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Abstract: Identification of crop species is an important issue in agricultural management.  

In recent years, many studies have explored this topic using multi-spectral and hyperspectral 

remote sensing data. In this study, we perform dedicated research to propose a framework 

for mapping crop species by combining hyperspectral and Light Detection and Ranging 

(LiDAR) data in an object-based image analysis (OBIA) paradigm. The aims of this work 

were the following: (i) to understand the performances of different spectral dimension-reduced 

features from hyperspectral data and their combination with LiDAR derived height 

information in image segmentation; (ii) to understand what classification accuracies of crop 

species can be achieved by combining hyperspectral and LiDAR data in an OBIA paradigm, 

especially in regions that have fragmented agricultural landscape and complicated crop 

planting structure; and (iii) to understand the contributions of the crop height that is derived 

from LiDAR data, as well as the geometric and textural features of image objects, to the crop 

species’ separabilities. The study region was an irrigated agricultural area in the central 

Heihe river basin, which is characterized by many crop species, complicated crop planting 

structures, and fragmented landscape. The airborne hyperspectral data acquired by the 

Compact Airborne Spectrographic Imager (CASI) with a 1 m spatial resolution and the 

Canopy Height Model (CHM) data derived from the LiDAR data acquired by the airborne 
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Leica ALS70 LiDAR system were used for this study. The image segmentation accuracies 

of different feature combination schemes (very high-resolution imagery (VHR), VHR/CHM, 

and minimum noise fractional transformed data (MNF)/CHM) were evaluated and analyzed. 

The results showed that VHR/CHM outperformed the other two combination schemes with 

a segmentation accuracy of 84.8%. The object-based crop species classification results of 

different feature integrations indicated that incorporating the crop height information into 

the hyperspectral extracted features provided a substantial increase in the classification 

accuracy. The combination of MNF and CHM produced higher classification accuracy than 

the combination of VHR and CHM, and the solely MNF-based classification results. The 

textural and geometric features in the object-based classification could significantly improve 

the accuracy of the crop species classification. By using the proposed object-based 

classification framework, a crop species classification result with an overall accuracy of 

90.33% and a kappa of 0.89 was achieved in our study area. 

Keywords: crop species classification; hyperspectral remote sensing; LiDAR data; object-based 

classification; image segmentation 

 

1. Introduction 

Precise crop mapping is vitally important in agriculture and agricultural management, such as crop 

damage estimation [1], crop acreage and yield estimation [2], and precision agriculture [3]. Crops 

mapped in detail are basic data and materials for scientific study and governmental decision-making. 

Compared with conventional field investigation approaches, remote sensing has been considered to be a 

cost-effective, labor-saving, and time-efficient method of vegetation mapping that has been widely 

applied in crop mapping [4]. 

It is challenging for multi-spectral remote sensing data to discriminate between different species of 

crops. One of the reasons is the spectral similarity between different types of crops [5]. Hyperspectral 

remote sensing data, which has narrow spectral bands of up to hundreds from the visible to the infrared 

region of the spectrum, are more powerful in identifying different crop species than multi-spectral 

images. In order to investigate the capability of hyperspectral data in distinguishing different crops, 

studies on the choosing of appropriate hyperspectral data waveband locations were performed [6,7]. 

However, due to the variability within the same crop caused by growth calendars, farmer decisions, and 

local weather [5], it is still a challenging task to choose hyperspectral remote sensing data of proper 

bands and time phases to classify crops in detail. To improve the accuracy of crop species classification, 

incorporation of the plant canopy structure information into the optical remote sensing data classification 

is promising. A LiDAR system that can measure the vertical structural information of vegetation has 

been used in tree species inventory [8–11]. The combination of hyperspectral and LiDAR data in tree 

species mapping showed its potential for tree species classification [12,13]. As for crops, canopy height 

differences of different crop species are more obvious than those of tree species. Using third-dimensional 

information on the crops when differentiating crops that have similar spectral characteristics could be 

more promising. 
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Another reason why it is difficult for multi-spectral remote sensing data to discriminate between 

different species of crops is the limitation in spatial resolution of remote sensing images [5]. In regions 

that have spatially fragmented landscapes and complicated planting structures, using high-spatial 

resolution remote sensing data is important for accurate crop species classification. The coarse or 

medium spatial resolution remote sensing images could cause “mixed” pixels of multiple land cover 

types or crop species, which causes the data to be insufficient or inadequate for detailed crop species 

classification [14,15]. VHR images that could provide more detailed observation information on a finer 

or even single plant distribution model are more promising. VHR images have been widely used in urban 

land cover classification, forest inventory [9,16,17], and crop species mapping [18–21]. 

However, high spatial resolution imagery might be not effective in accurately mapping crop species 

because the pixels of the VHR image could capture the information of the soil background or shadows 

as well, even though the crops are the only targets for mapping. The background information could 

increase the spectral variability and the mixed pixels of parcels, which will cause a decrease in the 

statistical separability between different classes when applying pixel-based classification [22]. This 

scenario is known as the H-resolution problem [14]. As a way of solving the H-resolution problem, 

object-based image analysis (OBIA) has been developed and used in crop species classification [5,20,23]. 

In contrast to pixel-based classification, object-based classification considers image objects to be the 

basic classification units [14,16]. One of the advantages of object-based classification over pixel-based 

classification is that object-based classification can achieve more reliable classification results by 

combining different types of features of objects [19], such as spectral features, textural features, and 

geometric features. The object-based image classification consists of two stages, image segmentation 

and image object classification. In the image segmentation procedure, remote sensing imagery is 

segmented into relatively homogeneous regions as “image objects” [24]. Previous studies have shown 

that multi-sensor data-based image segmentation has higher segmentation accuracy than only multi-

spectral data-based image segmentation [16,25–27]. A combination of third-dimensional features of the 

vegetation canopy derived from LiDAR data and high spatial resolution images could improve the 

segmentation accuracy [16,17,28,29]. In the image object classification process, each segmented object 

is labeled as a corresponding class using an appropriate classification algorithm. 

