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Abstract: In the context of computer-aided design, computer graphics and geometry
processing, the idea of generative modeling is to allow the generation of highly complex
objects based on a set of formal construction rules. Using these construction rules, a shape
is described by a sequence of processing steps, rather than just by the result of all applied
operations: shape design becomes rule design. Due to its very general nature, this approach
can be applied to any domain and to any shape representation that provides a set of generating
functions. The aim of this survey is to give an overview of the concepts and techniques of
procedural and generative modeling, as well as their applications with a special focus on
archeology and architecture.

Keywords: geometry processing; generative; procedural modeling; inverse modeling;
modeling applications; shape description; language design

1. Introduction

In the context of computer-aided design (CAD) and shape description, the digital creation of a shape
is called modeling. The most common representation of a shape is a composition of elementary objects.
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However, a shape can also be described by its generating process. In this case, the description is called
a generative model. A generative model does not describe a shape by the parts it consists of, but
by the operations and steps needed to be performed in order to create it; i.e., a generative model is
an algorithm. Its implementation is an algorithmic description written in a programming language.
Depending on the used software engineering paradigm, a generative model may also be called a
procedural model or a functional model, if the algorithm is implemented in a procedural way,
respectively functionally.

For many purposes in CAD, the mightiness of a Turing-complete programming language may lead to
potential problems, such as the halting problem. In order to avoid these problems, CAD frameworks
often offer a language that is not Turing-complete; i.e., the set of language features is reduced to
parametric modeling.

In generative modeling, the object is not just the end result of applied operations, as this paradigm
describes a shape by a sequence of processing steps. The result is a paradigm shift from shape design to
rule design. This general approach can be applied to many domains.

1.1. Ruler and Compass

Geometry from the days of the ancient Greeks placed great emphasis on problems of constructing
various geometric figures using only a ruler without markings (to draw lines) and a compass (to
draw circles). Ruler-and-compass constructions are based on EUCLID’s axioms [1] using points, lines
and circles that have already been constructed. The resulting geometric primitives together with the
ruler-and-compass constructions are the first algorithmic descriptions of generative models. EUCLID’s
Elements is probably the most successful textbook ever written. It still influences modern curricula of
mathematics [2]. As the history of geometry [3,4] is not within the scope of article, this article jumps
directly to modern uses of generative modeling techniques.

The long history of geometric constructions [6] is also reflected in the history of civil engineering
and architecture [7]. Gothic architecture, especially window tracery, exhibits a good example of these
constructions. Their complexity is achieved by combining only a few basic geometric patterns. SVEN

HAVEMANN and DIETER W. FELLNER show how constructions of prototypic Gothic windows can
be formalized using generative modeling techniques [8]. By combining modular construction rules, it
is possible that complex configurations can be obtained from elementary constructions. The different
combinations of specific parametric features can be grouped together, leading to the concept of styles.
A differentiation between basic shape and appearance allows, for example, the creation of ornamental
decoration, as seen in Figure 1 [5]. This leads to an extremely compact representation for a whole class
of shapes [9].

1.2. Natural Patterns

In today’s procedural modeling systems, scripting languages and grammars are often used to create
a set of rules to achieve a description of an object or pattern. Early systems based on grammars
were Lindenmayer systems, short L-systems, named after ARISTID LINDENMAYER [10]. They were
successfully used for modeling plants [11] or fractal structures [12]. Given a set of string rewriting rules,
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complex strings are created by applying these rules to simpler strings. Starting with an initial string, the
predefined set of rules form a new, possibly larger string. In order to use L-systems to model geometry,
an interpretation of the generated strings is necessary.

Figure 1. Compass-and-ruler operations have long been used in interactive procedural
modeling. This Gothic window construction was created in the framework presented
by WOLFGANG THALLER et al. using direct manipulation without any code or
graph editing [5].

The modeling power of L-systems was limited to creating fractals and plant-like branching structures.
This limitation led to the introduction of parametric L-systems. The idea is to associate numerical
parameters with L-system symbols to address continuous phenomena, which were not covered
satisfactorily by L-systems alone.

In combination with additional 3D modeling techniques, Lindenmayer systems can be used to
generate complex geometry. ROBERT F. TOBLER et al. introduce a combination of subdivision
surfaces, fractal surfaces and parametrized L-systems to create models of natural phenomena [13,14].
Different combinations can be used at each level of resolution. Since the whole description of
such multi-resolution models is procedural, their representation is very compact and can be exploited
by level-of-detai renderers.

This trade-off between data storage and computation time can be found in various fields of computer
graphics, e.g., the tessellation of curved surfaces specified by a few control points directly on the
GPU. The result is low storage costs, allowing the generation of complex models only when needed,
while also reducing memory transfer overheads. Although L-systems are parallel rewriting systems,
derivation through rewriting leads to very uneven workloads. Since the interpretation of an L-system is
an inherently serial process, they are not straightforwardly applicable to parallel processing. In 2010,
MARKUS LIPP et al. presented a solution to this algorithmic challenge [15].
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2. Languages and Grammars

Scripting languages have been designed for a special purpose, e.g., for client-side scripting in a
web browser. Nowadays, scripting languages are used for many different applications. JavaScript, for
example, is used to animate 2D and 3D graphics in the Virtual Reality Modeling Language (VRML) [16]
and Extensible 3D (X3D) [17] files. It checks user forms in PDF files [18], controls game engines [19],
configures applications, defines 3D shapes [20] and performs many more tasks. According to JOHN K.
OUSTERHOUT, scripting languages use a higher level of abstraction compared to system programming
languages, as they are often typeless and interpreted to emphasize the rapid application development
purpose [21]. System programming languages, on the other hand, are designed for creating algorithms
and data structures based on low-level data types and memory operations. Consequently, graphics
libraries [22], shaders [23] and scene graph systems [24,25] are usually written in C/C++ dialects [26],
whereas procedural modeling frameworks incorporate scripting languages, such as Lua, JavaScript, etc.

