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Abstract: The United States Forest Service Forest Inventory and Analysis (FIA) Program 

provides a diverse selection of data used to assess the status of the nation’s forests using 

sample locations dispersed throughout the country. Airborne laser scanning (ALS) systems 

are capable of producing accurate measurements of individual tree dimensions and also 

possess the ability to characterize forest structure in three dimensions. This study 

investigates the potential of discrete return ALS data for modeling forest aboveground 

biomass (AGBM) and gross volume (gV) at FIA plot locations in the Malheur National 

Forest, eastern Oregon utilizing three analysis levels: (1) individual subplot (r = 7.32 m);  

(2) plot, comprising four clustered subplots; and (3) hectare plot (r = 56.42 m). A 

methodology for the creation of three point cloud-based airborne LiDAR metric sets is 

presented. Models for estimating AGBM and gV based on LiDAR-derived height metrics 

were built and validated utilizing FIA estimates of AGBM and gV derived using regional 

allometric equations. Simple linear regression models based on the plot-level analysis out 
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performed subplot-level and hectare-level models, producing R2 values of 0.83 and 0.81 for 

AGBM and gV, utilizing mean height and the 90th height percentile as predictors, 

respectively. Similar results were found for multiple regression models, where plot-level 

analysis produced models with R2 values of 0.87 and 0.88 for AGBM and gV, utilizing 

multiple height percentile metrics as predictor variables. Results suggest that the current FIA 

plot design can be used with dense airborne LiDAR data to produce area-based estimates of 

AGBM and gV, and that the increased spatial scale of hectare plots may be inappropriate for 

modeling AGBM of gV unless exhaustive tree tallies are available. Overall, this study 

demonstrates that ALS data can be used to create models that describe the AGBM and gV 

of Pacific Northwest FIA plots and highlights the potential of estimates derived from ALS 

data to augment current FIA data collection procedures by providing a temporary 

intermediate estimation of AGBM and gV for plots with outdated field measurements. 

Keywords: LiDAR; forestry; modeling; Monitoring; inventory 

 

1. Introduction 

Light detection and ranging (LiDAR) is a laser-based, active remote sensing system, which collects 

ranging data utilizing the speed of light and information about the flight time of a laser pulse [1]. In this 

context, flight time refers to the time it takes for a given laser pulse to travel from a system, backscatter 

from an object, and return back to the system. A wide variety of LiDAR systems currently exist, and 

data have been successfully collected utilizing systems mounted to space-borne, aerial, and terrestrial 

(tripod or vehicle-based) platforms. 

Over the past several decades the use of LiDAR remote sensing data in forestry has seen steady 

growth. The increased use of LiDAR systems to acquire data over forested areas can be attributed to 

their ability to cover extents of local or regional scales and accurately quantify the three-dimensional 

structure of the forest. Previous studies have demonstrated the usefulness of LiDAR for: (1) Forest 

measurements [2–11]; (2) habitat analysis [12–14]; (3) estimation of forest biophysical parameters [15–27]; 

(4) change detection [23,28,29]; and (5) estimation of wild land fire parameters [30–32].  

It should be noted that the ability to acquire three-dimensional data is not unique to LiDAR remote 

sensing systems. This type of data can also be obtained by radar systems (another active remote sensing 

system) or through the use of photogrammetric techniques in conjunction with stereoscopic image pairs 

collected by airborne or satellite systems. A variety of studies have provided comparisons of LiDAR and 

radar forest measurements to ground measurements. For example, Sexton et al. [33] used linear 

regression to examine LiDAR canopy height measurements and radar canopy height measurements and 

concluded that LiDAR provided more precise results (R2 = 0.83). Hyde et al. [34] used LiDAR, synthetic 

aperture radar (SAR), and interferometric synthetic aperture radar (InSAR) to individually and 

synergistically predict AGBM for a southwestern ponderosa pine forest, and found, through individual 

comparison, that LiDAR predicted AGBM best, accounting for almost 84% of the variability. 

