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Abstract: The objective of this paper is to extend the semi-empirical calibration of the 

backscattering Integral Equation Model (IEM) initially proposed for Synthetic Aperture 

Radar (SAR) data at C- and X-bands to SAR data at L-band. A large dataset of radar signal 

and in situ measurements (soil moisture and surface roughness) over bare soil surfaces were 

used. This dataset was collected over numerous agricultural study sites in France, 

Luxembourg, Belgium, Germany and Italy using various SAR sensors (AIRSAR, SIR-C, 

JERS-1, PALSAR-1, ESAR). Results showed slightly better simulations with exponential 

autocorrelation function than with Gaussian function and with HH than with VV. Using the 

exponential autocorrelation function, the mean difference between experimental data and 

Integral Equation Model (IEM) simulations is +0.4 dB in HH and −1.2 dB in VV with a Root 

Mean Square Error (RMSE) about 3.5 dB. In order to improve the modeling results of the 

IEM for a better use in the inversion of SAR data, a semi-empirical calibration of the IEM 

was performed at L-band in replacing the correlation length derived from field experiments 

by a fitting parameter. Better agreement was observed between the backscattering coefficient 
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provided by the SAR and that simulated by the calibrated version of the IEM (RMSE  

about 2.2 dB). 

Keywords: integral equation model; synthetic aperture radar; L-band; bare soil 

 

1. Introduction 

Soil moisture content and roughness play an important role in hydrology. These soil parameters could 

be estimated using Synthetic Aperture Radar (SAR) irrespective of the meteorological conditions. 

However, these estimations require the use of a radar backscattering model that is capable of correctly 

modeling the radar signal. The Integral Equation Model (IEM) [1,2] is widely used in inversion procedures 

of SAR images for retrieving soil moisture content and roughness (e.g., [3–9]). Its validity domain covers 

the range of surface roughness values (root mean square height “rms”) encountered on agricultural soils 

(k.rms ≤ 3, where k is the wave number = 0.24 cm−1 for a frequency in L-band of 1.25 GHz). 

The IEM simulates the radar backscattering coefficient (σ°) for bare soils given sensor parameters 

(radar wavelength, incidence angle, and polarization) and soil characteristics (dielectric constant, 

standard deviation of heights, correlation length, and autocorrelation function “ACF”). Most studies 

reported discrepancies between modeled backscatters by IEM and observed backscatters by SAR sensors 

at L-, C-, and X-bands [10–20]. These discrepancies could be related to the inaccuracy of the roughness 

measurements, which introduces significant errors into the modeled radar signal [21,22],  

and to the model itself [10–15]. Indeed, according to Lievens et al. [21] and Oh and Kay [22], correlation 

length measurements are unreliable when short roughness profiles are used or when the number of 

profiles is limited (error over 50%). Thus, the estimation of soil parameters (moisture content and 

roughness) from SAR images can be inaccurate using such a model. 

Baghdadi et al. [10–14] proposed a semi-empirical calibration of the IEM at C- and X-bands, based 

on experimental data of SAR images and ground measurements (soil moisture content and roughness). 

The calibration consisted of finding a fitting parameter which replaces the correlation length 

measurement so that the IEM reproduces better the radar backscattering coefficient. Calibration results 

showed that the fitting parameter was found dependent on rms surface height, radar wavelength, 

polarization, and incidence angle. Given the successful application at C- and X-bands, this paper aims 

at deriving similar equations for L-band. 

The first objective of this study is to evaluate the IEM using dataset acquired over numerous study 

sites in Europe (France, Luxembourg, Belgium, Germany and Italy). Simulated backscattering 

coefficients from the IEM will be compared to the backscattered signal registered by several SAR 

systems at L-band and HH and VV polarizations (AIRSAR, SIR-C, JERS-1, PALSAR-1, ESAR). Next, 

a semi-empirical calibration of the IEM is proposed as was already derived by previous studies for  

C- and X-bands SAR data in order to improve the modeling of the radar signal by the IEM. Section 2 

describes the dataset. In Section 3, a comparison between modeled and observed backscatters is 

presented. The semi-empirical calibration methodology of the IEM is proposed in Section 4 and its 

performance evaluated in Section 5. A summary of the results is provided in the last Section 6. 
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2. Dataset Description 

Experimental dataset of SAR images and measurements of soil moisture content and roughness 

acquired over bare soils were used. This dataset was collected over numerous agricultural study sites  

in France (2 sites), Luxembourg (1 site), Belgium (2 sites), Germany (1 site), and Italy (2 sites)  

(Figure 1, Table 1). 