2.1. Language Processing and Compiler Construction

For the evaluation of procedural descriptions, typically techniques used for the description of formal
languages and compiler construction are used [27]. There is a wide range of different concepts of
languages to describe a shape, including all kinds of linguistic concepts [28]. The main categories to
describe a shape are:

• rule-based: using substitutions and substitution rules to generate complex structures out of simple
starting structures [29–32];
• imperative and scripting-based: using a scripting engine and techniques from predominant

programming languages [20,33,34] or;
• GUI and dataflow-based: using new graphical user interfaces (GUI) and intelligent GUIs to detect

structures in modeling tasks, which can be mapped onto formal descriptions [35,36].

The general principles of formal descriptions and compiler construction are the same in all cases:
independent of ahead-of-time compilation, just-in-time compilation or interpretation [37]. In the first
stage of the compilation process, the input source code is passed to the lexer and parser. The first step here
is to convert a sequence of characters into a sequence of tokens, which is done by special grammar rules
forming the lexical analysis. Typically, only a limited number of characters is allowed for an identifier:
all characters A–Z, a–z, digits 0–9 and the underscore _ are allowed with the condition that an identifier
must not begin with a digit or an underscore. The lexer rules are embedded in another set of rules: the
parser rules. They evaluate the resulting sequence of tokens to determine their grammatical structure.
The complete grammar is of a hierarchical structure and consists of rules for analyzing all possible
statements and expressions that can be formed in the language, thus forming the syntactic analysis.

For each available language construct, a set of rules ensures syntactic correctness and incorporates
mechanisms to report possible syntactic errors and warnings. These rules are also used to create the
intermediate abstract syntax tree (AST) structure that is a representation of the input source code to
be used for the next stage: semantic analysis. Once all statements and expressions of the input source
code are collected in the AST, a tree walker checks their semantic relationships for errors and warnings.
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After performing all compile-time checks, a translator uses the AST to generate platform-specific files,
possibly involving other intermediate structures.

As mentioned in the Introduction, the first procedural modeling systems were L-systems. Later on,
L-systems were used in combination with shape grammars to model cities. YOGI PARISH and PASCAL

MÜLLER presented a system that generates a street map enriched with geometry for buildings using
a number of image maps as input [38]. The resulting framework called CityEngine is a modeling
environment for the shape grammar Computational Geometry Algorithm (CGA) Shape. MARKUS LIPP

et al. presented another modeling approach based on CGA Shape following the notation of PASCAL

MÜLLER [31,35]. It enables more direct local control of the underlying grammar by introducing visual
editing. Principles of semantic and geometric selection are combined, as well as functionality to store
local changes persistently over global modifications.

SVEN HAVEMANN takes a different approach to generative modeling. He proposes a stack-based
language called the Generative Modeling Language (GML) [33]. The postfix notation of the language is
very similar to that of Adobe Postscript. High-level shape operations are created by using low-level shape
functionality. A number of applications are based on the GML platform, because it is easily extensible
and offers an integrated visualization engine. Current efforts in the context of the GML are devoted to
directly creating interactive generative visualizations for the web.

Generative modeling inherits the methodologies of 3D modeling and programming [39], which lead
to drawbacks in usability and productivity. The need to learn and use a programming language is
a significant inhibition threshold, especially for non-computer scientists. The choice of the scripting
language has a huge influence on the usability and effectiveness of procedural modeling. Processing is
a good example of how an interactive, easy to use, yet powerful development environment can open
up new user groups. It had been initially created to serve as a software sketchbook and to teach
students fundamentals of computer programming. It quickly developed into a tool that is used for
creating visual arts [40].

Processing is a Java-like interpreter offering new graphics and utility functions together with some
usability simplifications. The large community behind the tool produced libraries to facilitate computer
vision, data visualization, music, networking and electronics. The success of Processing is based on two
factors: the simplicity of the programming language and the interactive experience. Instant feedback of
the scripting environments allows the user to program via “trial and error”.

2.2. Scripting Languages for Generative Modeling

There are many different programming paradigms in software development that are also used in the
field of generative modeling, where some paradigms emerged to be useful for specific domains.

Imperative: Many generative models are described using classical programming paradigms: a
programming language is used to generate a specific object, possibly using a library that utilizes
some sort of geometry representation and operations to perform changes. Any modeling software
that is scriptable by an imperative language or provides some sort of API falls into this category.

Dataflow based: A generative description can be represented by a directed graph of the data flowing
between operations. This graph representation also allows for a graphical representation; visual
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programming languages (VPLs) allow one to create a program by linking and modifying visual
elements. Many VPLs are based on the dataflow paradigm. Examples in the domain of generative
modeling are the Grasshopper3D (online) plug-in for the Rhinoceros3D (online) modeling suite, or
the work of GUSTOVA PATOW et al. built on top of the procedural modeler Houdini (online) [41].

Rule-based systems: Another different representation for generative modeling is rule-based systems.
These systems provide a declarative description of the construction behavior of a model by a set
of rules. An example are L-systems, as described in the Introduction. Furthermore, the seminal
work of GEORGE STINY and JAMES GIPS introduced shape grammars, as a formal description of
capturing the design of paintings and sculptures [42]. Similar to formal grammars, shape grammars
are based on rule replacement.

2.3. Shape Grammars

A shape grammar consists of shape rules and a generation engine that selects and processes rules. A
shape rule defines how an existing shape can be transformed. The work of PETER WONKA et al. applied
the concepts of shape grammars to derive a system for generative modeling of architectural models [43].
This system uses a combination of a spatial grammar system (split grammar) to control the spatial design
and a control grammar, which distributes the design ideas spatially (e.g., set different attributes for the
first floor of a building). Both of these grammars consist of rules with attributes that steer the derivation
process. The grammar consists of two types of rules: split and convert. The split rule is a partition
operation, which replaces a shape by an arrangement of smaller shapes that fit in the boundary of the
original shape. The convert rule replaces a shape by a different shape that also fits in the boundary of the
original shape.