Airborne laser scanners (ALS) can be broadly grouped into two categories: discrete return and full 

waveform digitizers. These categories can be further specified by the type of system (profiling or 
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scanning), laser footprint size, and the number of recorded returns for each laser pulse. Previous ALS 

studies have demonstrated that both large-footprint waveform and small-footprint discrete return ALS 

data, can be used to derive measurements (e.g., tree height, crown dimensions, tree location) at the stand 

level [5,25,30,35] and plot level [8,19,36,37]. Additionally, small-footprint LiDAR is also capable of 

deriving measurements at the individual tree level [10,11,21,22,28,38–44]. These direct ALS 

measurements can then be used in conjunction with known allometric relationships or statistical analysis 

procedures to estimate parameters such as diameter at breast height (DBH), AGBM, or gross volume (gV). 

LiDAR research for forestry applications has largely focused on the development of methodologies 

to employ LiDAR data as a surrogate for various ground measurements. ALS data can be collected over 

larger areas with a reduced amount of effort compared to traditional field measurements. However, the 

high level of complexity present within many forests (e.g., large number of species and variable canopy 

densities) can complicate the retrieval of such measurements. In Norway, researchers have developed 

and implemented methods to produce measurements of interest for stand-based forest inventories, and 

were able to account for 84% to 89% of the variance when predicting stand volume [45]. A summary of 

stand-based variables of interest, study characteristics, and results from investigations by Scandinavian 

researchers are listed in [45].  

Since ALS systems collect data looking down on the forest, forest measurements other than tree 

height or crown dimensions (e.g., diameter at breast height, biomass) are typically indirectly estimated. 

Popescu [21], used regression analysis to estimate the DBH of individual trees, using the  

LiDAR-derived height and crown diameter measurements provided by TreeVaW (an individual tree 

detection software package) as independent variables in a regression analysis. Individual tree detection 

algorithms implemented in TreeVaW are described in Popescu and Wynne [46]. In traditional forestry, 

biomass estimation requires destructive sampling, or the use of species-specific [47], regional, or 

national [48] allometric equations. Allometric equations can also be applied to LiDAR data, if the 

required information is available. Popescu [21] outlined a method for obtaining individual tree AGBM 

estimates using allometric equations and estimates of individual tree DBH from ALS data. Examples of 

other studies that have also predicted AGBM using LiDAR data include [17,20,34,49]. 

The United States Forest Service (USFS) Forest Inventory and Analysis (FIA) program provides 

forest inventory measurements used to assess the status of the nation’s forests. Forest resource managers 

and researchers commonly use these measurements to estimate forest biophysical parameters such as, 

gV, AGBM, or Carbon stocks (C) at local, regional, and national scales. This direct link between data 

provider and end user makes the FIA Program the primary information provider for many of the gV 

estimates, AGBM budgets, and C budgets created in the United States. 

The collection of forest inventory data at a national level is a challenging and complex undertaking. 

Models relating ALS data to FIA parameters hold great potential to contribute to this task, by: 

(1) supplementing ground-based FIA measurements or biophysical parameter estimates with estimates 

produced from ALS data, especially in recently disturbed areas; (2) providing an increased amount of 

data for areas of interest that contain only a small number of FIA sample locations; or (3) aiding data 

collection in remote areas where challenging environmental or terrain conditions make ground-based 

measurements exceedingly dangerous, time consuming, and costly.  

The overall objective of this study is to model forest AGBM and gV utilizing LiDAR metrics from 

individual subplots, four clustered subplots (hereafter referred to as a plot), and hectare plots using 



Remote Sens. 2015, 7 232 

 

AGBM and gV estimates for individual subplots and plots calculated from ground-based FIA 

measurement data and regional allometric equations and subsequently compared to LiDAR-derived 

height percentile, height bin, and density bin metrics calculated for individual subplots, plots, and hectare 

plots. Plot AGBM and gV estimates were compared to plot and hectare plot LiDAR metrics as exhaustive 

tree tallies were not collected for the hectare plots. Since the data collected by ALS systems are capable 

of describing the three dimensional structure of the forest, they can be used to estimate forest biophysical 

parameters of interest such as AGBM and gV. Specific study objectives include: (1) development of a 

methodology to derive area-based airborne LiDAR metrics related to forest biophysical parameters for 

FIA subplots, plots, and hectare plots; (2) identification of relationships between the LiDAR metric sets 

and FIA subplot and plot estimates of forest AGBM and gV calculated using regional allometric 

equations; (3) investigation of the effectiveness of individual and multiple point cloud metrics to predict 

AGBM and gV within the context of the FIA plot design; and (4) identification of the most appropriate 