 

Figure 1. Location of various study sites. “1”: Orgeval; “2”: Saint Lys; “3”: Matera;  

“4”: Alzette; “5”: Dijle; “6”: Zwalm; “7”: Demmin; “8”: Montespertoli. 

SAR images were acquired by various airborne and spaceborne sensors (AIRSAR, SIR-C, JERS-1, 

PALSAR-1, ESAR) operating at L-band (~1.25 to 1.30 GHz), with incidence angles between 21.5° and 

57°, and in HH and VV polarizations. For experimental bare soil plots, the mean backscattering 

coefficients are calculated from calibrated SAR images by linearly averaging the σ° values of all pixels 

within the plot. Only plots with a homogeneous surface (similar soil type, moisture content and surface 

roughness) of around one hectare or more (about 100 pixels for SAR images with a spatial resolution of 

10 m × 10 m) were used (which helps reducing speckle). In addition, in situ ground measurements of 

soil moisture content (mv) and roughness were carried out for each experimental plot. The soil moisture 

measurements were collected from the top 5 or 10 cm of each experimental plot using the gravimetric 

method or/and a calibrated TDR (Time Domain Reflectometry) probe. For wet soil conditions, the soil 

moisture measurements were collected from the top 5 cm and from the top 10 cm for dry soil conditions. 

Nolan and Fatland [23] found that in a clay loam soil, the penetration depth of L-band radar signals 

decreased from approximately 10 cm in the case of 5 vol % soil moisture content, to 5 cm when the soil 

moisture content increased to 15 vol %. In practice, the soil moisture for each experimental plot is 

assumed to be equal to the mean value measured from several samples (the number of soil moisture 

samples depends on the size of experimental plots). The single-field standard deviation of soil moisture 

is lower than 2 vol % for 95% of the measurements. 
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Table 1. Main characteristics of the dataset used in this study. 

Site Lat/Long 
Texture Composition 

(Silt; Clay; Sand) 
SAR Sensor 

Pixel Spacing  

(m × m) 

Freq 

(GHz) 
Year 

Number of Data for Each  

SAR Configuration 

Orgeval (Fr) [24] 48°51′ N 3°07′ E (78%; 17%; 5%) SIR-C 12.5 × 12.5 1.25 1994 
HH: 52° (5), 55° (5), 57° (5)  

VV: 52° (5), 55° (5), 57° (5) 

Orgeval (Fr) 48°51′ N 3°07′ E (78%; 17%; 5%) PALSAR-1 12.5 × 12.5 1.27 2009 
HH: 21.5° (7)  

VV: 21.5° (7) 

Saint Lys (Fr) [25] 43°30′ N 01°14′ E (50%; 16%; 34%) PALSAR-1 
6.25 × 6.25  

12.5 × 12.5 
1.27 2010 HH: 38.7° (15) 

Matera (It) [17] 40°40′ N 16°36′ E  (59%; 14%; 27%) SIR-C 12.5 × 12.5 1.25 1994 
HH: 45.8° (6)  

VV: 45.8° (6) 

Alzette (Lu) [26] 49°40′ N 06°00′ E (50%; 30%; 20%) PALSAR-1 12.5 × 12.5 1.27 2008 HH: 36.5°–41.1° (4) 

Dijle (Be) [26] 50°37′ N 04°42′ E (84%; 12%; 4%) PALSAR-1 12.5 × 12.5 1.27 2008; 2009 HH: 36.2°–39.4° (12) 

Zwalm (Be) [26] 50°53′ N 03°43′ E (72%; 13%; 15%) PALSAR-1 12.5 × 12.5 1.27 2007 HH: 38.7° (2) 

Demmin (Ge) [26] 53°54′ N 13°10′ E (25%; 7%; 68%) ESAR 2 × 2 1.30 2006 HH: 40°–48.4° (9) 