This system has further been extended by the work of PASCAL MÜLLER et al., which introduced a
component split to extend the split paradigm to arbitrary 3d meshes, as well as occlusion queries and
snap lines to model non-local influences of rules [31]. For example, two wall segments that intersect
each other should not produce windows, such that the window of one wall coincides with the other wall;
therefore, occlusion queries are used to decide if a window should be placed or not.

JEAN-EUDES MARVIE et al. have shown that the derivation of a split grammar, starting from
an initial shape, yields a tree structure, which suggests that the derivation can be sped up by a
parallel implementation [44]. Parallel generation is especially useful in an urban context, with scenes
with high complexity and detail. The work of LARS KRECKLAU et al. used GPU-accelerated
generation in the context of generating and rendering highly detailed building facades [45]; the work of
ZHENGZHENG KUANG et al. proposes a memory-efficient procedural representation of urban buildings
for real-time visualization [46].

With more advanced shape grammar systems, the non-local influences are a problem because they
introduce dependencies between arbitrary nodes of the derivation tree. Recent work by MARKUS

STEINBERGER et al. shows how to overcome this problem in a GPU implementation [47]. Furthermore,
the same authors presented methods to interactively generate and render only the visible part of a
procedural scene using procedural occlusion culling and the level of detail [48].

http://www.grasshopper3d.com
http://www.rhino3d.com
http://www.sidefx.com
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2.4. Tools and Environments

A selection of commonly-used tools and programming environments for generative modeling is listed
in the Tables 1 and 2.

Table 1. Overview of generative/procedural 3D modeling tools and approaches (Part 1).

Tool Name Application Domain Programming Category Environment

Blender Scripting general purpose modeling python scripting open source modeling
software blender

CGAL, The
Computational
Geometry
Algorithms
Library[49]

general purpose modeling C++ CGAL open source
project

CityEngine [31] urban modeling CGA shape commercial integrated
development
environment CityEngine

Generalized
Grammar G2 [30]

scientific python scripting commercial modeling
software Houdini

Generative
Modeling Language
(GML) [33]

CAD postscript dialect proprietary, integrated
development environment
for polygonal and
subdivision modeling

Grasshopper 3D visual arts, rapid
prototyping, architecture

visual programming
based on dataflow
graphs, Microsoft
.NET family of
languages

commercial modeling
software Rhinoceros3D

HyperFun [50] scientific specialized
high-level
programming
language

proprietary geometry
kernel FRep (Function
Representation)

Maya Scripting general purpose modeling Maya Embedded
Language (MEL)
and python scripting

commercial modeling
software Autodesk Maya

OpenSCAD CAD OpenSCAD
language

open source, based on
CGAL geometry kernel

PLaSM scientific python scripting,
Function Level
scripting

integrated development
environment Xplode

Processing visual arts, rapid
prototyping

Java dialect open source, integrated
development
environment Processing

http://www.blender.com
https://www.python.org/
http://www.cgal.org/
http://www.cgal.org/
http://www.cgal.org/
http://www.cgal.org/
http://www.cgal.org/
http://www.esri.com/software/cityengine
https://www.graphics.rwth-aachen.de/software/generalizedgrammar
https://www.graphics.rwth-aachen.de/software/generalizedgrammar
https://www.python.org/
http://www.sidefx.com
http://www.generative-modeling.org/
http://www.generative-modeling.org/
http://www.generative-modeling.org/
http://www.grasshopper3d.com/
http://www.microsoft.com/net
http://www.rhino3d.com
http://hyperfun.org
http://hyperfun.org/wiki/doku.php?id=frep:main
http://www.autodesk.com/products/autodesk-maya/
https://www.python.org/
http://www.openscad.org/
http://www.cgal.org/
http://www.plasm.net/
https://www.python.org/
http://www.processing.org
http://java.com/
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Table 2. Overview on generative/procedural 3D modeling tools and approaches (Part 2)

Tool Name Application Domain Programming Category Environment

PythonOCC general purpose modeling
and CAD

python scripting Open CASCADE
Technology

Revit Scripting architecture Microsoft .NET
family of languages

commercial modeling
software Autodesk Revit

siteplan [51] rapid prototyping,
architecture

interactive
GUI-based modeler

open source, integrated
development
environment siteplan

SketchUp Scripting architecture, urban
modeling and CAD

Ruby scripting commercial modeling
software SketchUp

Skyline Engine [41] urban modeling visual programming
based on dataflow
graphs, python
scripting

commercial modeling
software Houdini

speedtree plants/trees interactive
GUI-based modeler,
SDK for C++

standalone modeler and
integration into various
game engines

Terragen landscape modeling interactive
GUI-based modeler

free and commercial,
integrated development
environment Terragen

XFrog [11] plants/trees interactive
GUI-based modeler

integrated development
environment, standalone
and plugins for Maya and
Cinema4D

3. Modeling by Programming

3D objects consisting of organized structures and repetitive forms are well suited for procedural
descriptions, e.g., by the combination of building blocks or by using shape grammars.

3.1. Building Blocks and Elementary Data Structures

Creating shapes with elementary data structures requires the definition of modeling operations.
Depending on the underlying representation, certain modeling operations are difficult or impossible
to implement. The selection of operations for these data structures are manifold and can be grouped
as follows:

• Instantiations are operations for creating new shapes.
• Binary creations are operations involving two shapes, such as constructive solid geometry

(CSG) operations.
• Deformations and manipulations stand for all deforming and modifying operations, like morphing

or displacing.

http://www.pythonocc.org/
https://www.python.org/
http://www.opencascade.org
http://www.opencascade.org
http://www.autodesk.com/products/autodesk-revit-family/
http://www.microsoft.com/net
http://www.microsoft.com/net
http://twak.blogspot.co.at/2011/04/interactive-architectural-modeling-with.html
http://www.sketchup.com
https://www.ruby-lang.org/en/
http://ggg.udg.edu/skylineEngine/
https://www.python.org/
http://www.sidefx.com
http://www.speedtree.com/
http://www.planetside.co.uk/terragen
http://xfrog.com/
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Building blocks can also be regarded as modeling operations. When creating an algorithmic
description of a shape, an important task is to identify inherent properties and repetitive forms. These
properties must be accounted for in the structure of the description. Identified subparts or repetitive
forms are best mapped to functions in order to be reusable. However, the true power of an algorithmic
description becomes obvious when parameters are introduced for these functions. Even if only used to
position a subpart at a different location. From that point on, the algorithmic description no longer stands
for a single object, but for a whole object family.

