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Abstract: As hyperspectral instruments can provide the detailed spectral information, a new 

spectral similarity method for detecting and differentiating dust from non-dust scenes using 

the Atmospheric Infrared Sounder (AIRS) observations has been developed. The detection 

is based on a pre-defined Dust Spectral Similarity Index (DSSI), which was calculated from 

the accumulated brightness temperature differences between selected 16 AIRS observation 

channels, in the thermal infrared region of 800–1250 cm−1. It has been demonstrated that 

DSSI can effectively separate the dust from non-dust by elevating dust signals. For 

underlying surface covered with dust, the DSSI tends to show values close to 1.0. However, 

the values of DSSI for clear sky surfaces or clouds (ice and water) are basically lower than 

those of dust, as their spectrums have significant differences with dust. To evaluate this new 

simple DSSI dust detection algorithm, several Asia dust events observed in northern China 

were analyzed, and the results agree favorably with those from the Moderate resolution 

Imaging Spectro radiometer (MODIS) and Cloud Aerosol LiDAR with Orthogonal 

Polarization (CALIOP) observations. 
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1. Introduction 

The occurrence of dust is a common phenomenon in arid and semi-arid regions of Northern China [1–3], 

particularly during springtime [4–8]. Airborne dusts originating from these areas are frequently transported 

over large regions in East Asia [9], producing severe air quality hazards along the transportation routes. 

Dust also plays an important role in the climate system [10,11], due to its complex direct and indirect 

effects on the state of atmosphere and the underling surface [12–19]. On the one hand, dust can directly 

reduce the surface insolation through its extinction of solar radiation, and heat the atmospheric layer by 

absorbing the solar radiation. On the other hand, it impacts the climate system indirectly by altering the 

cloud properties and precipitation. Accordingly, it is essential to accurately monitor the extent and intensity 

of dust, for the purpose of reducing or even avoiding the hazards caused by dust.  

Since the advent of satellite technology, we have been able to routinely monitor dust through a variety 

of techniques [20–22]. As dust impacts earth outgoing longwave radiances in distinct way, monitoring 

dust with its infrared spectral signature has been extensively adopted among broadband infrared (IR) 

measurements [23–35], such as the widely used “IR split windows” (11 and 12 μm channels)  

method [7,22,24,26,28,30]. However, due to the limited spectral resolution and wide channel spectral 

response, dust spectral radiances observed by broadband IR instruments show a strong dependence on 

the observational conditions [32], which often cause huge misidentification for dust scenes. For example, 

it has been reported [7,34] that water cloud often displays a similar spectrum with airborne dust in the 

split window channels. Moreover, the used tri-spectral dust detection (8.5, 11 and 12 μm channels) 

results also can be influenced by the presence of SO2, as SO2 has an absorption peek around 8.6 μm.  

Recently, high spectral resolution satellite infrared measurements have become available, such as the 

Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI). These 

sensors provide nearly 100 channels across the thermal infrared region (800–1250 cm−1), allowing us to 

monitor dust using a more accurate spectral information. Moreover, the design of narrow channel 

spectral response of hyperspectral instruments also provides us an opportunity to select more suitable 

dust observation channels (keep away from gases absorption peak). The possibility of utilizing 

hyperspectral instruments to retrieval dust from space has been discussed in the last decade. Sokolik [14] 

firstly carried out the research on the infrared hyperspectral radiative signature of mineral dust, 

concluding that the distinct ability of hyperspectral instruments for providing the detailed spectral 

information is very important in dust monitoring, since no other means of remote sensing from space are 

capable of providing such data. Gang Hong et al. [36] put their emphasis on the infrared signature of 

overlapping cirrus clouds and dust, finding that the spectral signature of the 800–1000 cm−1 region can 

be used to discriminate coexisting thin cirrus and dust scenes from those associated only with cirrus 

clouds or dust alone. By using the AIRS thermal infrared observations, Pierangelo et al. [37,38], 

DeSouza-Machado et al. [39] and Yao et al. [40] individually retrieved the dust altitude and infrared 

optical depth over different regions, and the results agree favorably with those from Ozone Monitoring 

Instrument (OMI), MODerate resolution Imaging Spectro-radiometer (MODIS), and Cloud Aerosol 

LiDAR with Orthogonal Polarization (CALIOP) observations. Gangle et al. [41] successfully developed 

a new volcanic ash detection method using their high spectral information provided by AIRS.  