While the effectiveness of combining hyperspectral- and LiDAR-derived vegetation height data for 

tree species mapping has been confirmed by several studies [11–13,30,31], the combination of 

hyperspectral and LiDAR data has never been used for crop species classification, and the effectiveness 

of this combination in crop species mapping is unknown. Furthermore, most studies that were based on 

combining hyperspectral- and LiDAR-derived vegetation height data for tree species mapping relied on 

pixel-based classification and, thus, ignored the geometric and textural features that lie in high spatial 

resolution remote sensing data. 

The main objective of this study was to develop a framework for mapping crop species by combining 

hyperspectral and LiDAR data in an object-based image analysis (OBIA) paradigm and to test the 

effectiveness of this framework in the irrigated agricultural region. The study area is located in the 

middle reaches of the Heihe River Basin, Gansu Province, China, where the landscape is fragmented 

and the crop planting structure is complicated. The specific aims of this paper are: (i) to understand the 

performances of different spectral dimension-reduced features from hyperspectral data and their 

combinations with LiDAR-derived height information in image segmentation; (ii) to understand what 
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classification accuracies of crop species can be achieved by combining hyperspectral and LiDAR data 

in an OBIA paradigm; and (iii) to understand the contributions of the crop height derived from LiDAR 

data and the textural and geometric features of the image objects to the crop species’ separabilities. 

The remainder of this paper is organized as follows. In Section 2, we describe the study area and the 

dataset used in the analysis. In Section 3, we present our methods for data pre-processing, image 

segmentation and segmentation accuracy assessment, and object-based classification. The results are 

presented and analyzed in Section 4. A summary of the entire study and the conclusions are presented  

in Section 5. 

2. Study Area and Data 

2.1. Study Area 

The study area is located in the middle reaches of the Heihe River basin (north corner: 38°54′5.55′′N, 

100°21′23.39′′E; east corner: 38°52′42.20′′N, 100°24′34.88′′E; south corner: 38°50′16.38′′N, 

100°22′36.24′′E; west corner: 38°51′42.37′′N, 100°19′25.84′′E), approximately eight kilometers 

southwest of Zhangye City, Gansu Province, China (Figure 1). The area is located in an artificial oasis 

in which irrigated crops and forest are the dominant vegetation types. The vegetation species in the study 

area include shelter forest, cereal crops (maize, wheat) and vegetables (leek, lettuce, cauliflower, potato, 

watermelon, and pepper). In addition to vegetation cover, there are man-made buildings and roads in the 

study area. 

 

Figure 1. The study area, a cultivation base in the middle reaches of the Heihe River, Gansu 

Province, China, is approximately 8 km southwest of Zhangye City. The hyperspectral cube 

was obtained from airborne CASI, and the remote sensing image on top of the cube is a false 

color composition of three hyperspectral imagery bands (R: band centered at 826 nm, G: 

band centered at 683 nm, B: band centered at 540 nm). 
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2.2. Data 

The data used in this study were supplied by the Heihe Water Allied Telemetry Experimental 

Research (HiWATER) [32]. The overall objectives of HiWATER were to improve the observability of 

hydrological and ecological processes, to build a world-class watershed observing system, and to 

enhance the applicability of remote sensing in integrated eco-hydrological studies and water recourse 

management at the basin scale. 

2.2.1. Airborne Remote Sensing Data 

The remote sensing data used in this study included hyperspectral images that were collected by 

airborne CASI (Compact Airborne Spectrographic Imager, ITRES Research Ltd., Calgary, AB, Canada) 

and CHM data that were acquired by an airborne LiDAR system (Leica ALS70 LiDAR system). The 

CASI sensor was on board a Harbin Y-12 aircraft that was at an average flying altitude of 2000 m above 

the ground on 29 June 2012. The hyperspectral images that were acquired by the CASI had 48 bands 

that ranged from 380 nm to 1050 nm in wavelength. The spectral resolution of the hyperspectral data 

was 7 nm. The spatial resolution of the hyperspectral data was 1.0 m. While the CASI was in flight, the 

ground control points for the geometric rectification and the atmospheric parameters for the atmospheric 

correction of the CASI hyperspectral remote sensing data were measured simultaneously. The 

atmospheric correction and geometric rectification of the CASI hyperspectral data were conducted by 

the HiWATER team [32]. The hyperspectral data were georeferenced using Universal Transverse 

Mercator (UTM) coordinates with the WGS84 datum. 

The airborne LiDAR data were obtained from the flight mission conducted by HiWATER on 19 July 

2012. The LiDAR sensor flew at an altitude of approximately 1500 m to collect the first and last returns 

of each emitted pulse. The average point density of the LiDAR data was 4 points per m2, and the vertical 

placement accuracy of the LiDAR data was 0.05–0.3 m. The returns from the ground (e.g., bare soil, 

road) and non-ground targets (e.g., plant canopy, roofs of buildings) were classified into digital elevation 

model (DEM) and digital surface model (DSM) using TerraScan software (Terra-solid Ltd., Helsinki, 

Finland). The DEM and DSM derived from the LiDAR point-cloud data were georeferenced and 

resampled to a spatial resolution of 1 m for the convenience of combining them with the CASI 

hyperspectral data. 

2.2.2. Field Data Collection 

The vegetation types and crop species in the study area were surveyed simultaneously during the 

HiWATER flight mission (8 July–9 August 2012) [32]. Areas that had complex plant structures were 

surveyed intensively. The distribution of the survey points is shown in Figure 2. There are a total of 912 

ground survey points that cover 393 crop parcels. For most parcels, more than two points were surveyed 

in each parcel. Non-vegetation types such as buildings, road, and shadow were visually interpreted based 

on the 1-m spatial resolution VHR image for classifier training and classification accuracy assessment. 