3.2. Architectural Modeling with Procedural Extrusions

This method utilizes the paradigm of footprint extrusion to automatically derive geometry from a
coarse description. The inputs to this system are polygons whose segments can be associated with an
extrusion profile polygon. The system utilizes the weighted straight skeleton method [52] to calculate
the resulting geometry.

The growing demand for new building models for virtual worlds, games and movies, makes the easy
and fast creation of modifiable models more and more important [53]. Nevertheless, 3D modeling of
buildings can be a tedious task due to their sometimes complex geometry [54]. For historic buildings,
especially the roofs can be challenging. JOHANNES EDELSBRUNNER et al. present a new method of
combining simple building solids to form more complex buildings and give emphasis to the blending
of roof faces [55]. Their method can be integrated in common pipelines for procedural modeling of
buildings and extends their expressiveness compared to existing methods.

3.3. Deformation-Aware Shape Grammars

Generative models based on shape and split grammar systems often exhibit planar structures. This
is the case because these systems are based on planar primitives and planar splits. There are many
geometric tools available in modeling software to transform planar objects into curved ones, e.g.,
free-form deformation [56]. Applying such a transformation as a post-processing step might yield
undesirable results. For example, if a planar facade of a building is bent into a curved shape, the windows
inside the facade will have a curved surface, as well. Another possibly unwanted property arises when
an object is deformed by scaling: the windows on a facade would have different appearances.

RENÉ ZMUGG et al. introduced deformation-aware shape grammars, which integrate deformation
information into grammar rules [57]. The system still uses established methods utilizing planar
primitives and splits; however, measurements that determine the available space for rules are performed
in deformed space. In this way, deformed splits can be carried out, and the deformation can be baked at
any point to allow for straight splits in deformed geometry.

3.4. Procedural Shape Modeling

The effectiveness of procedural shape modeling can be demonstrated with the mass customization
of consumer products [58]. A generative description composed of a few well-defined procedures can
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generate a large variety of shapes. Furthermore, it covers most of the design space defined by an existing
collection of designs; in this case, wedding rings.

The basic shape of most rings can be defined using a profile polygon, the angular step size defined
by the number of supporting profiles to be placed around the ring’s center, the radius and a vertex
transformation function. A ring’s design variations are decomposed into a set of transformation
functions. Each function transforms selected parts of the profile in a certain way. Effects can be
combined by calling a sequence of different transformations. The creation of the basic shape is separated
from optional steps to create engravings, change materials or add gems. Engravings are implemented
as per-vertex displacements (to maintain the option for 3D-printing) and can be applied on quadrilateral
parts of the ring’s mesh using half-edges to specify position and spatial extent.

Materials, like gold, silver and platinum, are used for wedding rings. Their surfaces can be treated
with various finishing techniques, like polishing, brushing or hammering. In order to account for these
effects, a per-pixel shading model is used featuring anisotropic highlights. By using a cube map, visually
appealing reflections are created, and predefined surface finishes can be applied using normal mapping
techniques. Procedural gem instances can also be placed on the ring.

Figure 2. The presented generative description is able to produce a large variety of wedding
rings. Features, like engravings, recesses, different materials, unusual forms and gems, can
be created and customized.

The presented approach is used in a hardware-accelerated server-side rendering framework [59],
which has been included in an online system called REx by Johann Kaiser. It offers an intuitive web
interface for configuring and visualizing wedding rings.

This work demonstrates the efficiency of procedural shape modeling for the mass customization of
wedding rings. The presented generative description is able to produce a large variety of wedding rings.
Figure 2 shows a few results of the parametric toolkit.

3.5. Variance Analysis

The analysis and the visualization of the differences of similar objects is important in many research
areas: scan alignment, nominal/actual value comparison and surface reconstruction, to name a few. In
computer graphics, for example, differences of surfaces are used to validate reconstruction and fitting
results of laser scanned surfaces. Scanned representations are used for documentation, as well as analysis
of ancient objects, revealing the smallest changes and damage. Analyzing and documentation tasks are
also important in the context of engineering and manufacturing to check the quality of productions.

CHRISTOPH SCHINKO et al. contribute a comparison of a reference/nominal surface with an actual,
laser-scanned dataset [60]. The reference surface is a procedural model whose accuracy and systematics
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describe the semantic properties of an object, whereas the laser-scanned object is a real-world dataset
without any additional semantic information. The first step of the process is to register a generative
model (including its free parameters) to a laser scan. Then, the difference between the generative model
and the laser scan is stored in a texture, which can be applied to all instances of the same shape family.

A generative model represents an ideal object rather than a real one. The combination of noisy 3D
data with an ideal description enhances the range of potential applications. This bridge between both
the generative and the explicit geometry description is very important: it combines the accuracy and
systematics of generative models with the realism and the irregularity of real-world data, as pointed out
by DAVID ARNOLD [61]. Once the procedural description is registered to a real-world artifact, we can
use the fitted procedural model to modify a 3D shape. In this way, we can design both low-level details
and high-level shape parameters at the same time.

3.6. Semantic Modeling

In the context of digital libraries, semantic metadata play an important role. They provide semantic
information that is vital for digital library services: indexing, archival and retrieval. Depending on the
field of application, metadata can be classified according to the following criteria [62]:

Data type: The data type of the object can be of any elementary data structure (e.g. polygons,
non-uniform rational b-splines (NURBS), subdivision surfaces, etc.).