As accurate dust detection results are crucially important for the properties retrieval as well as 

evaluating its impact on regional weather and climate systems, thus, the main goal of this study is to 
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exploit good discrimination of dust from non-dust scenes, by using the thermal infrared observations 

from AIRS hyperspectral measurement. The paper is organized as follows: a description of used datasets 

is given in Section 2; Section 3 outlines the physical basis and proposed new dust detection method; 

application and evaluation are performed in Section 4; finally, conclusions are presented in Section 5.  

2. Data 

2.1. AIRS  

The Atmospheric Infrared Sounder (AIRS) on board NASA’s Aqua satellite platform is a 

hyperspectral IR temperature and humidity sounder for numerical weather prediction and climate change 

studies [39]. It has 2378 infrared channels which can measure the earth outgoing radiation in the  

3.7–15.4 μm region (3.75–4.58, 6.2–8.2, 8.8–15.4 µm) with a spectral resolution of λ/△λ = 1200 and 

spatial resolution of 13.5 km (nadir field of view). The primary task of AIRS is to obtain the highly 

accurate temperature profiles within the atmosphere plus a variety of additional earth/atmosphere 

products (surface temperature, water vapor, and cloud properties). In this study, the daily Level 1B 

dataset which was downloaded from Goddard Earth Sciences Data and Information Services Center 

(GES DISC, http://disc.sci.gsfc.nasa.gov/AIRS/ data-holdings) is used.  

2.2. MODIS  

The MODerate resolution Imaging Spectro-radiometer (MODIS) shares the Aqua satellite with AIRS 

is a high spatial resolution instrument (0.25 km, 0.5 km, and 1 km) that acquires data in 36 spectral bands 

ranging from 0.41 to 14.385 μm [42]. Its Level 2 aerosol product [43] uses three different algorithms 

(Ocean, Dark Target, Deep Blue) to retrieve the ambient aerosol parameters over the oceans and the 

continents globally. The Deep Blue algorithm [21] is specially developed to retrieval aerosols, in 

particular, dust aerosol, over bright land surfaces.  Therefore, the Level 1B RGB composite image  

(R: channel 1, G: channel 4, B: channel 3) and Level 2 deep blue aerosol optical depth (AOD) product 

downloaded from the ICARE Data Center (ICARE, http://www.icare.univ-lille1.fr/drupal/) are used in 

this paper, to evaluate and analyze the accuracy of the proposed dust detection result.  

2.3. CALIOP  

The Cloud Aerosol LiDAR with Orthogonal Polarization (CALIOP) instrument on board the CALIPSO 

platform, which provides the unique measurements of the global vertical distributions of clouds and  

aerosols [39,40]. It is a two wavelength LiDAR that transmits and receives backscattered light at laser 

wavelengths of 532 nm and 1064 nm. The vertical resolutions are 30 m from the surface to 8 km altitude and 

60 m above the 8 km altitude. The minimum horizontal resolution of a single profile is 330 m, and a typical 

horizontal averaging interval is 5 km for aerosol and dust. CALIOP is a nadir only sensor which follows a 

similar ground track to AIRS (offset by 170 km from AIRS nadir). It is also a member of A-Train 

constellation, which means that measurements from AIRS and CALIOP can be easily compared to each 

other. In this paper, the Level 2 aerosol subtype data downloaded from the Atmospheric Science Data Center 

(ASDC, https://www-calipso.larc.nasa.gov/search) is used to support the analysis.  
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3. DSSI Dust Detection Method 

3.1. Physical Basis 

Targets measured by satellite in thermal infrared region mainly include clear sky surface, airborne 

dust and cloud. To accurately differentiating dust from non-dust scenes, the spectrum differences 

between them are analyzed, by using the DIScrete Ordinates Radiative Transfer (DISORT) and Line By 

Line (LBL) models, as shown in Figure 1.  

 

Figure 1. The simulated nadir-viewed spectral brightness temperatures under the conditions 

of (a) clear sky, (b) dust, (c) ice cloud and (d) water cloud. 

For the microphysical description of dust, the size distribution is assumed as accumulated mode [44] 

specified in terms of lognormal function, and its standard deviation is 2.0. The refractive indices are 

taken from dust-like [45], due to its better depiction of Asian dust optical properties [46]. Microphysical 

models of water and ice cloud are derived from LibRadtran software dataset [47]. The size distribution 

of water cloud particle is assumed as gamma function, its standard deviation is 7.0, and the refractive 

indices of water cloud are assumed as liquid water. The optical properties of ice cloud [48,49] are 

calculated from various ice crystal habits based on the in-situ horizontally averaged particle size 

distributions obtained from a variety of field campaigns in both mid-latitude and tropical locales. 

