.The prediction errors presented in this paper are too large to be used in high 

accuracy products such as navigational charts; however, with the right quality controls applied, they can 

be applied in a range of important fields from environmental monitoring to seabed mapping and coastal 

management. 
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