Details of the “ground truth” data are listed in Table 1. Reference polygons to be used in image segmentation 

accuracy assessment were plotted according to the field survey points. The 122 reference polygons were 

chosen for the image segmentation accuracy assessment and optimal segmentation parameter selection. 
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Table 1. Details of the ground truth data used for classifier training and classification 

accuracy assessment. 

Assignment 

Number of Ground Investigated Points (912 in Total) 
Number of Visually Interpreted 

Points (270 in Total) 

Maize Orchard
Shelter 

Forest 
Leek Lettuce Cauliflower Nursery Potato Watermelon Pepper Buildings Road Shadow 

Parcels 51 43 42 31 26 41 35 40 41 43 35 26 46 

Classification  

Training 
68 64 40 70 50 78 44 80 60 54 58 48 74 

Accuracy Assessment 34 32 20 35 25 39 22 40 30 27 29 24 37 

Total 102 96 60 105 75 117 66 120 90 81 87 72 111 

 

Figure 2. Locations of field survey parcels and reference objects that were used in our study. 

The yellow stars are the locations of field survey parcels. The blue polygons are reference 

objects for image segmentation accuracy assessment. 

3. Methodology 

In this study, we employed airborne hyperspectral and LiDAR data for object-based crop species 

classification. This object-based crop classification study consisted of four steps: (1) image features 

extraction from hyperspectral data and LiDAR data for image segmentation; (2) image segmentation for 

imagery object generation; (3) object feature extraction and selection for object-based crop species 

classification; and (4) object-based classification using the non-parametric machine learning 
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classification algorithm support vector machine (SVM). As is shown in Figure 3, the data were first 

geometrically co-registered to minimize the classification uncertainty that is induced by geometric error 

between different data sources. The hyperspectral data were transformed using the MNF transformation 

to extract spectral features. The DSM and DEM data derived from the LiDAR point-cloud data were 

used to build the CHM data, which would be applied in the image segmentation and classification 

process. Different data combination schemes were tested for image segmentation. We provided a novel 

image segmentation assessment method for the optimum segmentation result and optimal segmentation 

parameter selection. When the image objects were built, object feature extraction was conducted on each 

data source to extract features, including spectral, object texture, object geometrical features, and crop 

height. In the classification process, the kernel-based SVM machine learning classifier was employed to 

classify crop species using the features that were extracted. Finally, an accuracy assessment was 

performed with the support of the ground survey data. 

 

Figure 3. Flowchart of crop species classification procedure. 

3.1. Image Feature Extraction 

The features that were extracted from the hyperspectral images and LiDAR data were used in both 

image segmentation and crop species classification procedure. 

Hyperspectral imagery was considered to be potential for crop species classification due to its high 

spectral resolution [6,33]. However, the high dimensionality of the hyperspectral data will cause Hughe’s 

phenomenon in the classification process [34]. Statistical analysis revealed that many of the 

hyperspectral imagery bands are highly correlated [4,35,36], which means that it is necessary to perform 
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a dimension reduction process on the hyperspectral imagery [31]. The MNF transformation algorithm 

was widely used in hyperspectral data feature extraction [4,10,12,37,38]. Studies showed that MNF-

extracted features performed better in hyperspectral data-based image segmentation [26]. Thus, the MNF 

feature extraction method was used to extract the most informative spectral features of the hyperspectral 

data in this study. The first 10 layers of the MNF transformation were selected because the eigenvalues 

of the MNF transformation revealed that they accounted for more than 94% of the total information. 

The problem of shadowing is especially significant in high-resolution imaging [39,40]. The spatial 

resolution of the hyperspectral data was high up to 1 m; elevated plants such as trees had shadows that 

should be considered in the classification process. Although it is remarkably difficult to interpret the 

shadowed area in an image because of the reduction or total loss of spectral information on these shaded 

objects [39], we found that the PRI (Photochemical Reflectance Index) was effective for shadow 

detection in the hyperspectral images. PRI was calculated using Equation (1) [41]: 
528 567

528 567

R R
PRI

R R





 (1) 

where R528 and R567 are the bands that centered at 528 nm and 567 nm, respectively. After several tests 

using different thresholds, an optimal PRI threshold of 0 was determined. The areas where PRI values 

were greater than 0 were labeled as shadow. 

To capture the crop height differences of different crop species, high-density point-cloud LiDAR data 

were employed to generate the third-dimensional structure of the crop canopy. The DSM and DEM data 

derived from the LiDAR point-clouds that were provided by the HiWATER project were used to 

calculate the CHM. CHM was calculated as the difference between the DSM and DEM. The CHM map 

of the study area is shown in Figure 4. 

 

Figure 4. CHM map of the study area. 
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3.2. Image Segmentation and Segmentation Accuracy Assessment 

In an object-based classification, the image segmentation accuracy would significantly influence the 

classification accuracy [19,42]. Segments that match the reference objects better would produce higher 

classification accuracies. Under-segmentation refers to the case in which a segment contains parts that 

belong to different regions and should be split. In the object-based classification, the under-segmented object 

is labeled as a unique type, so the under-segmentation would have a negative impact on the classification 

results [16]. We employed the most widely used multi-resolution segmentation method (FNEA, Fractal 

Net Evolution Approach) [43] to generate image objects. FNEA is a bottom-up region-merging 

algorithm, which will merge smaller neighboring objects (it starts with one-pixel objects) into larger 

segments until the user-defined heterogeneity thresholds are exceeded. The three threshold parameters 

are defined through both spectral and shape percentage as follows: scale, color (spectral properties), and 

shape (smoothness and compactness). FNEA is a scale-dependent segmentation algorithm, and the quality 

of the segmentation and overall object-based classification are largely dependent on the scale of the 

segmentation [44]. 