Scale of semantic information: This property describes whether metadata are added for the entire dataset
or only for a sub-part of the object.

Type of semantic information: The type of metadata can be descriptive (describing the content),
administrative (providing information regarding creation, storing, provenance, etc.) or structural
(describing the hierarchical structure).

Type of creation: The creation of the semantic information for an object can be done manually (by a
domain expert) or automatically (e.g., using a generative description).

Data organization: The two basic concepts of storing metadata are storing the information within
the original object (e.g., Exchangeable Image File Format (Exif) data for images) or storing it
separately (e.g., using a database).

Information comprehensiveness: The comprehensiveness of the semantic information can be declared
varying from low to high in any gradation.

Many concepts for encoding semantic information can be applied to 3D data. Despite the
large number of 3D data formats, only a few are standardized, non-proprietary and support
semantic markup [63]:

Collada The XML-based Collada format is an ISO standard and allows storing metadata, like title,
author, revision, etc., not only on a global scale, but also for parts of the scene [64]. This
file format can be found in Google Warehouse where metadata are, for example, used for
geo-referencing objects.
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IGES Initial Graphics Exchange Specification (IGES), an American National Standards Institute
(ANSI) standard since 1980, allows the definition of annotations, including dimensioning data,
as well as labels and notes [65]. This file format is used as a vendor-neutral exchange format
among CAD systems.

JT The Jupiter Tesselation (JT) file format has been an ISO standard since 2012 and is used for product
visualization and data exchange in CAD systems [66]. Annotations in the form of attributes and
properties, as well as filters are supported by this format. It is accompanied by the XML-based
format for product lifecycle management (PLMXML) to represent product structure hierarchy.

PDF 3D PDF 3D is an ISO standard and allows one to store annotations separated from the 3D data,
even allowing annotating of the annotations [67]. An advantage is that the viewer application is
widely spread, and PDF documents are the quasi standard for textual documents.

STEP The standard for the exchange of product model data (STEP) has been an ISO standard since
1994 divided into different parts, data models and environments [68]. The current Application
Protocol 242 supports product data and non-geometrical metadata.

X3D The X3D file format is an XML-based ISO standard for representing 3D computer graphics [69].
It supports a number of different metadata nodes, providing arrays of strongly typed data.

While a standard has advantages for accessibility, long-term archival and many other aspects, it does
not solve inherent problems; i.e., due to the persistent naming problem, a modification of the 3D model
can break the integrity of the semantic information. Any change of the geometry can cause the referenced
part of the model to no longer exist or be changed. Nevertheless, there are many examples for semantic
modeling in various contexts [70–75].

4. Inverse Modeling

The full potential of the generative techniques is revealed when the inverse problem is solved; i.e.,
what is the best generative description of one or several given instances of an object class? This problem
can be interpreted in different ways. The simplest way is to create a generative model out of a given 3D
object and to store it in a geometry definition file format. Obviously, this is not the desired result, as the
generative model can only represent a single object, not a family of objects.

4.1. Parsing Shape Grammars

Shape grammars can be used to describe the design space of a class of buildings/facades. An
interesting question in this context is: given a set of rules and measurements of a building, typically
photographs or range scans, which application of rules yields the measurements? Here, the applied rules
can also be seen as a parse tree of a given input.

The work of HAYKO RIEMENSCHNEIDER et al. [76] utilizes shape grammars to enhance the results
of a machine learning classifier that is pre-trained to classify pixels of an orthophoto of a facade into
categories, like windows, walls, doors and sky. The system applies techniques from formal language
parsing to parse a two-dimensional split grammar consisting of horizontal and vertical splits, as well as
repetition and symmetry operations. For the reduction of the search space, an irregular grid is derived
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from the classifications, and the parsing algorithm is applied to yield the most probable application
of rules that yields a classification label per grid cell. These parse trees can easily be converted into
procedural models.

FUZHANG WU et al. also address the problem of how to generate a meaningful split grammar
explaining a given facade layout [77]. Given a segmented facade image, the system uses an approximate
dynamic programming framework to evaluate if a grammar is a meaningful description. However, the
work does not contribute to the problem of facade image segmentation.

4.2. Model Synthesis

PAUL MERELL and DINESH MANOCHA present an approach that, given an object (i.e., a mesh)
and constraints, derives a locally-similar object [78,79]. This method is related to texture synthesis. It
computes a set of acceptable states, according to several types of constraints, and constructs parallel
planes that correspond to the face orientations of the input model. The intersections of these planes
yield possible vertex positions in the output model. Acceptable states are assigned to a vertex, while
incompatible states are removed in its neighborhood. The system terminates if every vertex has been
assigned a state.

4.3. Inverse Procedural Modeling of Trees

The method proposed by ONDREJ STAVA et al. estimates the parameters of a stochastic tree model,
given polygonal input tree models [80]. This is done in such a way that the stochastic model produces
trees similar to the input. The parameters are estimated using Markov chain Monte Carlo (MCMC)
optimization techniques. A statistical growth model consisting of 24 geometrical and environmental
parameters is used. The authors propose a similarity measure between the statistical model and a
given input mesh that consists of three parts: shape distance, measuring the overall shape discrepancy,
geometric distance, reflecting the statistics of the geometry of its branches, and structural distance,
encoding the cost of transforming a graph representation of the statistical tree model into a graph
representation of the input tree model. The MCMC method has also been applied by other methods
to find parameters of a statistical generative model [81–83].

4.4. Parameter Fitting and Shape Recognition

TORSTEN ULLRICH and DIETER W. FELLNER presented an approach that uses generative modeling
techniques to describe a class of objects and to identify objects in real-world data, e.g., laser scans [84]. A
point cloud P and a generative model M are the input datasets of the algorithm. It answers the questions:

1. can the point cloud be described by the generative model, and if so,
2. what are the input parameters x0, such that M(x0) is a good description of P .