LiDAR metrics and analysis level for estimating AGBM and gV in the conditions present in the western 

forests in the US. While the remote sensing literature abounds with forestry LiDAR studies, our study 

brings novel elements that include: (1) development of an ALS-based methodology for estimating 

AGBM and gV utilizing the national forest inventory in the US, the USFS FIA plot design and ground 

measurements; (2) investigation of the effectiveness of previously developed point cloud metrics within 

the context of the FIA plot design; and (3) comparison of AGBM and gV estimates over three analysis 

scales: individual subplots (r = 7.32 m), plots (n = 4 subplots, each with r = 7.32 m), and hectare plots 

(r = 56.42 m). 

2. Materials and Methods 

2.1. Study Area 

The study areas for this project are located in the Malheur National Forest in eastern Oregon. ALS 

data were acquired for two areas, referred to as the Malheur and Camp Creek acquisitions, and cover a 

total of approximately 189,468 hectares (Figure 1). Elevation ranges from 1236 to 2593 m, with a mean 

slope of 22 degrees. The sites were selected due to availability of FIA ground measurements and recent 

ALS data, and the presence of a wide variety of forest structure and physiographic conditions. The forests 

located within the study area are composed of mostly Ponderosa pine (Pinus ponderosa), Douglas-fir 

(Pseudotsuga menziesii), western larch (Larix occidentalis), grand fir (Abies grandis), and lodgepole 

pine (Pinus contorta). 

2.2. Data 

This study utilized FIA ground crew in situ measurements and discrete return, small-footprint, 

airborne LiDAR (ALS) data. 
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Figure 1. Malheur National Forest study area in eastern Oregon with slope depicted in 

degrees. Black squares represent locations of selected Forest Inventory and Analysis plots 

field-visited between 2007 and 2009. Actual plot locations have been obscured due to 

confidentiality constraints. 

2.2.1. Forest Inventory and Analysis Data 

The USFS provided FIA data for all FIA plots within the study area (177 plots, 708 subplots, and 

more than 4400 trees). Each FIA plot contains a cluster of four circular ~0.016 hectare subplots  

(radius = 7.32 m). Subplot one is centered over the plot center for the entire FIA plot. Subplots two, 

three, and four are located 36.58 m from the center of subplot one at azimuths of 0°, 120°, and 240°, 

respectively. Until recently, the Pacific Northwest FIA region’s field plot design included, unlike other 

FIA regions, a one-hectare plot (r = 56.24 m, Figure 2). All individual trees with DBH equal or greater 

than 12.7cm are measured and recorded if they are located within the boundaries of a subplot. 

Measurements collected for each of these trees include: DBH, height, tree condition (live/dead), crown 

class (open grown, dominant, codominant, intermediate, or overtopped), species, and species group. 

Measurements for describing tree location relative to plot center (e.g., azimuth and distance) are also 

collected. While trees were measured within hectare plots, the tally was not exhaustive (a larger 
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minimum DBH threshold was employed). Tree measurements from hectare plots were not utilized in 

this study.  

 

Figure 2. The location and dimensions of the subplots (r = 7.32 m) and one-hectare  

(r = 56.42 m) plot used by the Pacific Northwest Forest Inventory and Analysis region. 

Figure not drawn to scale. 

The regional equations used to calculate individual tree AGBM and gV estimates are discussed in 

detail in [50]. AGBM estimates can be derived from gV estimates by simple linear scaling, where the 

scaling factor is the mean specific gravity for a particular species. Thus, estimates of AGBM and gV 

produced with regional equations tend to be highly correlated.  

Subplot-level estimates of total AGBM and gV were calculated by summing the AGBM and gV 

estimates for all live trees (meeting FIA measurement requirements) within each subplot. Total subplot 

AGBM and gV were then scaled to a per hectare estimates. Plot and hectare plot estimates for total 

AGBM and gV were calculated using the total AGBM and gV for all subplots within each hectare plot. 

Total AGBM and gV were then scaled to a per hectare estimate. In essence, the area from the four 

subplots is scaled up to one hectare. It is important to note that the same estimates of field-based AGBM 

and gV are utilized for the plots and hectare plots, as field data for all of the trees within hectare plots 

were not available.  