Appropriate segmentation parameters are crucial for achieving an optimal image segmentation  

result [20,45]. To obtain an optimal image segmentation result, researchers have explored a couple of 

indicators for optimal parameter identification [24,45,46]. However, there has been no effective method 

of obtaining the optimum segmentation result automatically so far. We proposed a segmentation 

accuracy feedback process to select the optimum FNEA segmentation parameters and segmentation 

results. The procedure is as follows: (1) define the changing ranges of each parameter and the increments 

in every iteration for every parameter (e.g., scale: 5 to 100 with an increment of 5 each time; 

compactness: 0.05 to 1 with an increment of 0.05; shape: 0.05 to 1 with an increment of 0.05); (2) 

segment the images with each parameter combination (20 × 20 × 20 segmentations); and (3) assess the 

segmentation accuracy of each result to select the most accurate result for the whole iteration procedure. 

For this process, the key step is the assessment of the image segmentation accuracy. 

There are many methods for image segmentation accuracy assessment [47]. In general, these methods 

can be divided into two categories. The first is based on the statistical characteristics of the image object 

values. The second is based on the reference objects. Although both of these methods can quantitatively 

evaluate the segmentation accuracy, the reference-based method was considered to be more objective [48]. 

Hence, we followed the reference (ground truth)-based method presented by [16,48,49], in which the 

segmentation accuracy was measured by the overlapped regions and the distances between the reference 

polygons and segmented objects. Unlike the existing reference-based methods, in which both the area 

and position discrepancy are considered [16,42], we use the area discrepancy as the only standard to 

evaluate the segmentation. We did not use the position discrepancy index because the reference polygons 

and the segmentation results were both under the same georeference system; the area discrepancy would 

mainly reflect the positional disagreement. To describe the difference between the reference polygons 

and the segment results, we defined accurate segmentation (AS), over-segmentation (OS), and under-

segmentation (US) as follows: 

(1) As shown in Figure 5a–c, there are multiple segmented objects that have overlapped regions with 

the same reference polygon. We define a reference polygon as Over-Segmented (OS) if one of 

the following three conditions holds: (a) among the overlapped regions, there are more than one 
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of the overlapped regions that are greater than 10% of the reference polygon’s area; (b) each of 

the overlapped regions is less than (or equal to) 10% of the reference polygon’s area, but the total 

area of the overlapped regions is more than 90% of the reference polygon’s area, as shown in 

Figure 5b; (c) among the overlapped regions, there is only one overlapped region that is greater 

than 10% of the reference polygon’s area, but less than 90% of the reference polygon’s area, as 

shown in Figure 5c. 

(2) As shown in Figure 5d, for each of the reference polygons, there could be one (or more) 

segmented object(s) that have overlapped region(s) with the same reference polygon. We define 

the reference polygon as Under-Segmented (US) if the following condition holds: for the 

overlapped region(s), if there is an overlapped region that is greater than 90% of the reference 

polygon’s area, but smaller than 90% of the segmented object’s area; 

(3) As shown in Figure 5e, for each of the reference polygons, there could be one (or more) 

segmented object(s) that have overlapped region(s) with the same reference polygon. We define 

the reference polygon as Accurate-Segmented (AS) if the following condition holds: for the 

overlapped region(s), if there is an overlapped region that is both greater than 90% but less than 

110% of the reference polygon’s area and greater than 90% of the segmented object’s area. 

 

Figure 5. Illustrations of Over-Segmented (a–c), Under-Segmented (d), and  

Accurate-Segmented (e) objects. In (a), more than three Overlapped Regions are greater than 

10% of the Reference Polygon; in (b), there are 11 Overlapped Regions, but each of them is 

less than 10% of the Reference polygon’s area; under condition (c), only one Overlapped 

Region is greater than 10% of the Reference Polygon’s area, but the region is less than 90% 

of the Reference Polygon’s area. In (d), only one Overlapped Region is greater than 90% of 

the Reference Polygon’s area, but the Overlapped Region is less than 90% of the segmented 

object’s area (image object a in (d)). In (e), only one Overlapped Region is both greater than 

90% of the Reference Polygon’s area and 90% of the segmented object’s area (image object 

a in (e)). 
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For the entire set of image segmentation results, we define OSR (over-segmentation rate), USR  

(under-segmentation rate), and ASR (accurate segmentation rate) to assess the image segmentation 

accuracy. The OSR, USR, and ASR are defined in Equations (2)–(4): 

1

( )
100%

( )

NO

i
i

Area OR
OSR

Area R
 


 (2) 

1

( )
100%

( )

NU

i
i

Area UR
USR

Area R
 


 (3) 

1

( )
100%

( )

NA

i
i

Area AR
ASR

Area R
 


 (4) 

where NO, NU, and NA denote the number of Over-Segmented polygons, Under-Segmented polygons, 

and Accurate-Segmented polygons, respectively; Area(R) is the overall area of the reference polygons, 

Area(ORi) is the area of the ith Over-Segmented polygon; and Area(URi) is the area of the ith Under-

Segmented polygon. The segmentation result with the largest ASR will be selected as the optimum 

segmentation result, and the corresponding segmentation parameters will be selected as the optimum 

segmentation parameters. The corresponding OSR and USR will also be obtained, to be used to quantify 

the segmentation errors. 

3.3. Object Feature Extraction 

3.3.1. Image Object Crop Height Feature Extraction 

The mean value of an object is one of the most important statistical parameters for describing the 

feature of an image object. However, due to the intensive heterogeneity of a high spatial resolution 

image, the directly calculated image object CHM mean value might not represent its dominating crop 

type’s height anymore. For example, for orchard and watermelon image objects, as shown in Figure 6, 

the pixel values represent both the plants’ (fruit trees, watermelon) and their background’s (e.g., weeds 

or bare soil) height. A directly calculated mean value could be confusing because the mean height value 

could represent neither of the two types of crops, although the dominating type was the crop plants. 