Specially, mixed-phase cloud is not considered in the current study as relationships of parameters within 

mixed-phase clouds are complicated and generally poorly correlated [50].  

(a) (b) 

(c) (d) 
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In the present radiative transfer simulation, a dust layer is assumed to be uniformly distributed in an 

altitude of 3 km with a thickness of 1 km, as many researches have reported that dust is generally located 

around 1–5 km in altitude [28,37]. The optical depth of this dust layer at an infrared wavelength (10 μm) 

is assumed to be 1.0, and the dust particle effective radius is set as 5.0 μm. The single layers of 

homogenous ice and water cloud with a thickness of 1 km are specified in an altitude of 10 km and  

1 km, respectively, as water cloud is often related to low level cloud and ice cloud usually locates at a 

higher altitude.  The particle effective radius and infrared optical depth of ice and water cloud are 

individually considered as 15.0 μm, 3.0 (ice cloud layer) and 10.0 μm, 10.0 (water cloud layer). 

Moreover, the atmospheric molecular absorption is calculated from the LBL model based on the Middle 

Latitude Winter standard atmospheric profile [51], the surface temperature and emissivity are assumed 

as 290.0 K and 1.0, respectively. All the input parameters are listed in Table.1. Particularly, it is 

important to know that, if not specified, the default input parameters are set as values listed in Table 1 

in the following forward simulation experiments, and while one or more parameters change, the others 

keep constant.   

Table 1. The default input parameters for the forward simulation. 

Parameters Dust Ice Cloud Water Cloud 

Optical Depth 1.0 3.0 10.0 

Layer Height 3.0 km 10.0 km 1.0 km 

Particle Effective Radius 5.0 μm 15.0 μm 10.0 μm 

Surface Temperature 290.0 K 

Surface Emissivity 1.0 

Atmospheric Profile Middle latitude winter atmospheric profile 

Observation Geometry Nadir-viewed 

It is interesting to see that the spectral segment of clear sky in the 800–1250 cm−1 region is essentially 

flat except for the ozone strong absorption region (1000–1060 cm−1), as shown in Figure 1a. However, 

the spectrum will change a lot in the presence of dust or cloud. More specifically, the simulated spectrum 

basically displays a “V” spectral shape which is resulted from a decreasing trend in the 800–1000 cm−1 

region and an increasing trend in the 1060–1250 cm−1 region, in the presence of dust (Figure 1b). Unlike 

the case for dust, the spectrum of ice cloud in 800–1000 cm-1 region shows an obviously positive signature, 

and the variation of spectral brightness temperatures in 1060–1250 cm−1 region is generally flat, as evident 

from Figure 1c. The spectral shape of water cloud (Figure 1d) is very similar to that of clear sky, even 

though the brightness temperatures in the 800–1000 cm−1 region are overall higher than those in the  

1060–1250 cm−1 region. In general, dust has a unique “V” spectral shape in the region of 800–1250 cm−1 

through the comparison with clear sky surfaces and clouds. This distinct spectral shape should provide 

us a reliable way to monitor it from space.  

3.2. Channel Selection 

It is well known that water vapor and ozone are the main absorption gases in the thermal infrared region. 

Consequently, the channels selected for dust monitoring should have no or low sensitivity to them. 

Furthermore, as SO2 has an absorption peak near 8.6 μm, the selected dust observation channels should 
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also avoid this particular region. Figure 2a shows the AIRS channel transmittances under the condition of 

clear sky. Specially, the channel transmittance is calculated through a high resolution monochromatic 

radiance integrated with the filter function over the bandwidth of AIRS observation channel, and the 

channel brightness temperature discussed in the following context is also calculated in this way.  

 

Figure 2. (a) The simulated nadir-viewed AIRS channel transmittances (blue line) under the 

condition of clear sky, and the selected dust observation channels (black cross) in the region 

of 800–1250 cm−1. (b) The simulated nadir-viewed spectral brightness temperatures of 

selected AIRS channels under the condition of clear sky.  