A hierarchical optimization routine based on fuzzy geometry and a differentiating compiler are used.
The complete generative model description M(x1, . . . , xk) (including all possibly called subroutines) is
differentiated with respect to the input parameters. This differentiating compiler offers the possibility to
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use gradient-based optimization routines in the first place. Without partial derivatives, many numerical
optimization routines cannot be used at all or in a limited way.

5. Architecture, Engineering and Design

5.1. Generative Architectural Design

The usage of generative modeling techniques in architecture is not limited to buildings of the
past [85,86]. Over the last few decades, architects have used a new class of design tools that support
generative design. Generative modeling software extends the design abilities of architects and may even
help to reduce costs by harnessing computing power in new ways. Computers, of course, have long
been used to capture and implement the design ideas of architects by means of CAD and 3D modeling.
Generative design actually helps architects design by using computers to extend human abilities [87].

An impressive example is the Helix Bridge in Singapore (see Figure 3). The 280-m bridge is made
up of three 65-m spans and two 45-m end spans. The major and minor helices, which spiral in opposite
directions, have overall diameters of 10.8 m and 9.4 m, respectively. The outer helix is formed from
six tubes, which are set equidistant from one another, whereas the inner helix consists of five tubes.
The bridge design is the product of inseparable collaboration between architects (Cox Architecture and
Architects 61) and civil engineers (Arup Consultant). For its 280-m length, the dual helix structure of
the bridge utilizes five-times less steel than a conventional box girder bridge. This fact enabled the client
to direct the structure to be constructed entirely of stainless steel for its longevity.

Figure 3. The Helix Bridge is a pedestrian bridge in the Marina Bay area in Singapore.
Its generative design has been optimized numerically. Furthermore, the bridge was fully
modeled in order to visualize its form and geometrical compatibility, as well as to visualize
the pedestrian experience on the bridge.

Another example of generative, architectural design has been presented by
TORSTEN ULLRICH et al. [88]. They interpret a generative script as a function, which is nested into
an objective function. Thus, the script’s parameters can be optimized according to an objective. They
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demonstrate this approach using architectural examples: each generative script creates a building with
several free parameters. The objective function is an energy efficiency simulation that approximates
a building’s annual energy consumption. Consequently, the nested objective function reads a set of
building parameters and returns the energy needs for the corresponding building. This nested function is
passed to a minimization and optimization process. The outcome is the best building (within the family
of buildings described by its script) concerning energy efficiency. The contribution is a new way of
modeling: the generative approach separates design and engineering. The complete design is encoded
in a script, and the script ensures that all parameter combinations (within a fixed range) generate a valid
design. Then, the design can be optimized numerically.

The adjustment of architectural forms to local and specific conditions is a fundamental study. When
discussing energy consumption and solar power harnessing in buildings, important aspects have to be
taken into account, e.g., the relation between a building form and its energy behavior and the local
weather conditions on an all-year basis. Several studies were published so far trying to answer these
questions. “Form follows energy” has become an omnipresent dogma in architecture, but its realization
is difficult. The manual analysis of the various relations between form, volume and energy consumption
has to face many, not only numerical, problems.

The new approach by TORSTEN ULLRICH et al. [88] for architectural design is opening the door to
new possibilities for the user. It relieves the user from additional, interdisciplinary burdens: the designer
can concentrate on the design, while the civil engineer can focus on engineering aspects. This new
approach based on procedural modeling can be used in many different fields of product design.

5.2. Engineering Design

The research area of computational design synthesis (CDS) is concerned with the automation of
synthesis activities in design [89]. Computer systems are used to generate design candidates for a specific
task. For example, the work of MICHAEL J. PUGLIESE et al. [90] investigated the possibility to capture
brand specifics using a shape grammar. A more recent synthesis approach presented by FOREST FLAGER

et al. is concerned with the sizing optimization of steel structures [91]. For an extensive overview of this
topic, the authors refer to the work of AMARESH CHAKRABARTI et al. [92].

Each design process that involves repetitive tasks is perfectly suited for a generative approach.
Engineering processes can be classified into repetitive and creative processes. In contrast to creative
processes, repetitive ones consist of nearly identical tasks and are therefore independent of creative
decisions. This is a precondition for modeling them in a system of rules, as is shown in this practical
example [93]: Liebherr manufactures and sells an extensive range of products, including different kinds
of cranes. Each crane has to be partially or fully engineered to the needs of the customer. Nevertheless,
the design process of ascent assemblies is based on repetitive tasks that are described by a set of
invariant rules. These rules have been modeled and stored by Liebherr. The integration into the existing
CAD pipeline now allows a construction engineer to create ascent assemblies only by determining the
defining parameters and filling out the corresponding input fields in a user interface. Using the procedural
approach, the efforts of engineering ascent assemblies have been reduced to 10%.
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5.3. Urban Modeling

In the context of urban modeling, procedural systems can be used to cover different levels of detail,
as has been shown in a survey for urban reconstruction by PRZEMYSLAW MUSIALKSI et al. [94]. On a
coarse scale, the procedural paradigm is applicable to the generation of terrain, e.g., using methods based
on hydrology, as presented by JEAN-DAVID GÉNEVAUX [95], or for the inexpensive reconstruction of
the landscape surrounding a road, as presented by CARLOS ANDÚJAR et al. [96].

Such systems have also been used for the generation of roads. ERIC GALIN et al. present an algorithm
that generates roads on terrain [97]. JAN BENES et al. present a model for growing procedural road
networks in and close to cities [98]. The work of MARKUS LIPP et al. is concerned with interactive
modeling of entire city layouts [99] using procedural methods. An overview of modeling the appearance
and behavior of urban spaces is given by CARLOS A. VANEGAS et al. [100].

Within the scale of a building, PAUL MERELL et al. present a method for automatic creation of
residential building layouts; FAN BAO et al. formulate a constrained optimization to characterize good
building layouts and a method to let a user explore the space of good building layouts [101]. Procedural
systems are also used in the context of facade modeling: PRZEMYSLAW MUSIALSKI et al. present
an interactive framework for modeling building facades from images [102]. FAN BAO et al. show a
technique to create procedural facade variations from a single layout [103]. MICHAEL SCHWARZ et al.
present an approach for designing exterior lighting for buildings with complex constraints [104]. When it
comes down to the interior of a building, PAUL MERELL et al. present an automatic method for furniture
placement following interior design guidelines [105].