Montespertoli (It) [27] 43°40′ N 11°7′ E (40%; 20%; 40%) AIRSAR 12.5 × 12.5 1.26 1991 
HH: 25° (7), 35° (7), 50° (7)  

VV: 25° (7), 35° (7), 50° (7) 

Montespertoli (It) [28] 43°40′ N 11°7′ E (40%; 20%; 40%) SIR-C 12.5 × 12.5 1.25 1994 
HH: 25° (25), 35° (8), 45° (22)  

VV: 25° (25), 35° (8), 45° (8) 

Montespertoli (It) [29] 43°40′ N 11°7′ E (40%; 20%; 40%) JERS-1 12.5 × 12.5 1.27 1994 HH: 35° (8) 
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Roughness measurements are made using laser or needle profilometers (1, 2 and 3 m long and with 

0.5, 1, 1.5, and 2 cm sampling intervals) and meshboard (4 m long) with several roughness profiles for 

each experimental plot, parallel and perpendicular to tillage direction. From these roughness 

measurements, the root mean square (rms) surface height and the correlation length (L) are calculated 

using the mean of all ACFs. 

The in situ measurements accuracy of rms and L depends on the roughness profile length and 

sampling interval (e.g., [21,22,30]). In our database, the roughness parameter rms has been estimated 

with an accuracy ranging between 5% and 10%, and the L-values with an accuracy ranging between 

10% and 20% [20,21]. Low uncertainties on the roughness parameters measurements are obtained for 

high length and low sampling interval of the roughness profiles. 

Soil moisture, rms surface height, and correlation length range respectively from 3.5 to 40.9 vol %, 

0.65 to 9.55 cm, and from 2.37 to 38.50 cm. A total of 154 experimental data points is available in HH 

and 90 in VV. 

3. Evaluation of the IEM 

The Integral Equation Model (IEM) developed by Fung et al. [1] is a theoretical radar backscattering 

model that is widely used for soil moisture content and roughness estimation. At L-band, the IEM has a 

validity domain that covers the range of roughness values that are commonly encountered for agricultural 

surfaces. The IEM simulates the radar backscattering coefficient from the radar wavelength,  

the incidence angle, the polarization, the soil rms surface height, the soil correlation length, the ACF, 

and the soil dielectric constant derived from the moisture content and the soil texture [31]. Over bare 

soils in agricultural areas, the ACF is exponential for low soil roughness values and Gaussian for high 

soil roughness values [2]. 

Table 2. Statistics for the evaluation of Integral Equation Model (IEM). Bias = SAR–IEM; 

MAE = Mean Absolute Error; RMSE = Root Mean Square Error. 

Polarization Autocorrelation Function Bias (dB) MAE (dB) RMSE (dB) 

HH 

Exponential; all rms values +0.4 2.5 3.2 

Exponential; rms < 3 cm +0.6 2.2 2.9 

Exponential; rms > 3 cm −0.3 3.2 3.9 

HH 

Gaussian; all rms values −1.2 2.9 3.8 

Gaussian; rms < 3 cm −0.5 2.7 3.9 

Gaussian; rms > 3 cm −2.7 3.1 3.7 

VV 

Exponential; all rms values −1.2 3.0 3.7 

Exponential; rms < 3 cm −2.2 2.9 3.5 

Exponential; rms > 3 cm +1.6 3.5 4.1 

VV 

Gaussian; all rms values −2.5 3.9 5.0 

Gaussian; rms < 3 cm −2.8 4.4 5.6 

Gaussian; rms > 3 cm −1.8 2.5 3.2 

Comparison between the IEM simulations and the experimental dataset was done for both exponential 

and Gaussian ACFs (Table 2, Figure 2). Simulation results were slightly better with the exponential ACF 

than with the Gaussian ACF. Similarly, HH provides slightly better results than VV. With the 
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exponential ACF, the mean difference between experimental data and IEM simulations is +0.4 dB in 

HH and −1.2 dB in VV with an RMSE about 3.5 dB (3.2 in HH and 3.7 dB in VV). The use of Gaussian 

ACF causes higher biases in comparison to the exponential ACF (−1.2 dB in HH and −2.5 dB in VV), 

and RMSE of the same order of magnitude in HH (3.8 dB) but higher in VV (5.0 dB). Other studies have 

reported a tendency of the IEM to overestimate observed L-band backscatter values [16,17]. 