From Figure 2a, it is clear to see that there are many high transmittance channels existing in the region 

of 800–1250 cm−1 (e.g., channel transmittance greater than 0.9), which means that these channels are 

less affected by the gas absorption and can be well used to monitor the airborne dust. However, as the 

extinction abilities of dust in the adjacent channels are basically similar, consequently, the spectral shape 

of dust can be easily affected by non-dust factors if selected channels are very close to each other. 

Therefore, in order to accurately depict the unique “V” spectral shape of dust, 16 channels with different 

dust extinction abilities are selected, as the black cross marked in Figure 2a, and the detailed information 

of these channels are listed in Table 2. At last, the redundant channels with similar transmittance to the 

selected channels are removed, even though these channels also can be effectively used to monitor dust 

from space.  

Table 2. AIRS selected channels ID, wavenumber, wavelength, and channel transmittance. 

AIRS Chanel (id) Wavenumber (cm−1) Wavelength (μm) 
Transmittance  

(Middle Latitude Winter) 

526 820.07  12.19  0.92  

572 837.93  11.93  0.94  

663 868.40  11.52  0.95  

752 897.90  11.14  0.95  

 

(a) (b) 
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Table 2. Cont. 

AIRS Chanel (id) Wavenumber (cm−1) Wavelength (μm) 
Transmittance  

(Middle Latitude Winter) 

830 933.04  10.72  0.95  

879 951.66  10.51  0.94  

925 969.84  10.31  0.93  

973 988.67  10.11  0.92  

1152 1079.38  9.26  0.90  

1171 1088.88  9.18  0.92  

1186 1096.49  9.12  0.94  

1201 1104.20  9.06  0.93  

1222 1115.17  8.97  0.92  

1239 1124.20  8.90  0.93  

1254 1132.28  8.83  0.91  

1292 1231.85  8.12  0.85  

In Table 2, it is interesting to note that all the selected channels generally have a high transmittance 

except for the 1231.85 cm−1 channel. However, as it has less dust extinction compared with other 

channels, the relative changes in radiances observed in this channel can be used as a good indicator of 

dust. Figure 2b shows the simulated nadir-viewed spectral brightness temperatures of the selected 16 

dust channels under the condition of clear sky. As expected, the spectral shape of clear sky is very 

different with that of dust (“V”).   

3.3. The Description of Dust Spectral Similarity Index (DSSI) 

The primary idea of the new proposed dust detection algorithm is to use its unique “V” spectral shape 

which has been discussed in the preceding context. Firstly, the observed 16 brightness temperatures are 

divided into two sub-datasets, with eight in the negative spectral slope region (N-DS) and another eight 

in the positive spectral slope region (P-DS), as shown in Equation (1).  
526 572 663 752 830 879 925 973

820.07 837.93 868.40 897.90 933.04 951.66 896.84 988.67

1292 1254 1239 1222 1201 1186 11
1231.85 1132.28 1124.20 1115.17 1104.20 1096.49 1088.88

: , , , , , , ,

: , , , , , ,

N DS BT BT BT BT BT BT BT BT

P DS BT BT BT BT BT BT BT

−

− 71 1152
1079.38, BT

 (1)

Parameter of BT represents brightness temperature observed by selected channel, with superscript and 

subscript individually denoting the channel ID and the central wavelength.  
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Secondly, a series of brightness temperature differences are separately calculated in the two  

sub-datasets, and the results are written as two triangular matrixes (N(M) and P(M)), which are shown 

in Equation (2). 
572 663 752 830 879 925 973
526 526 526 526 526 526 526

663 752 830 879 925 973
572 572 572 572 572 572

752 830 879 925 973
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830 879
752 752 75

0

0 0

0 0 0

0 0 0 0
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(2)

In Equation (2), BTD represents brightness temperature difference, with superscript and subscript 

together indicating which two channels are used for the calculation (e.g., BTD 572 
526  means BT 526 

820.07  

minus BT572 
837.93).  

At last, matrix elements with positive value are set as 1, and the rest of them are set as 0. Then, the 

new defined Dust Spectral Similarity Index (DSSI) is calculated through Equation (3) to imply the 

spectral similarity between dust (“V” spectral signature) and the target scene. 
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(3)

In Equation (3), N(Mi,j) and P(Mi,j) represent matrix element, subscripts of i and j stand for the row and 

column number, respectively. k(k − 1)/2 is the total numbers of the calculated BTD in each matrix.  

