Remote Sens. 2015, 7(1), 905-921; doi:https://doi.org/10.3390/rs70100905
Estimation of Land Surface Temperature under Cloudy Skies Using Combined Diurnal Solar Radiation and Surface Temperature Evolution
School of Environment and Resources, Shanxi University, Taiyuan 030006, China
*
Author to whom correspondence should be addressed.
Academic Editors: Zhao-Liang Li, Richard Müller and Prasad S. Thenkabail
Received: 4 November 2014 / Accepted: 7 January 2015 / Published: 15 January 2015
(This article belongs to the Special Issue Recent Advances in Thermal Infrared Remote Sensing)
Abstract
Land surface temperature (LST) is a key parameter in the interaction of the land-atmosphere system. However, clouds affect the retrieval of LST data from thermal-infrared remote sensing data. Thus, it is important to determine a method for estimating LSTs at times when the sky is overcast. Based on a one-dimensional heat transfer equation and on the evolution of daily temperatures and net shortwave solar radiation (NSSR), a new method for estimating LSTs under cloudy skies (Tcloud) from diurnal NSSR and surface temperatures is proposed. Validation is performed against in situ measurements that were obtained at the ChangWu ecosystem experimental station in China. The results show that the root-mean-square error (RMSE) between the actual and estimated LSTs is as large as 1.23 K for cloudy data. A sensitivity analysis to the errors in the estimated LST under clear skies (Tclear) and in the estimated NSSR reveals that the RMSE of the obtained Tcloud is less than 1.5 K after adding a 0.5 K bias to the actual Tclear and 10 percent NSSR errors to the actual NSSR. Tcloud is estimated by the proposed method using Tclear and NSSR products of MSG-SEVIRI for southern Europe. The results indicate that the new algorithm is practical for retrieving the LST under cloudy sky conditions, although some uncertainty exists. Notably, the approach can only be used during the daytime due to the assumption of the variation in LST caused by variations in insolation. Further, if there are less than six Tclear observations on any given day, the method cannot be used. View Full-TextKeywords:
land surface temperature; net shortwave solar radiation; diurnal evolution; clouds; geostationary meteorological satellite
▼
Figures
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
Share & Cite This Article
MDPI and ACS Style
Zhang, X.; Pang, J.; Li, L. Estimation of Land Surface Temperature under Cloudy Skies Using Combined Diurnal Solar Radiation and Surface Temperature Evolution. Remote Sens. 2015, 7, 905-921.
Related Articles
Article Metrics
Comments
[Return to top]
Remote Sens.
EISSN 2072-4292
Published by MDPI AG, Basel, Switzerland
RSS
E-Mail Table of Contents Alert