5.4. Building Information Modeling

Procedural modeling can also be helpful in the context of building information modeling (BIM),
the new paradigm of today’s building industry [106]. The American National Building Information
Model Standard (NBIMS-US) project committee defines BIM as “a digital representation of physical
and functional characteristics of a facility. A BIM is a shared knowledge resource for information
about a facility forming a reliable basis for decisions during its life cycle; defined as existing from
earliest conception to demolition” [107]. Other definitions are summarized in a literature review by
ABBASNEJAD and MOUD, who conclude that a generally accepted comprehensive definition of BIM
has not been established yet, and different stakeholders (architects, builders, owners, etc.) have mixed
expectations towards BIM [108]. In contrast to established computer-aided design (CAD), a building
information model does not just store the geometry of a building, but includes semantic data about
the functions of the buildings and its elements. Furthermore, BIM is intended to be used throughout
the building’s life cycle, containing information for planning, design, construction, operation and
maintenance. That is, a model is not only used by architects, contractors and suppliers, but by all kinds
other users, e.g., government agencies, owners, real estate agents, facility managers, etc.

EASTMAN et al. help to understand BIM by describing examples that are not BIM technology.
As already mentioned, models without object attributes, but only 3D data, are not considered BIM.
Furthermore, models composed of multiple 2D drawings that have to be combined or models that do
not automatically reflect changes made in one view in other views are not building information models.
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Moreover, EASTMAN et al. consider parametric object capabilities as essential for BIM. Parametric
objects in BIM can include rules to automatically modify associated objects (e.g., a wall is changed when
a door is placed in it) and for ensuring feasibility (e.g., regarding size and manufacturability) [109]. Such
intelligent objects are similar to the idea of generative modeling, where a 3D object is described by the
operations necessary to generate the object, rather than the result of these operations [110,111].

One use-case is documenting a building “as-built BIM” [112], to aid, amongst others, in the
application scenarios of restoration, documentation and maintenance. Such a model is built from
measured data, which is typically acquired by terrestrial laser scanning (TLS) or image-based approaches
(photogrammetry or structure from motion techniques), which yields point positions in 3D. From these
point clouds, a mesh can be created using 3D surface reconstruction techniques, e.g., Poisson surface
reconstruction [113]. Furthermore, the surface appearance has to be acquired [114]. In the case of
building interiors, the generation of orthographic images can be used for surface color representation and
the retrieval of additional semantic information [115]. Such semantic relationships have to be acquired
and represented within the model [116]; see also the foregoing section about semantic enrichment. A
recent example of the usage of parametric elements for the reconstruction and documentation of complex
architecture is the case of a reactor building, as shown by JEAN-FRANÇOIS HULLO et al. [117].

For historic building information modeling (HBIM), procedural methods have been used to aid the
reconstruction and documentation process. CONOR DORE et al. applied a shape grammar approach to
model classical building facades for HBIM [118] and reconstructed the Four Courts, a historic classical
building in Dublin City [119] using rule-based modeling in ArchiCAD. Another recent example of
creating a HBIM model with rich semantics from terrestrial laser scanning data has been shown by
RAMONA QUATTRINI et al. in the case study of the Church of Santa Maria at Portonovo [120] using
Autodesk Revit.

In the context of functional building information modeling (FBIM), generative techniques can be used
to semantically filter a CAD dataset of a building. A major future challenge in the building industry is to
reduce primary energy use of buildings. Hence, energy performance simulation becomes an increasingly
important topic. Accurate, yet efficient simulation depends on simple building models. Most of the
required data can be found in BIMs. However, typical BIM data contains a lot of irrelevant data, in
particular geometric representations, which are too detailed for energy performance simulation. Using
generative modeling techniques, DANIEL LADENHAUF et al. [121,122] show an approach of geometry
simplification subject to semantic and functional groups. These simplified models are sufficiently
accurate for energy calculations and small enough so that they do not flood simulation software with
unnecessary details. As these semantically-filtered models are generated automatically, they simplify
the design process significantly and offer an energy calculation, even at early design stages.

6. Archeology and Cultural Heritage

The increasing number of (3D) documents makes digital library services become more and more
important. A digital library provides markup, indexing and retrieval services based on available
metadata. In a simple case, metadata are of the Dublin Core type: title, creator/author, time of
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creation, etc [123]. This is insufficient for large collections of 3D objects, because of their versatility
and rich structure.

6.1. Semantic Enrichment

Scanned models are used in raw data collections, for documentation archival, virtual reconstruction,
historical data analysis and for high-quality visualization for dissemination purposes [124]. Navigation
and browsing through the geometric models should be possible on the semantic level; this requires higher
level semantic information. The need for semantic information becomes immediately clear in the context
of electronic data exchange, storage and retrieval [125,126]. The problem of 3D semantic enrichment is
closely related to the shape description problem [127]:

How to describe a shape and its structure
on a higher, more abstract level?

The traditional way of classifying objects, pursued both in mathematics and, in a less formal manner,
in dictionaries, is to define a class of objects by listing their distinctive properties. This approach is hardly
realizable, because of the fact that definitions cannot be self-contained. They depend on other definitions,
which leads to circular dependencies that cannot be resolved automatically by strict reasoning, but rely
on intuitive understanding at some point.

An alternative, non-recursive approach for describing shape uses examples. Each entry in a picture
dictionary is illustrated with a photo or a drawing. This approach is widely used, for example, in biology
for plant taxonomy. It avoids listing an exhaustive list of required properties for each entry. However, it
requires some notion of similarity, simply because the decision of whether object x belongs to class A or
B requires measuring the closeness of x to the exemplars a ∈ A, respectively b ∈ B. This decision can
be reached by a classifier using statistics and machine learning [128,129]. A survey on content-based 3D
object retrieval is provided by BENJAMIN BUSTOS et al. [130]. Statistical approaches clearly have their
strength in discriminating object classes. However, feature-based object detection, e.g., of rectangular
shapes, does not yield object parameters: the width and height of a detected rectangle must typically be
computed separately.