  

  

Figure 2. Observed backscatter coefficients from Synthetic Aperture Radar (SAR) images 

(L-band) vs. modeled backscatter values from IEM (at different incidence angles) using 

correlation length measurements, for exponential and Gaussian autocorrelation function 

(ACFs). Mean of the difference between SAR and IEM and root mean square error were 

calculated for all rms values. (a): HH polarization and exponential ACF, (b): HH 

polarization and Gaussian ACF, (c): VV polarization and exponential ACF, (d): VV 

polarization and Gaussian ACF. 

Many studies used for validation the IEM show an even more limited validity domain k.rms < 1 [24,32] 

than the one defined initially by Fung et al. [1,2] k.rms < 3. Consequently, the error in the modeling of 

radar backscattering coefficients was also analyzed as a function of rms surface height classes (rms < 3 

cm and rms > 3 cm, corresponding to k.rms < 1). Results showed that the exponential ACF provides 

better IEM simulations for values of rms lower than 3 cm (RMSE = 2.9 dB for HH and 3.5 dB for VV 

with the exponential ACF, and RMSE = 3.9 dB for HH and 5.6 dB for VV with the Gaussian ACF) 

(Table 2). For values of rms greater than 3 cm, the use of Gaussian ACF is more relevant (RMSE = 3.7 
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dB for HH and 3.2 dB for VV with the Gaussian ACF, and RMSE = 3.9 dB for HH and 4.1 dB for VV 

with the exponential ACF) (Table 2). 

4. IEM Semi Empirical Calibration Methodology 

The description of surface roughness in the IEM is based on three parameters: the rms surface height, 

the correlation length, and the ACF. As the modeled backscattering coefficient depends on the shape of 

the ACF chosen, the use of the IEM in operational mode for estimating the soil moisture content from 

SAR images, at a given spatial scale (sub-plot, plot, etc.), requires knowledge on the ACF shape which 

depends on the rms surface height value (generally exponential for smooth surfaces and Gaussian for 

rough surfaces). As the rms values are also unknown during model inversion, it is therefore difficult to 

choose the required ACF, which therefore would lead to an inaccurate retrieval of the soil moisture. In 

fact, the use of the unsuitable autocorrelation function leads to important errors on the backscattering 

coefficients estimation. For rms lower than 3 cm, the use of Gaussian ACF instead of an exponential 

ACF leads to an error increase up to 2.1 dB on the retrieval of backscattering coefficients (Table 2). 

For rms greater than 3 cm, the use of exponential ACF instead of Gaussian ACF leads to an error 

increase up to 0.9 dB (Table 2). Consequently, an additional uncertainty on the retrieval of backscattering 

coefficients of only 1 dB may lead to additional uncertainty on the soil moisture estimates by about 5 

vol % for sensitivity of radar signal in L-band of 0.2 dB for 1 vol % [33]. 

Moreover, the measurements of correlation length are often the less accurate in comparison to other 

measured soil parameters [21,22], and the discrepancies noted between IEM simulations and SAR data 

could be attributed to the uncertainty of the correlation length measurements and to the model  

itself [10,13–15]. Thus, the semi empirical calibration of the IEM consisted in the replacement of the 

experimental correlation length by a fitting parameter in order to ensure better matching between 

simulations and SAR data [10,13,14]. In Baghdadi et al. [10,13,14], the calibration parameter was found 

to be dependent on surface roughness, incidence angle, polarization, and radar wavelength.  

In addition, with this Baghdadi calibration method, bare soils will be characterized by two surface 

parameters (rms surface height and moisture content) instead of three (rms surface height, correlation 

length and moisture content), in case the ACF is predefined for the entire range of rms surface heights. 

Given the robustness of the IEM semi-empirical calibration proposed in Baghdadi et al. [10,14] for 

C- and X-bands SAR data as demonstrated in (e.g., [16,18,20]), the objective is to extend the same 

approach to L-band in order to improve the SAR backscatter prediction. The prediction error on the radar 

backscattering coefficients based on a 10-fold cross-validation was estimated for each polarization in 

order to validate the predictive performance of the calibrated version of the IEM (dataset was randomly 

divided into 90% training and 10% validation data elements and this procedure was repeated 10 times). 