Furthermore, this average height value could be close to another type of crop’s mean height value. This 

arrangement will make these two distinguishable crop types’ object mean height values similar. As 

shown in Figure 6, some of the CHM object pixel values actually represent the height of the background, 

which indicates that the directly computed image object mean value does not actually represent the 

object’s dominating crop height values. Therefore, the CHM object data should be pre-processed to 

ensure that the CHM image object mean value represents its dominating crop’s height. 
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Figure 6. The distribution of the crop CHM value and background in an image object (a) 

Orchard image object, (b) CHM distribution in orchard image object; (c) Watermelon image 

object, (d) CHM distribution in watermelon image object. 

To make the objects’ CHM mean values represent their dominating crop’s average height, we propose 

a pre-process to eliminate the background values when calculating the image object height mean values. 

Because field investigation showed that the minimum crop height was 0.3 m (for watermelon), we chose  

0.2 m as the threshold to eliminate the background values of CHM. For each image object, a CHM value 

of greater than 0.2 m was considered to be background value and was removed when calculating the 

object’s mean CHM value. The results before and after the pre-processing are shown in Figure 7. 

In the pre-processed CHM data, we randomly chose 10 objects for each of the 10 crop species 

referenced the ground investigation data. Each of the crop heights was calculated based on the 10 objects 

height values; the results are shown in Figure 8. Crops of different species have a distinguishable plant 

height difference. Taller plants like shelter forest, nursery, orchard, and maize have more height differences. 
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Figure 7. The frequency distributions and the means of the CHM value of image objects 

before and after pre-processing. (Left): before pre-processing; (Right): after pre-processing. 

The red dotted lines show the mean values of their corresponding CHM image objects. 

 

Figure 8. Crop height box plot of the 10 crop species. 
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3.3.2. Extraction of the Image Object Texture Features 

Because the crops are always cultivated along a certain direction or followed some given spatial 

pattern, artificial planted crops have strong arrangement characteristics. This planting structure could be 

captured by the remote sensing imageries as an image texture feature. Image texture features can provide 

valuable discriminating spatial characteristics in an object-based classification [5,50,51]. In this study, 

we employed the statistical texture calculating matrix, gray-level co-occurrence matrix (GLCM) [52], to 

extract the object-level textural features. The image features that we applied were from the LiDAR-derived 

CHM data because the CHM data has more obvious texture features than the hyperspectral images. To 

match the scale of the ground crop plant structure, a window size of 3 × 3 (3 m × 3 m on the ground) 

was chosen to calculate the second-order texture measures (standard deviation, angular second moment, 

contrast, dissimilarity, and entropy). The texture features are summarized in Table 2. 

3.3.3. Geometric Feature Extraction of Image Objects 

Image objects of man-made constructions or artificial cultivation areas always have distinguishable 

geometric shapes. The parcels of artificial cultivation such as leek, maize, and watermelon are mostly 

planted in rectangular areas, but natural vegetation always has irregular borders. Man-made 

constructions such as roads are in lines and have a large length/width ratio. Thus, we employed three 

geometric indicators: shape index, length/width ratio, and rectangular fit [53]. The shape index describes 

the smoothness of an image object border. The smoother the border of an image object is, the lower its 

shape index. This index is calculated from the border length feature of the image object divided by four 

times the square root of its area. The rectangular fit feature describes how well an image object fits into 

a rectangle of similar size and proportions—while 0 indicates no fit, 1 indicates a completely fitting 

image object. We normalized the results of the shape index and length/width ratio to be between 0 and 

1 to make the results comparable. For a detailed definition and explanation of shape index, length/width 

ratio, and rectangular fit, readers are referred to [50,53]. 

Table 2. Second-order textural measures of LiDAR-derived CHM image objects, calculated 

using GLCM. 

Statistic Feature Expression Description 

Standard deviation 
1

2
, ,

, 0

( , )
N

i j i j
i j

P i j u





 Measures the dispersion of the values around the mean, 

similar to contrast or dissimilarity. 

GLCM angular second 

moment 

1
2

,
, 0

( )
N

i j
i j

P





 
High when the GLCM is locally homogeneous. 

GLCM contrast 
1

2
,

, 0

( )
N

i j
i j

P i j




 A measure of the amount of local variation in the image. 

GLCM dissimilarity 
1

,
, 0

N

i j
i j

P i j





 Similar to contrast, but increases linearly. High if the local 

region has a high contrast. 

GLCM entropy 
1

, ,
, 0

( ln )
N

i j i j
i j

P P





 The value for entropy is high if the elements of GLCM are 

distributed equally. It is low if the elements are close to 

either 0 or 1. 

Parameters: i is the row number; j is the column number; Pi,j is the normalized value in cell i,j; N is the number of rows  

or columns. 
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Figure 9. Image geometric features: (a) the segmentation result of the remote sensing 

imagery; (b) the shape index feature; (c) the length/width ratio; and (d) the rectangular fit 

feature. 

3.4. Classification 

The SVM (Support vector machine) was chosen for classifying the crop species of the objects in this 

study. The data used for classification were multi-source data and had a high dimension, which means 

that parametric classifiers such as Maximum Likelihood Classifiers would be inadequate. Thus, the non-

parametric distribution-free classifier SVM was applied. The SVM classifier is based on statistical 

machine learning theory, which determines the location of decision boundaries that produce an optimal 

separation of classes. The training of the classifier is relatively easy even with limited training samples, 

and it has offered state-of-the-art performance on ill-posed classification problems that are associated 

with high-dimensional features [39,54,55]. 

Considering the high dimensionality and complexity of the derived classification features, a radial 

basis function (RBF) was selected to reduce the computational burden caused by the high dimensions. 