To describe a shape and its construction process, its inner structure must be known. Structural
decomposition is well in line with human perception. In general, shapes are recognized and coded
mentally in terms of relevant parts and their spatial configuration or structure [131]. One idea to
operationalize this concept was proposed, among others, by MASAKI HILAGA et al., who introduce
the Multiresolution Reeb Graph, to represent the skeletal and topological structure of a 3D shape at
various levels of resolution [132]. Structure recognition is a very active branch in the field of geometry
processing. The detection of shape regularities [133], self-similarities [134] and symmetries [135,136]
is important to understand a 3D shape. To summarize, structural decomposition proceeds by postulating
that a certain type of general regularity or structure exists in a class of shapes. This approach clearly
comes to its limits when very specific structures are to be detected, i.e., complicated constructions with
many parameter interdependencies.

A possibility to describe a shape is realized by the generative modeling paradigm [29,137]. The
key idea is to encode a shape with a sequence of shape-generating operations and not just with a list
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of low-level geometric primitives. In its practical consequence, every shape needs to be represented
by a program, i.e., encoded in some form of programming language, shape grammar [31], modeling
language [33] or modeling script [138].

The implementation of the “definition by algorithm” approach is based on a scripting language [84]:
Each class of objects is represented by one algorithm M . Furthermore, each described object is a set
of high-level parameters x, which reproduces the object, if an interpreter evaluates M(x). As this kind
of modeling resembles programming rather than “designing”, it is obvious to use software engineering
techniques, such as versioning and annotations. In this way, model M may contain a human-readable
description of the object class it represents.

In contrast to other related techniques using fitting algorithms, such as “Creating Generative Models
from Range Images” by RAVI RAMAMOORTHI and JAMES ARVO, the approach by TORSTEN ULLRICH

can classify data semantically [139,140]. Although RAVI RAMAMOORTHI and JAMES ARVO also use
generative models to fit point clouds, they modify the generative description during the fitting process.
As a consequence, the optimization can be performed locally with a computational complexity that is
significantly reduced. However, starting with the same generative description to fit a spoon as well as a
banana does not allow one to generate or preserve semantic data.

An example illustrates this process. The generative model to describe a vase takes 13 parameters:
R(rx, ry, rz) is the base reference point of the vase in 3D and T (tx, ty, tz) is its top-most point. The points
R and T define an axis of rotational symmetry. The remaining seven parameters define the distances
d0, . . . , d6 of equally-distributed Bézier vertices to the axis of rotation (see Figure 4). The resulting 2D
Bézier curve defines a surface of revolution: the generative vase.

R(rx, ry, rz)

T (tx, ty, tz)

d0

d1

d2

d3

d4

d5

d6

Figure 4. The vase on the left-hand side is a digitized artifact of the “Museum Eggenberg”
collection. It consists of 364,774 vertices and 727,898 triangles. The example of a procedural
shape on the right-hand side takes two points R and T in 3D and distance values, which
define the control vertices of a Bézier curve.

6.2. Cultural Heritage

The huge volume of cultural objects is a challenge, even for the most ambitious plans for digitization
campaigns [141]. The fact that probably 90 percent of museum collections are in storage and not
accessible to the public is almost demanding for digitization and public accessibility. However, the
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digitization alone is only part of a larger process that begins at a field excavation and does not end
with the presentation in museum exhibitions. Secondary exploitation, database access and sustainable
long-time archiving of digitized artifacts is also part of the process [142]. A very important aspect is the
choice of the 3D format used during this process [143,144]. However, the availability of large quantities
of cultural heritage data will enable new methods for analysis and new applications [145].

The presented modeling system by CHRISTOPH SCHINKO et al. is restricted to techniques to meet
sustainability conditions. By using JavaScript, the inhibition threshold to use a programming language
is reduced, resulting in a beginner-friendly tool with a high degree of usability [111]. RENÉ BERNDT

et al. present a system for the production of three-dimensional interactive illustrations in the domain of
medieval castles [146]. A special focus is on creating generic modeling tools that increase the usability
with a unified 3D user interface.

One of the advantages of procedural modeling techniques is the included expert knowledge within an
object description [84]. Classification schemes used in architecture, archeology and other domains can
be mapped to procedures [147]. When a procedural object description is available, only the type and
instantiation parameters have to be identified in order to create an object [148] (see Figure 5). It is then
also possible to use the fitted procedural model to modify existing 3D shapes [149].

Figure 5. Gothic architecture is defined by strict rules with its characteristics. The
generative description of Gothic cathedrals encodes these building blocks and the rules on
how to combine them. These building blocks have been created by MICHAEL CURRY,
http://www.thingiverse.com/thing:2030.

Another use-case is the creation of several building hypotheses in the context of historic analysis, as
shown by ERICA CALOGERO et al. [150] in a case study that investigated different hypothesis for parts
of the Louvre. Furthermore, MARIE SALDAÑA et al. carried out a similar approach for parts of the city
of Rome [151]. Both works were carried out using the Esri CityEngine.
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7. Open Research Questions

According to DIETER W. FELLNER and SVEN HAVEMANN, several research challenges have to be
met: from the classification of shape representations via generic, stable and detailed 3D markup to 3D
query operations [125,152–154].

A particularly important problem occurs in the context of internal structure organization and
interfaces. Within a composition of modeling functions, where each function is attached via its
parameters to topological entities defined in previous states of the model, referenced entities must be
named in a persistent way in order to be able to reevaluate the model in a consistent manner. In
particular, when a reevaluation leads to topological modifications, references between entities used
during the design process are frequently reevaluated in an erroneous way, giving results different from
those expected. This problem is known as the “persistent naming problem” [155].
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