The FIA ground crew data utilized in this study (collected in 2007, 2008, and 2009) contained a total 

of 232 subplots and 58 hectare plots (Table 1). Temporal disparities between FIA ground data and the 

Subplot 1

Subplot 3Subplot 4

36.58 m

r = 7.32 m

Subplot 2

N

r = 56.42 m

Hectare plot
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ALS data utilized for this study ultimately resulted in a 67% reduction in sample size for this study. The 

33% of the data remaining was deemed conducive to a valid comparison with modeled derivatives of 

the ALS data, which were collected between 2008 and 2009. Furthermore, a total of 35 subplots and 3 

hectare plots did not contain trees meeting the FIA measurement criteria. Identified subplots and hectare 

plots were considered to be non-forested and excluded from this analysis, resulting in the use of 197 

subplots and 55 hectare plots. 

Table 1. Total number of Forest Inventory and Analysis subplots, plots, and hectare plots 

by year. 

  Sample Year 

 2009 2008 2007 2006 2005 2004 2003 2002 2001 

Subplots 36 76 120 20 80 88 104 84 100 

Plot 9 19 30 5 20 22 26 21 25 

Hectare Plots  9 19 30 5 20 22 26 21 25 

2.2.2. ALS Data 

A total of three ALS data acquisitions were flown to acquire data for the two study areas. The data 

for the Camp Creek study area were collected from 19 August 2008 to 27 August 2008. Data for the 

Malheur study area were acquired with two separate acquisition missions, the first covered the western 

half of the study area (between 19 November 2008 and 11 December 2008) and a second covering the 

eastern half (between 1 July 2009 and 5 July 2009). All data collection missions utilized two LiDAR 

instruments, a Leica ALS50 Phase II and a Leica ALS60, mounted in a single engine fixed-wing survey 

aircraft, both operating with pulse frequency of 105 kHz and capable of recording up to 4 returns per 

pulse. Post processing eliminated all returns from pulses with scan angle exceeding 14°. Analysis of the 

ALS data for both study areas shows a mean pulse density of 9 pulses per m2. Although the first data 

collection mission was performed during months where leaf-off conditions could be present, the majority 

of species within our study area do not lose their foliage during the winter months. Three hectare plots 

utilized in this study had LiDAR data acquired during both the leaf-on and leaf-off acquisitions. These 

plots were utilized to examine if major differences between LiDAR data collected during leaf-on and 

leaf-off conditions existed. Comparison of hectare plot-level metrics for these data did not identify large 

differences. For example, mean plot heights for leaf-off conditions were 7.6 m, 7.7 m, and 5.8 m. 

Corresponding mean heights from leaf-on conditions were 7.8 m, 7.8 m, and 5.9 m.  

2.3. Processing Approach 

2.3.1. Point Cloud-Based ALS Metrics 

To minimize effects from temporal discrepancies between FIA field plot visit and LiDAR acquisition 

due to tree growth, mortality, etc., ALS point cloud metrics were calculated for plots measured by FIA 

ground crews in 2007, 2008, and 2009; resulting in a total of 232 subplots and 58 hectare plots, of which 

a total of 197 subplots and 55 hectare plots were forested and utilized for this study. Considering that 

the spatial allocation of FIA plots is random, the selected plots are believed to represent the range of 
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slopes and forest conditions present in the Malheur National Forest. Tables 1 and 2 provide summaries 

of the data collection year for each subplot and the frequency of tree species in each crown class. 

Descriptive statistics for FIA measured DBH and tree height, as well as subplot and hectare plot mean 

AGBM and gV are presented in Tables 3 and 4. 

Table 2. Tree species crown class frequencies. 

    Crown Class    

Species n a Og b D c CD d I e OT f 

Abies concolor 34 0 6 19 6 3 
Abies grandis 331 1 52 111 121 46 
Juniperus occidentalis 24 0 3 12 7 2 
Larix occidentalis 79 0 23 32 23 1 
Picea engelmannii 5 0 0 3 2 0 
Pinus contorta 250 0 28 125 84 13 
Pinus monticola 1 0 1 0 0 0 
Pinus ponderosa 411 4 125 178 95 9 
Pseudotsuga menziesii 217 0 45 73 76 23 
Cercocarpus ledifolius 45 0 0 24 20 1 

a Number of trees; b Open grown crown class; c Dominant crown class; d Codominant crown class;  
e Intermediate crown class; and f Overtopped crown class. 