The training of the SVM classifier involves the tuning of two parameters: cost of constraints violation 

(C) and sigma (σ). Larger values of C can lead to an over-fitted model, whereas σ controls the shape of 

the hyperplane [12]. Different combinations of features were tested for classification to obtain the 

optimal classification result. Training samples were derived from the field investigated GCP (Ground 

Control Point) and crop species data. A random selection of two-thirds of the training parcels (608 points 

covering 262 crop parcels and 180 points of non-vegetation) were used as training data for the  

SVM classification. 
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3.5. Classification Accuracy Assessment 

To evaluate the effectiveness of the integration of hyperspectral data and LiDAR in crop species 

classification, confusion matrix analysis was used. The confusion matrix provides the Overall Accuracy 

(OA), which indicates the percentage of correctly classified samples; the User’s Accuracy (UA), which 

indicates how well training-set samples were classified; and the Producer’s Accuracy (PA), which 

indicates the probability that a classified sample actually represents that category in reality [56]. For each 

of the classification results, one-third of the field surveyed parcels (304 points covering 131 crop parcels 

and 90 points of non-vegetation types) that were not used in the classifier training process were used as 

“ground truth” for the confusion matrix analysis. 

The Kappa analysis and Kappa Z-test (Equations (5) and (6)) were used to assess the overall 

performances of the classifications with different features. The Kappa Z-test of two classification results 

will determine which classification result is better [57]. At the 95% confidence level, the absolute critical 

value would be 1.96, which indicates that the classification is significantly better than a random result [56]. 

1

1( )

k
Z

Var k
  (5)

1 2

1 2( ) Var( )

k k
Z

Var k k





 (6)

where k1 and k2 are the two Kappa values, Var(k1) and Var(k2)are their variances. 

4. Results and Discussion 

4.1. Segmentations of Different Image Feature Integrations 

Three schemes of image segmentation were conducted using the FNEA algorithm, to achieve the 

optimum image segmentation result (see Table 3). For the VHR (very high resolution)-based 

segmentation scheme, the VHR image was a false color composition of three hyperspectral imagery 

bands (R: band centered at 826 nm, G: band centered at 683 nm, B: band centered at 540 nm); in the 

VHR/CHM-based segmentation, the CHM data that were derived from LiDAR data were expected to 

provide differentiation between different crop species; and for the CHM/MNF-based segmentation, the 

MNF feature was generated by hyperspectral data to provide spectral differences for different crop 

species. For each of the segmentation schemes, the weight of the CHM layer was assigned to be 30, to 

emphasize the information in the third dimension, while the weights of the other layers were assigned to 

be 1. The scale parameters ranged from 5 to 80. The shape parameters ranged from 0.05 to 0.45, and the 

compactness parameters ranged from 0.1 to 0.9 (see Table 3). 

Table 3. Segmentation parameters for each of the integration schemes. 

Segmentation Scheme 
Range Increment 

Scale Shape Compactness Scale Shape Compactness 

VHR-based segmentation 5–80 0.05–0.45 0.1–0.9 5 0.05 0.1 

VHR/CHM-based segmentation 5–80 0.05–0.45 0.1–0.9 5 0.05 0.1 

MNF/CHM-based segmentation 5–80 0.05–0.45 0.1–0.9 5 0.05 0.1 
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The segmentation accuracy of the three segmentation schemes’ results were all evaluated using the 

reference polygons followed by the segmentation accuracy assessment method given in Section 3.2. The 

reference polygons used in the segmentation accuracy assessment process were the polygons that were 

plotted according to the field survey points (see Figure 2). 

Figure 10. Image segmentation parameters and their corresponding segmentation accuracies. 

(a–c) are segmentation parameters of VHR/CHM data integration; (d–f) are segmentation 

parameters of MNF/CHM data integration; and (g–i) are segmentation parameters of VHR 

data. In (a), (d), and (g), the best segmentation result will be obtained within the shape 

parameter range, and the corresponding shape parameter will be chosen as the optimum shape 

parameter for its segmentation scheme. Similarly, the optimum compactness and scale 

parameters will be achieved from the results shown in (b), (e), (h) and (c), (f), (i). 

The segmentation accuracies of all of the segmentation schemes are shown in Figure 10. Within the 

ranges of the segmentation parameters listed in Table 3, an optimum segmentation result was obtained 

for each segmentation scheme, and the corresponding parameters were chosen as optimum segmentation 

parameters. Take the VHR/CHM-based segmentation for example: when choosing the optimum shape 

parameter, we first chose the scale and compactness parameters at random (15 and 0.8, respectively). 

Then, the shape parameter changed from 0.05 to 0.45 with an increment of 0.05, and we obtained nine 
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segmentation results. The nine segmentation results’ accuracies were assessed, and the results are as 

shown in Figure 10a. The best segmentation result was 84.8%, and the corresponding shape parameter 

0.05 was chosen as the optimum shape parameter for the VHR/CHM segmentation scheme. Similarly, 

each optimum segmentation parameter of the segmentation schemes was chosen by following this 

process. The optimum segmentation parameters and the segmentation results of each segmentation 

scheme are summarized in Table 4. 

Table 4. Optimum Segmentation parameters and their corresponding results of the different 

segmentation feature integration schemes. 

Segmentation Scheme 
Optimum Segmentation Parameters Segmentation Accuracy (%) 

Scale Shape Compactness OSR USR ASR 

VHR-based segmentation 30 0.2 0.7 3.20 24 72.80 

VHR/CHM-based segmentation 15 0.05 0.8 6.40 8.80 84.80 

MNF/CHM-based segmentation 10 0.05 0.3 17.60 20.80 61.60 

Table 4 shows that the optimum segmentation accuracies of VHR/CHM outperform the other two 

segmentation schemes with an ASR of 84.8%, OSR of 6.4%, and USR of 8.8%. The optimum 

segmentation accuracies of VHR data alone is 72.8%, 3.2%, and 24% for ASR, OSR, and USR, 

respectively. The optimum segmentation accuracies of the MNF/CHM data combination are 61.6%, 

17.6%, and 20.8% for ASR, OSR, and USR, respectively. The VHR/CHM-based segmentation achieved 

an ASR 12% higher than that of the VHR-based segmentation and 23.2% higher than that of the 

VHR/CHM-based segmentation. The USR was 8.8% for VHR/CHM-based segmentation, which was 

lower than the other two segmentation schemes. 