From Equation (1), it is interesting to note that, in the presence of dust, AIRS observed channel 

brightness temperatures in both the two sub-datasets would display a decreasing trend from left to right. 

That is to say, most of the elements in the upper triangular matrixes of Equation (2) should be positive 

when dust exists.  

3.4. The Sensitivity Analysis of DSSI 

The variation trend of DSSI under the conditions of dust and non-dust is discussed in this section, as 

shown in Figures 3–5.  

Figure 3a to Figure 3e shows the dependence of the nadir-viewed infrared spectrum on the optical 

depth of dust. In addition to the preceding discussed “V” spectral signature, some other interesting 

features can be noticed. The spectral slopes in both the 800–1000 cm−1 and 1060–1250 cm−1 region are 

very sensitive to the optical depth of dust. Moreover, the overall variation patterns of the two spectral 

segments are nearly symmetric although the absolute value of the positive slope is slightly higher than 
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that of the corresponding negative slope. Figure 3f shows the variation trend of DSSI under the condition 

of dust. As expected, DSSI has an obviously positive correlation with the optical depth of dust. In fact, 

with the increase of optical depth, the spectrum of clear sky surfaces turning more like the “V” spectrum 

under the impact of dust (as evident from Figure 3a to 3e), therefore, the value of DSSI will gradually 

increase to 1.0 along with the change of the spectrum.  
 

 

Figure 3. (a–e) The simulated nadir-viewed spectral brightness temperatures of selected 

AIRS channels for five different dust optical depths (0.2, 0.5, 1.0, 2.0 and 3.0). (f) The 

variation trend of DSSI under the condition of dust. 

Like the case for dust, the spectral shape of ice cloud becomes more pronounced as the optical depth 

increases (Figure 4a to Figure 4e), which featured with a positive slope in the region of 800–1000 cm−1. 

In addition, it has been found that, with the increase of the optical depth, ice cloud gradually reveals a 

reversed spectral shape with dust (positive spectral slope in 800–1000 cm−1 region and generally 

negative spectral slope in 1060–1250 cm−1 region). Therefore, in the presence of ice cloud, the 

dependency relationship between DSSI and optical depth should completely opposite to that of dust. As 

shown in Figure 4f, it is intuitive to see that DSSI indeed shows a strong negative correlation with the 

optical depth of ice cloud, in particular, clear sky surfaces covered by thick ice cloud basically show 

DSSI values close to zero.  

The spectral variation of water cloud is also investigated, as shown from Figure 5a to Figure 5e. Not 

similar to both dust and ice cloud, the brightness temperatures of water cloud in 800–1000 cm−1 region 

gradually become higher than those in the 1060–1250 cm−1 region, and the DSSI of water cloud generally 

show a variation trend of first a decrease and then an increase, with the increase of optical depth. 

Additionally, it is important to note that the value of DSSI in the presence of ice and water cloud is 

obviously lower than that of dust, through the comparison of Figure 3f, Figure 4f and Figure 5f.  

 

(a) (b) (c) 

(d) (e) (f) 
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Figure 4. (a–e) The simulated nadir-viewed spectral brightness temperatures of selected 

AIRS channels for five different ice cloud optical depths (0.2, 0.8, 1.5, 3.0 and 5.0). (f) The 

variation trend of DSSI under the condition of ice cloud. 

 

Figure 5. (a–e) The simulated nadir-viewed spectral brightness temperatures of selected 

AIRS channels for five different water cloud optical depths (0.2, 1.0, 5.0, 10.0 and 15.0).  

(f) The variation trend of DSSI under the condition of water cloud.  

(a) (b) (c) 

(d) (e) (f) 

(a) (b) (c) 

(d) (e) (f) 
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Satellite-observed radiance in thermal infrared region is mainly composed of two parts: the radiance 

emitted from dust (or cloud) layer and that transmitted from the underlying surface. The emitted 

radiances are highly determined by their layer temperatures (height) and optical properties (refractive 

index and size distribution), while the variation of underlying surfaces will affect largely the amount of 

the transmitted radiance from surface and also the satellite observed spectral shape. Therefore, to 

evaluate their effects on DSSI, the dependence of DSSI on optical depth was simulated for different layer 

heights, size distributions, and underlying surfaces, as shown from Figure 6 to Figure 9. However, it has 

to be noted that, owing to the lack of infrared refractive index in the literature, the effect of refractive 

index on DSSI is not discussed in current study, even though optical properties also show an obvious 

dependence on the particle composition. 