2.3.2. Extraction of Subplot and Hectare Plot Point Clouds 

Global positioning system (GPS) coordinates for all subplot center locations were obtained by using 

a real time differential, wide area augmentation system enabled survey-grade GPS receiver and  

post-processed with information from a base station. Plot coordinates were furnished with estimates of 

precision known to correspond to the 95th percentile three-dimensional distance threshold around the 

plot center location (Table 5). The resulting geolocation precision of plots used in this study is likely 

superior to the coordinates obtained during the 2007–2009 regular FIA field visits, when FIA field crews 

were utilizing recreational-grade GPS receivers.  

Circular plot buffers for subplots (r = 7.32 m) and hectare plots (r = 56.42 m) were generated using 

subplot center coordinates and plot center coordinates, respectively. The buffers for each cluster of four 

individual subplot comprising a plot were also merged into one file. Individual subplots, plots, and 

hectare plot point clouds were subsequently extracted from the vendor-provided LiDAR tiles utilizing 

FUSION [51] (version 3.30, Figure 3), a LiDAR viewing and analysis software suite developed by the 

USFS. Previous studies have shown that geolocation error can increase variation in ALS metrics as well 

as biophysical parameter estimates based on these metrics [52]. Frazer et al. [53] found that plot size 

could amplify or reduce the severity of geolocation error. Increased robustness of larger area plots to 

geolocation error is a direct result of the increased amount of overlap between ground and ALS data, the 

ability to capture more variability from ground measurements, and the reduction of the perimeter of the 

plot with respect to the area within the plot. The conclusions presented in these studies evidence the 

possible need to use hectare plot-level point cloud metrics (as opposed to subplot-level point cloud 

metrics) since the larger plot area should mitigate and negative effects stemming from geolocation errors. 
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Table 3. Tree species diameter at breast height and height descriptive statistics. 

      DBH (cm)    Height (m)  

Species n a Mean Min Max SD b CV(%) c Mean Min Max SD b CV(%) c

Abies concolor 34 38.2 3.3 99.1 25.8 67.5 18.8 2.7 42.1 10.9 57.8 
Abies grandis 331 27.9 2.5 97.8 18.9 67.7 15.3 1.5 42.7 8.1 53.0 
Juniperus occidentalis 24 27.3 12.7 63.5 13.9 50.8 10.4 6.1 16.2 3.2 30.5 
Larix occidentalis 79 27.2 2.5 65.8 15.5 56.9 20.8 3.0 39.6 8.8 42.4 
Picea engelmannii 5 24.4 17.8 35.8 7.5 30.8 16.9 11.6 24.1 5.0 29.7 
Pinus contorta 250 14.9 2.5 35.1 8.0 53.3 12.5 2.1 27.1 6.6 53.1 
Pinus monticola 1 NA 45.0 45.0 NA NA NA 33.5 33.5 NA NA 
Pinus ponderosa 411 38.2 2.5 111.3 24.6 64.3 18.5 1.8 42.7 10.0 54.2 
Pseudotsuga menziesii 217 28.5 2.8 108.0 21.4 75.2 16.5 2.1 41.8 8.9 53.8 
Cercocarpus ledifolius 45 21.2 4.1 120.7 16.3 77.1 5.6 1.2 7.9 1.3 23.0 

a number of trees; b standard deviation; and c coefficient of variation percentage. 

Table 4. Subplot and hectare plot descriptive statistics for mean estimated biomass and volume. Descriptive statistics for subplot and hectare 

plot aboveground biomass (AGBM) and gross volume (gV) were calculated excluding subplots and hectare plots with no Forest Inventory and 

Analysis reported ABGM or gV.  

  n a nr 
b Mean Min Max SD c CV(%) d

Subplot AGBM (Mg·ha−1) 232 197 90.30 2.09 564.35 91.02 101 
Hectare Plot AGBM (Mg·ha−1) 58 55 81.04 0.92 235.00 58.25 72 

Subplot gV (m3·ha−1) 232 197 150.04 1.56 1059.49 163.25 109 
Hectare Plot gV (m3·ha−1) 58 55 134.53 0.39 381.78 100.20 74 

a number of plots; b reduced number of plots; c standard deviation; and d coefficient of variation percentage. 
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Table 5. Descriptive statistics for the mean accuracies (m) for subplot center coordinates.  

n a Mean Min Max SD b CV(%) c 

197 1.25 0.38 3.72 0.67 54.02 
a Number of FIA subplots; b Standard deviation; and c Coefficient of variation percentage. 