The method consists of replacing for each training data element the experimental correlation length 

by a fitting parameter (Lopt) which ensures a good fit between the backscattering coefficient provided 

by the SAR sensor and that simulated by the IEM. This approach considers the same correlation function 

irrespective to the range of rms surface height. 
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5. Results and Discussion 

Figure 3 shows the behavior of the IEM as a function of the correlation length, for the exponential 

and Gaussian ACFs. As illustrated, Lopt has two possible solutions, Lopt1 (the lowest value) and Lopt2 

(the highest value). Results showed that Lopt1 values in HH were higher than those in VV for both 

exponential and Gaussian ACFs, whereas Lopt2 values were similar in HH and VV for both ACFs. 

Increasing of IEM in the first part of simulations corresponds to very short correlation lengths. For these 

short Lopt-values, the IEM is out of its validity domain [1] (Figure 4). Only the second part, with a 

decrease of the radar signal when the correlation length increases, corresponds to IEM validity domain 

(Figure 4). Thus, only Lopt2 can be retained. In addition, when we consider realistic correlation lengths 

for agricultural soils (approximately higher than 3 cm), we observe a decreasing of radar signal in L, C 

and X bands as the correlation length increases. However, for lower frequencies, like P band, we observe 

clearly an increasing of radar signal function of correlation length. 

  

(a) (b) 

Figure 3. Behaviour of the IEM as a function of correlation length for a given plot,  

with Gaussian and exponential ACFs. (a): HH polarization, (b): VV polarization. 
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(c) (d) 

Figure 4. Validity regions of the IEM model in k.rms - L space (where k is the wave number) 

for Gaussian ACF, and the location of experimental data points [1]. All experimental data 

points are within the IEM limits with Lopt2. (a): HH polarization and L=Lopt1, (b): HH 

polarization and L=Lopt2, (c): VV polarization and L=Lopt1, (d): VV polarization and 

L=Lopt2. 

For each dataset element, the fitting procedure has a higher probability to find an estimation of Lopt2 

for the Gaussian ACF than for the exponential ACF since the σ° simulated from the IEM has a higher 

amplitude for the Gaussian ACF (Figure 3). Therefore, the probability of intersecting the SAR signal 

with the IEM response is higher for the Gaussian ACF. Thus, our set of Lopt2 data, calculated for each 

polarization, is consequently larger with the Gaussian ACF which justifies its use to fit the best 

regressions between Lopt2 and rms height as a function of incidence angle and polarization. A linear 

relationship between Lopt2 with the Gaussian ACF and rms (α + β rms; α and β are dependent on 

polarization and incidence angle “θ”) ensures a correct modeling of the physical behavior of the IEM 

(σ° increases with rms surface height for the whole range of rms-values): 

1.4493 0.80442 ( , , ) 2.6590 3.0484Lopt rms HH rms       (1) 

1.0814 1.44982 ( , , ) 5.8735 1.3015Lopt rms VV rms       (2) 

θ is in radian, Lopt2 and rms are in cm. The coefficients given in Equations (1) and (2) were derived 

using the entire dataset. However, during the cross-validation, coefficients were calculated using the 

associated training dataset. 

For subsequent applications, Lopt2 obtained with the Gaussian ACF (Equations (1) and (2)) replaces 

the experimental correlation length in the IEM. 

Figure 5 shows the fitting parameter Lopt2 obtained with the Gaussian ACF. Results showed that the 

fitting parameter Lopt2 is strongly dependent on rms surface height and the incidence angle. It increases 

as the rms increases and decreases with the incidence angle (Figure 5). The dependence between Lopt2 

and the incidence angle becomes weak for θ > 35°. In addition, Figure 6a shows that the fitting parameter 

Lopt2 is higher than the experimental correlation length and that Lopt2 is similar for HH and VV 

polarizations. The experimental correlation length also showed an increase with the rms surface height 

(Figure 6b). 
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(a) (b) 

Figure 5. Fitting parameter Lopt2 as a function rms surface height with the Gaussian ACF. 

(a): HH polarization, (b) VV polarization. 