 

Figure 6. The effect of layer height—h on DSSI under the conditions of (a) dust (b) ice cloud 

(c) water cloud. 

Figures 6 present an example of the simulated relationship between DSSI and optical depth with 

different dust and cloud layer heights. From Figure 6a, it is clear to see that DSSI slightly increases with 

the increase of dust layer height. This implies that high level dust can be more easily captured by the 

proposed DSSI method. However, for the cases of ice (Figure 6b) and water (Figure 6c) cloud, DSSI 

generally decreases with the increase of cloud layer height, even though the variation of ice cloud layer 

height actually has little influence on DSSI.   

 

Figure 7. The effect of particle effective radius—r on DSSI under the conditions of (a) dust 

(b) ice cloud (c) water cloud. 

(a) (b) (c) 

(a) (b) (c) 
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Figure 7 shows the relationship between DSSI and optical depth with different particle effective 

radiuses. It is evident from Figure 7a that the DSSI of dust decreases with the increase of particle effective 

radius, which indicates that coarse dust particles can weaken its particular “V” spectral shape. In contrast, 

DSSI generally increases with the increase of particle effective radius under the conditions of ice and 

water cloud (Figure 7b and 7c). These suggest that finer particles of dust and cloud can be more easily 

distinguished between each other.  

Figure 8 shows the effect of surface temperature on DSSI. In Figure 8b, it is easy to see that the DSSI for 

ice cloud is not sensitive to the surface temperature. However, when there is dust or water cloud, the variation 

of surface temperature has a great influence on DSSI, as evident from Figure 8a and 8c. Generally, the DSSI 

for dust decreases with the decrease of the underlying surface temperature. On the contrary, the DSSI for 

water cloud increases with the decrease of underlying surface temperature. This implies that underlying 

surface with low temperature would increase the difficulty in differentiating dust from water cloud.  

 

Figure 8. The effect of underlying surface temperature—T on DSSI under the conditions of 

(a) dust (b) ice cloud (c) water cloud. 

Figure 9 demonstrates the relationship between DSSI and optical depth with different surface types. 

In the present simulation, the underling surfaces are assumed as ever green needle forest, grass land and 

desert to represent the dense vegetation, semiarid and arid areas, respectively. The emissivity data are 

obtained from the LibRadtran [47] surface property dataset, which was developed by NASA CERES 

(Clouds and the Earth’s Radiant Energy System)/SARB (Surface and Atmospheric Radiation Budget) 

working group [52].  

 

Figure 9. The effect of underlying surface type on DSSI under the conditions of (a) dust (b) 

ice cloud (c) water cloud. 

(a) (b) (c) 

(a) (b) (c) 
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From Figure 9, it is intuitive to see that, the effect of surface emissivity on DSSI is not obvious over 

dense vegetation and semiarid regions. However, in the desert area, the value of DSSI is generally lower 

than that in the dense vegetation and semiarid areas. Another important point that should be noted is that 

dust can be effectively distinguished from clouds when the underlying surfaces are assumed as ever 

green needle forest (dense vegetation area) and grass land (semiarid and arid area). However, over the 

desert region, there are some overlaps between weak dust and thick water cloud in DSSI values, which 

may lead to a few misidentifications. Nevertheless, the proposed dust detection methods can be used in 

most instances, especially for dust storms.  

In conclusion, dust eventually produces a DSSI near 1.0, on the contrary, cloud and clear sky surfaces 

generally show DSSI values much lower than those of dust. Thus, based on the proceeding forward 

simulation experiments, the threshold of DSSI > 0.6 is used to discriminate dust from other scenes.  

4. Application  

For feasible analysis and robustness evaluation of this new simple dust detection algorithm, several 

strong dust activities that occurred over Northern China are analyzed in the following context. 

4.1. Case 1: 19 April 2008 Dust Event 

On 19 April 2008, a combination of dust and cloud hovered over most of the Taklimakan Desert. The 

RGB composite image captured by Aqua’s MODIS instrument is shown in Figure 10a, brown line stand 

for the track path of CALIOP. As seen in this image, the dust storm originates from the eastern 

Taklimakan Desert, blowing massive loose sand and dust particles into the atmosphere and carrying 

them to the western areas. The aerosol optical depth derived from MODIS deep blue dataset shows the 

intensity distribution of this dust event (Figure 10b).  