The image segmentation results of the three segmentation schemes are shown in Figure 11; the 

VHR/CHM-based image segmentation outperformed the VHR imagery in partitioning vegetation 

species (such as tree crowns and orchards), which have significant height differences. For the MNF-

transformed imagery, the edge of a crop field became somehow fuzzier than in the original image. Thus, 

the MNF/CHM-based segmentation had a higher under-segmentation rate. Because under-segmentation 

was considered to have a negative impact on object-based classification [44], the VHR/CHM-based 

segmentation result with the lowest under-segmentation rate was accepted and used in the following 

classification procedures. 

 
Figure 11. Cont. 
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Figure 11. Image segmentation results of the three segmentation schemes. (a) VHR image 

of the sub-study area; (b–d) show the VHR-, VHR/CHM-, and MNF/CHM-based 

segmentation results. 

4.2. Classification Accuracies of Different Data Integrations 

The shaded area that was extracted using the PRI index is displayed in Figure 12. The visually 

interpreted shadowed areas were used to evaluate the PRI-based shadow area extraction accuracy. The 

results revealed that the accuracy of the extracted shadow area using the hyperspectral-derived PRI is up 

to 97.66%. The shadow area that was extracted by using PRI was applied as a mask to extract the 

shadowed area before the classification procedure. 

 

Figure 12. The PRI extracted shadow area: (a) image with shaded areas; (b) extracted 

shadow area (in red polygons). 

Classifications of crop species with five different feature integrations were conducted using the SVM 

classifier. The data combination schemes are shown in Table 5. The classification with VHR and MNF 

data was taken as the benchmark to comparatively evaluate the performances of the data combination 

schemes for crop species classification. The results show that the combination of hyperspectral  

MNF-transformed features and LiDAR-derived CHM data obtained a more accurate classification result. 

As shown in Figure 13, classification based only on VHR data resulted in a lower overall classification 

accuracy than its combination with CHM data, and more than 8% of the overall classification accuracy 



Remote Sens. 2015, 7 943 

 

increase was obtained when VHR was integrated with CHM. The overall classification accuracy of the 

MNF/CHM combination is 9.16% higher than that of the MNF classification. By incorporating the 

GLCM and the geometric features, the overall classification accuracy increased more than 2% over the 

MNF/CHM-based classification. 

Table 5. Summary of classification schemes. 

Feature Integration Feature Description 

VHR 
With a high spatial resolution of 1 m, four bands were derived from hyperspectral 

data (bands centered at 454.4 nm, 540.4 nm, 697.7 nm, and 826.3 nm) 

VHR/CHM CHM was derived from LiDAR data. 

MNF MNF features were the first 10 components of MNF transformed hyperspectral data. 

MNF/CHM MNF features combined with CHM data. 

MNF/CHM/GLCM/Geometric 

GLCM features including object-level standard deviation, angular second moment, 

contrast, dissimilarity, and entropy; geometric features including image object shape 

index, length/width ratio, and rectangular fit indices. 

 

Figure 13. Overall classification accuracies of different data integrations. 

The LiDAR-derived CHM data made a substantial contribution to the classification accuracy 

increment of crop species with significant crop height differences. As shown in Table 6, compared with 

the VHR-based classification, the VHR/CHM-based classification accuracy increments of taller plants 

(shelter forest, orchards, nursery, and maize) were greater than those of the shorter crops. The 

VHR/CHM-based classification achieved an overall classification accuracy of 83.21%, with a kappa 

value of 0.8, which is 8.15% higher than the VHR-based classification (the overall classification 

accuracy is 75.06%, with a kappa of 0.7). The increments of the Producer’s and User’s classification 

accuracies are 15.55% and 15.55% for shelter forest, 34.79% and 19.37% for orchards, 0% and −20% 

for nursery, and 7.48% and 8.95% for maize. Similar results were achieved with the MNF/CHM- and 

MNF-based classification. 
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However, shorter plants such as cauliflower, leek, lecture, maize, pepper, potato, and watermelon had 

no accuracy increment or a smaller accuracy increment between VHR/CHM- and VHR-based 

classifications: the maximum Producer’s and User’s classification accuracy increases are 11.76% for 

pepper and 8.95% for maize. Small classification accuracy increments for shorter crops arose mainly 

because the vertical resolution of the LiDAR data is 20 cm, which is less than the plant height differences 

in short plant species (such as cauliflower, leek, pepper, lettuce, potato, and watermelon). There are 

fewer accuracy increments for shorter crops than the taller crops between the MNF/CHM- and MNF-

based classification, as shown in Table 6. 

Compared to the VHR/CHM-based classification, the classification accuracy increased 5% when the 

MNF features were incorporated. The Z-test between the kappa statistics of the VHR/CHM- and 

MNF/CHM-based classification results was 2.89, which means that the result of the kappa statistic of 

the latter is significantly larger than that of the former. The overall accuracy of the MNF/CHM-based 

classification is 88.30%, with a kappa of 0.86. Crops that have an accuracy increment include leek, 

maize, nursery, orchard, potato, and shelter forest. This accuracy increment is mainly due to the addition 

of the MNF-transformed hyperspectral data. 

Table 6. Plant heights and classification accuracy increments from VHR to VHR/CHM, and 

from MNF to MNF/CHM-based classifications. 