  

(a) (b) 

Figure 6. Relationship between (a) Lopt2 with Gaussian ACF and the experimental 

correlation length; (b) the root mean square surface height and the experimental correlation 

length obtained from in situ measurements. 
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(a) (b) 

Figure 7. Comparison between Lopt2 obtained in this study for L-band and those obtained 

in previous studies for C- and X-bands [12,14,34]. Gaussian ACF was used. (a) HH; (b) VV. 

Finally, to validate the generalization performance of Lopt2 (Equations (1) and (2)), a 10-fold cross 

validation was used. The error in the modeling of radar backscattering coefficients by the calibrated 

version of the IEM was assessed. Results showed that the proposed semi-empirical calibration of the 

IEM provides improved results (Figure 8 in comparison to Figure 2 and Table 2). The biases and the 

RMSE have decreased for both HH and VV polarizations. The RMSE decreased from 3.2 dB with the 

exponential ACF and 3.8 dB with the Gaussian ACF to 2.2 dB for HH, and from 3.7 dB with the 

exponential ACF and 5.0 dB with the Gaussian ACF to 2.3 dB for VV (Table 2, Figure 8). We observe 

a small mean difference between SAR data and calibrated IEM simulations for both polarizations  

(less than 0.5 dB). In addition, the mean absolute error (MAE) was significantly reduced in using the 

fitting parameter Lopt2 (Table 2; Figure 8). The cross-validation was also considered by changing the 

percentages of training and validation datasets: 90% for training and 10% for validation, 80% for training 

and 20% for validation, and finally 50% for training and 50% for validation). The results obtained on 

the prediction error of the radar backscattering were similar (difference lower than 0.2 dB). 

 

Figure 8. Validation of the semi-empirical calibration approach in using the fitting 

parameter Lopt2. Mean of the difference between SAR and IEM and root mean square error 

were calculated. 
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In order to demonstrate the calibration method relevance on study sites that were not used in the 

calibration dataset, we then made a k-fold cross validation where k is the number of study sites  

(k = 11 for HH polarization and k = 5 for VV polarization). For each of k study sites, (k - 1) folds were 

used for training and the remaining one for testing. The advantage of this k-fold cross validation is that 

all the study sites in the dataset are used for both training and testing. Results showed similar results 

with an RMSE on the backscattering coefficient estimates of 2.2 dB for HH and 2.4 for VV. 

6. Conclusions 

The Integral Equation Model (IEM) was evaluated using L-band SAR data (HH and VV polarizations, 

incidence angles between 21.5° and 57°) together with in situ measurements (soil moisture and surface 

roughness) on bare soils in agricultural environments. A large dataset collected over numerous 

agricultural study sites in France, Luxembourg, Belgium, Germany and Italy using various SAR sensors 

(AIRSAR, SIR-C, JERS-1, PALSAR-1, ESAR) were used. 

Simulation results were slightly better with exponential autocorrelation function than with Gaussian 

function. Similarly, HH provides slightly better results than VV. With the exponential function, the mean 

difference between SAR data and IEM simulations reaches −1.2 dB in VV with an RMSE of 3.7 dB. 

Simulations performed with the Gaussian function show biases of −1.2 dB in HH and −2.5 dB in VV, 

and RMSE of 3.8 dB in HH and 5.0 dB in VV. 

A semi-empirical calibration of the IEM was proposed in order to improve the fitting of the IEM 

simulations to SAR response in HH and VV polarizations. Similar to approaches for C- and X-bands, 

the dependence of the fitting parameter on rms surface height, incidence angle, polarization, and radar 

wavelength is found for L-band. With this calibration, agricultural bare soils can be characterized by 

only two surface parameters (rms height and soil moisture) instead of four (rms height, correlation 

length, autocorrelation function, and soil moisture) since the soil correlation length is replaced by a 

fitting parameter for a Gaussian ACF. Results showed that this calibration ensures better agreement 

between IEM and the SAR data and increases the model’s applicability (an improvement which can 

reach 3 dB for RMSE and 2 dB for MAE). Indeed, the decrease in error on the modeling of the SAR 

signal of about 1 dB will allow for improving the soil moisture estimates at least 3 vol % if we consider 

the sensitivity of the radar signal to soil moisture of about 0.3 dB/vol % [35]. 
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