To evaluate the proceeding discussed dust and non-dust thermal infrared spectrums, the brightness 

temperatures of selected channels in cloudy (region A: marked by blue square in Figure 10a), dusty 

(region B: marked by red square in Figure 10a) and clear sky (region C: marked by orange square in 

Figure 10a) regions are extracted from the observations of AIRS, and the results are plotted in  

Figure 10c, 10d and 10e, respectively. Y-error bars plotted in these figures represent the standard error 

of mean (SEM) in corresponding sample regions. As expected, areas covered by dust indeed show a 

distinct “V” spectral shape. On the contrary, cloudy areas generally reveal a reversed spectrum with dust 

in this particular case. Moreover, the spectral signature of clear sky surfaces is absolutely different from 

that of dust and cloud. Another interesting point to be note is that, the spectrums that observed by AIRS 

highly correspond with the discussed forward simulation results, which not only implies the correctness 

of the preceding simulation experiments but also indicates the “V” spectral shape is the true spectral 

signature of Asian dust in the 800–1250 cm−1 region, providing us more confidence to monitor dust 

using this particular characteristic. Figure 10f displays the spatial distribution of DSSI calculated by the 

selected AIRS observation channels. Evidently, high values of DDSI are generally distributed over dusty 

areas, however, the values of DDSI over non-dusty regions are basically lower than those of dusty areas. 

This phenomenon confirms that DDSI can elevate the signal of dust in the thermal infrared observations.  
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Figure 10. 19 April, 2008 (a) MODIS RGB composite image. (b) MODIS deep blue aerosol 

optical depth. (c) AIRS observations in cloudy region. (d) AIRS observations in dusty 

region. (e) AIRS observations in clear sky region. (f) DSSI. (g) Dust detection results based 

on DSSI. (h) CALIOP aerosol subtype. 

Based on the proposed DSSI detection method, areas covered by dust are identified, as shown in 

Figure 10g. It is obvious to see that light brownish dust plumes have been clearly identified, and the 

distribution pattern of DSSI detection results seems to correlate well with that from MODIS aerosol 

optical depth. Figure 10h shows the retrieved aerosol subtype results from CALIOP backscatter data, 

yellow signals represent the dust. Compared with Figure 10g, the dust identification results from 

CALIOP also agree well with those from the proposed DSSI method along the track, and both of them 

(a) 
(b)

(c) (d) (e) 

(f) (h)

(g)
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indicate that massive airborne dust distributed between 37.13° and 46.46° in latitude. These demonstrate 

that DSSI is helpful in differentiating dust from non-dust scenes.   

4.2. Case 2: 11 May 2011 Dust Event 

On 11 May 2011, a springtime dust storm occurred over Northern China. The RGB composite image 

that captured by Aqua’s MODIS instrument is shown in Figure 11a. In this image, it is clear to see that 

dust appears as a beige blur over the landscape and coexisted with cloud form a giant swirl. As the 

MODIS deep blue aerosol optical depth shows (Figure 11b), strong dusty areas are mainly located at the 

border of Inner Mongolia.  

Figure 11c, 11d and 11e depicted the spectral brightness temperatures in cloudy (region A: marked 

by blue square in Figure 11a), dusty (region B: marked by red square in Figure 11a) and clear sky (region 

C: marked by orange square in Figure 11a) regions which were measured by selected channels of AIRS. 

The thermal infrared spectral signature of this dusty area also reveals a similar spectral shape of “V” 

with the forward simulation results that are plotted in Figure 3. Over the cloudy region, the observed 

spectrum in the 800–1000 cm−1 region is basically featured with a positive slope, which indicates that 

these areas are probably covered by the ice cloud. The observed spectral shape of clear sky surfaces also 

agrees well with that from the proceeding forward simulation experiment (depicted in Figure 2b).  

Figure 11f shows the spatial distribution of calculated DSSI. From Figure 11f, it may be deduced that 

the information about dust (red value regions) was obviously enhanced by the proposed method, and its 

DSSI values are overall higher than those from clear sky and cloudy regions. The DSSI dust identification 

results are given in Figure 11g. Through the comparison with MODIS composite image, it is easy to see 

that dusty areas were accurately extracted from cloudy and clear sky regions. Furthermore, the 

distribution pattern of retrieved MODIS deep blue aerosol optical depth is also highly consistent with 

that of DSSI dust detection results.  