Crop Species 

Crop 

Height 

(cm) 

Classification Accuracy Increment  

from VHR to VHR/CHM 

Classification Accuracy Increment  

from MNF to MNF/CHM 

Producer’s Accuracy (%) User’s Accuracy (%) Producer’s Accuracy (%) User’s Accuracy (%) 

Orchard 369 34.79 19.37 24.54 20.65 

Shelter Forest 1685 15.55 15.55 27.78 14.91 

Nursery 356 0 −20 −3.47 −20 

Maize 212 7.48 8.95 5.76 11.17 

Leek 34 −10 1.32 2.55 −3.02 

Cauliflower 52 0 −3.7 0.05 −3.7 

Pepper 56 11.76 7.69 7.22 16.08 

Lettuce 37 0 0 −5.75 0 

Potato 54 0 7.14 −5.96 7.51 

Watermelon 30 0 0 0 9.42 

Buildings 412 5.83 0 0 20 

Road 0 11.11 5.56 51.99 −10.26 

Shadow 0 0 0 −28.17 2.53 

The classification accuracy assessment results of the five different classification schemes are shown in 

Table 7: the overall classification accuracy was 90.33% with a kappa value of 0.89; both the producer’s 

and user’s accuracy of watermelon are 100%. The nursery has the lowest classification, with a producer’s 

accuracy of 66.67% and a user’s accuracy of 80%, respectively. The producer’s and user’s classifications 

of maize, the most widely distributed crop type in our study area, are 100% and 85.6%, respectively. The 

classification accuracies of most of the crop species are above 80% for the producer’s and user’s accuracy. 

The result of the MNF/CHM/GLCM/ Geo-based classification is depicted in Figure 14. 
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Table 7. Summary of classification accuracies of the different classification schemes. 

Crop Species 
VHR VHR/CHM MNF MNF/CHM MNF/CHM/GLCM/Geo 

PA UA PA UA PA UA PA UA PA UA 

Cauliflower 96.3 100 96.3 96.3 96.3 96.3 96.3 96.3 94.44 94.44 

Leek 86.67 83.87 76.67 85.19 76.67 92 80 77.42 80 80 

Lettuce 100 100 100 100 100 100 87.5 100 90 100 

Maize 92.52 59.64 100 68.59 100 69.93 100 82.31 100 84.52 

Nursery 66.67 100 66.67 80 83.33 71.43 66.67 80 60 75 

Orchard 41.3 70.37 76.09 89.74 80.43 92.5 73.91 87.18 71.88 88.46 

Pepper 70.59 92.31 82.35 100 70.59 85.71 82.35 100 81.82 100 

Potato 76.47 92.86 76.47 100 82.35 100 70.59 100 72.73 100 

Shelter forest 75.56 75.56 91.11 91.11 91.11 93.18 88.89 90.91 86.67 96.3 

Watermelon 100 93.33 100 93.33 100 93.33 100 100 100 100 

Buildings 100 87.5 100 93.33 100 82.35 100 100 100 100 

Road 22.22 88.89 27.78 100 22.22 88.89 97.22 89.74 95.83 88.46 

Shadow 55.56 90.91 55.56 90.91 61.11 91.67 50 90 100 92.3 

OA 75.06 83.21 83.46 88.3 90.33 

Kappa 0.7 0.8 0.81 0.86 0.89 

 

Figure 14. The crop species map classified using the combination of 

MNF/CHM/GLCM/Geometric features in the object-based classification paradigm. 
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5. Conclusions 

In this paper, we proposed a framework for mapping crop species by combining hyperspectral and 

LiDAR data in an object-based image analysis (OBIA) paradigm. To test the effectiveness of this 

framework, a study was conducted on the irrigated agricultural region in the central Heihe River Basin, 

where the landscape is fragmented and the crop planting structure is quite complex. A pre-processing 

procedure was proposed for extracting the mean crop height of the segmented image objects. The 

performances of different spectral dimension-reduced features from hyperspectral data and their 

combinations with LiDAR-derived height information in image segmentation were evaluated and 

compared. The contributions of the crop height derived by LiDAR data and the geometric and textural 

features of the image objects to the crop species’ separabilities were studied. 

We evaluated and compared the performances of different combinations of features extracted from 

hyperspectral and LiDAR data for image segmentation and image classification. The main indications 

and conclusions derived from our analysis are the following: 

(i) The framework we presented in this study for mapping crop species by combining hyperspectral 

and LiDAR data in an object-based image analysis (OBIA) paradigm is effective. This approach 

produced a good crop species classification result, with an overall accuracy of 90.33% and a 

kappa coefficient of 0.89 in our study area, where there was a spatially fragmented agricultural 

landscape and a complicated planting structure. 

(ii) The image segmentation accuracy depends heavily on the hyperspectral data dimension-

reduction method. In this case, the VHR data that was selected from the hyperspectral bands has 

higher segmentation accuracy than the MNF. Incorporating the CHM information extracted 

from high point density LiDAR data could significantly improve the segmentation accuracy of 

the VHR data. 

(iii) The height information derived from LiDAR data provided a substantial increase in the crop 

species classification accuracy. The MNF/CHM combination produced higher accuracy of crop 

species classification than VHR/CHM. 

(iv) Incorporating the textural and geometric features (i.e., the shape index, length-width ratio, and 

rectangular fit) of objects could significantly increase the crop species classification accuracy, 

which indicates that, due to its ability to provide diverse textural and geometric features, object-

based image classification is effective for crop species mapping in regions with spatially 

fragmented landscape and complicated planting structure. 

The remote sensing data used in this paper were airborne hyperspectral data with high spatial 

resolution, and LiDAR data with high density of point cloud. However, the method of crop species 

classification we presented in this paper is applicable to combining satellite hyperspectral data with 

moderate spatial resolution and LiDAR data with low cloud density for crop mapping in a large area as 

well. For future development of this study, it would be interesting to investigate the performance of 

LiDAR data combined with more features derived from hyperspectral data in both image segmentation 

and classification. Further testing of the method in a different area with other kind of crops and with 

LiDAR data of different quality should also be attempted. 
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