 

Figure 3. Light detection and ranging (LiDAR) analysis levels. Point clouds were extracted 

for individual subplots, clusters of four subplots, and hectare plots. 

2.3.3. Calculation of Above Ground Level Elevations and Removal of Ground Points 

All point cloud metrics in this study were calculated by using above ground level (AGL) point 

elevation values computed by subtracting the digital elevation model (DEM) elevation values from the 

corresponding point elevations. The high precision, 1 m DEM provided by the ALS data vendor was 

generated using TerraScan (version 8.001) software along with extensive manual point editing. The 

vendor hired to acquire the ALS data supplied a 1 m DEM of the study area, created from the raw point 

cloud data. In an operational context, the availability of precise, vendor-provided DEMs would 

substantially expedite data processing and analysis procedures. 

2.3.4. Height Percentiles 

Height percentiles, calculated from ALS data, have been previously used to relate ALS data to forest 

biophysical parameters [18–20]. For this study, mean height, max height, and the 25th, 50th, 75th, 90th, 

and 95th height percentiles were calculated for all subplot and hectare plot point clouds. 

2.3.5. Height Bins 

Height bins were used to separate the vertical space within a subplot or hectare plot into six intervals 

([hb0-5] 0–5 m; [hb5-10] 5–10 m; [hb10-15] 10–15 m; [hb15-20] 15–20 m; [hb20-25]  

20–25 m; and [hbgt25] greater than or equal to 25 m; Figure 4). FUSION provided height bin  

outputs as the total number of points within each height bin, as well as the ratio of points in a given 

height bin to the total number of points in a given file (e.g., subplot, hectare plot). The ratio was used for 

modeling purposes since it provides a normalized measure of the number of points in each height bin for 

all plots. 
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Figure 4. Conceptual illustration of the separation of vertical space (left), and example of 

the vertical distribution and separation (by metric type) of light detection and ranging 

(LiDAR) returns in a hectare plot (right). 

 

Figure 5. Cross sectional plot of one subplot point cloud visualizing the minimum height 

thresholds for density metrics, with subfigures a through f highlighting all points above 

the minimum height thresholds of 0 m (a), 5 m (b), 10 m (c), 15 m (d), 20 m (e), and 25 

m (f), respectively.  

2.3.6. Density Metrics 

Density metrics, similar to those utilized in [45], were also calculated for each subplot and hectare 

plot. Density metrics for this study describe cumulative above-threshold point frequency, and were 

calculated using the same static height bin intervals mentioned in Section 2.3.5. The primary difference 

between the density and height bins is that all points greater than or equal to a given bin threshold (i.e., 

minimum height value) are counted, e.g., density 1 (d1) contains the count of all points with heights 
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greater than or equal to 0 m, density 2 (d2) contains the count of all points greater than or equal to  

5.0 m, etc. Counts are normalized by dividing the total number of points in a density metric by the total 

number of points within the subplot (Figures 4 and 5). The ALS data processing approach is summarized 

in Figure 6. 

 

Figure 6. Flowchart of the light detection and ranging (LiDAR) data processing approach. 

2.3.7. Regression Analysis 

Simple linear regression (SLR) models were used to examine the relationship between the  

ALS-derived point cloud metrics and the subplot-, plot-, and hectare-level (per hectare) estimates of 

AGBM and gV. Additionally, multiple regression (MR) analysis, using mixed stepwise elimination 

(based on AIC criterion [54]), was implemented with all variables listed in Table 6. Variance inflation 

factors (VIFs) were calculated to check for the presence of multicollinearity among the remaining 

predictor variables in the model. Predictor variables with VIFs greater than ten were considered an 

indicator of multicollinearity in the model [55]. 

Models were cross-validated using the prediction sum of squares (PRESS) statistic [56]. The PRESS 

statistic is a leave-one-out cross-validation method, where a model is fit using n-1 observations (where 

n is the total number of observations in the dataset). The withheld observation is then used to calculate 

a prediction error. This process is repeated until a prediction error is calculated for each observation.  