The most commonly used broadband-based dust detection technique is often referred to as the “IR 

split windows” technique, which uses the negative value of brightness temperature difference between 

11 and 12 µm to infer the dust contaminated scenes. Figure 11h shows the “IR split windows” dust 

detection results based on MODIS channel 31 and 32 observations. For the sake of spatial resolution 

consistency, MODIS data were resampled to the same spatial resolution of AIRS using Inverse Distance 

Weighting (IWD) interpolation method before the “IR split windows” technique was applied. Through 

the comparison of Figure 11a, 11b, 11g and 11h, we observe that the “IR split windows” algorithm 

actually identified some of the clouds and clear sky surfaces (such as the purple circles depicted in these 

figures, pink square represents the intersection coverage part of MODIS and AIRS) as dust plumes, 

while some of these ambiguous areas can be easily distinguished between each other by using the 

proposed DSSI method based on the AIRS instruments. This finding implies that hyperspectral 

instruments have the potential ability to provide better discrimination of dust from non-dust scenes and 

hence may help to overcome some of the problems using current broadband IR measurements.  
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Figure 11. 11 May, 2011 (a) MODIS RGB composite image. (b) MODIS deep blue aerosol 

optical depth. (c) AIRS observations in cloudy region. (d) AIRS observations in dusty region. 

(e) AIRS observations in clear sky region. (f) DSSI. (g) Dust detection results based on DSSI. 

(h) Dust detection results based on “IR split windows”. 

4.3. Several Other Dust Cases 

To make a further evaluation and validation on the accuracy of the proposed DSSI dust detection 

algorithm, several other dust events that occurred in the arid and semi-arid areas of northern China are 

applied in this section.  

Figure 12 shows the selected three Asia dust storms. The images from left to right are MODIS RGB 

composite image, retrieved MODIS deep blue aerosol optical depth results and the proposed DSSI dust 

(a) 
(b)

(c) (d) (e) 

(f) 
(g) (h)
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detection results. The occurrence dates are 25 February, 2005 (Figure 12a), 1 March, 2008 (Figure 12b) 

and 22 April, 2012 (Figure 12c), respectively. It is interesting to note that, most of the brownish dusty 

regions can be accurately detected through the proposed DSSI algorithm, and the DSSI dust detection 

results correlate favorably with the retrieved MODIS aerosol optical depth in spatial distribution.  

In summary, the proposed new dust detection algorithm works very well for many dust events 

evaluated in this work, which confirms that this method is indeed useful and reliable for monitoring the 

outbreaks and dispersion of Asian dust.  

 

Figure 12. Asia dust events occurred over northern China (a) 25 February 2005;  

(b) 1 March 2008; (c) 22 April 2012. Images from left to right are MODIS RGB composite 

image, MODIS deep blue aerosol optical depth and DSSI dust detection result, respectively. 

5. Conclusions  

A new DSSI algorithm was developed to detect Asian dust using the infrared hyperspectral instrument. 

This method relies on the spectrum differences between dust and non-dust scenes in the thermal infrared 

region, which could provide us a new insight on the detection of dust. To evaluate the feasibility and 

(a) 25 February 2005 

(b) 1 March 2008

(c) 22 April 22 2012 
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robustness of the proposed DSSI dust detection method, a series of dust events observed by AIRS over 

northern China are conducted. High spatial distribution consistency between the DSSI dust detection 

results and other A-Train satellite observations (MODIS and CALIOP) were discovered, which suggests 

that the DSSI algorithm can effectively differentiating dust from cloud and clear sky surfaces. 

Furthermore, many successfully applied dust cases also reveal its potential ability to conduct operational 

dust monitoring. Particularly, the work reported here could be easily adapted for other infrared 

hyperspectral sensor applications, such as IASI. 

Although dust could be accurately extracted with the proposed method, more efforts and 

improvements still need to be pursued in the near future. Given that the spectrum of dust is highly 

dependent on the dust sources, the dust composition and optical properties over different dust active 

regions (e.g., the Sahara region of Africa, southwest desert of Australia) will be considered in subsequent 

researches, to extend the applicability of the proposed algorithm. Presently, dust detection results could 

be affected by the variation of underlying surfaces. To remove the influence of underlying surface, a 

dynamic reference background map of DSSI will be established in our next work. Also, quantitative 

assessment for dust detection results (such as, false detection and agreement) will be performed in the 

near future based on long time series AIRS datasets.   
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