The PRESS statistic is calculated by summing the squared prediction errors. Statistics calculated for 
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each model can be compared, and the model with the lowest PRESS statistic will have the highest 

goodness of fit.  

Table 6. Selected regression variables. 

Independent Variables  
(Light Detection and Ranging Area-Based Metrics) 

Predicted Variables  
(FIA Field Measurements) 

Height Percentiles (p) AGBM (Mg·ha−1) 
p25, p50, p75, p90, p95, max, mean gV (m3·ha−1) 

Height Bins (hb)  
hb0-5, hb5-10, hb10-15, hb15-20, hb20-25, hbgt25  

Density (d)  
d1, d2, d3, d4, d5, d6  

3. Results 

Individual SLR models were created for the AGBM and gV estimates using each of the point  

cloud-based metrics calculated for the individual subplots, plots, and the hectare plots. Diagnostic plots 

from the initial SLR models confirmed the existence of heteroscedasticity, and further examination 

found the histograms of the AGBM and gV data were positively skewed. Both issues violate the 

assumptions of linear regression, and indicate that the original models were not appropriate, and that a 

transformation was needed for the data to satisfy the normality and constant variance assumptions of 

linear regression. Such transformations are also commonly used to normalize positively skewed 

distributions and reduce heteroscedasticity [55]. All SLR models were rerun using the natural log and 

square root transformed AGBM and gV data. Diagnostic plots indicated that the square root 

transformation (AGBMsqrt and gVsqrt) was most appropriate for these data.  

When utilizing the subplot square root transformed AGBM and gV data, the best independent 

variables from the independent subplot point cloud metric sets were: mean height (Figures 7a and 8a), 

hb20-25, and d3, which accounted for 77%, 52%, and 67% of the variability in field estimated AGBM 

and 73%, 49%, and 62% of the variance in field estimated gV (Table 7). All previously mentioned 

models were significant at the α = 0.05 level. The best independent variables for predicting AGBM from 

the plot point cloud metrics were also mean height (Figure 7c), hb20-25, and d3, accounting for 83%, 

56%, and 76% of the variability in field estimated AGBM. For gV, the best independent variables from 

the clustered subplot point cloud metrics were the p90 (Figure 8c), mean height, hb20-25, and d3, 

accounting for 81%, 80%, 54%, and 74% of the variability in the field estimated gV. Mean height was 

also included in the best independent variable list since models produced using p90 and mean height 

were very similar (Table 8). Models produced utilizing the plot point cloud metrics were all significant 

at the α = 0.05 level. The best independent variables for the hectare plot point cloud metric sets were 

mean height (Figure 7e), hb15-20, and d3, accounting for 73%, 63%, and 73% of the variability in field 

estimated AGBM. The best independent variables for predicting gV from the hectare plot point cloud 

metric sets were p90 (Figure 8e), hb15-20, and d3, accounting for 73%, 62%, and 71% of the variability 

in field estimated gV (Table 9). Models for the hectare plot data were all significant at the α = 0.05 level. 
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Figure 7. Scatter plot of simple linear regression results for the best simple linear regression 

aboveground biomass models (transformed and non-transformed) for individual subplots 

(a,b), plots (c,d), and hectare plots (e,f). * indicates p-values of less than 0.05.  
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Figure 8. Scatter plot of simple linear regression results for the best simple linear regression 

gross volume models (transformed and non-transformed) for individual subplots (a,b), plots 

(c,d), and hectare plots (e,f). * indicates p-values of less than 0.05. 
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Table 7. Summary of the best subplot-level aboveground biomass and gross volume simple 

linear regression models for each point cloud metric set. * indicate p-values of less than 0.05. 

Subplot-Level 
DV IV R2 Adj-R2 RMSE β0 β1 PRESS 
AGBMsqrt mean 0.77 0.77 2.03 2.21 * 1.08 * 819.56 
AGBMsqrt hb20-25 0.52 0.52 2.94 6.11 * 51.28 * 1725.46 
AGBMsqrt d3 0.67 0.67 2.45 1.70 * 24.60 * 1198.80 
gVsqrt mean 0.73 0.73 3.01 2.39 * 1.44 * 1812.01 
gVsqrt hb20-25 0.49 0.49 4.16 7.61 * 67.88 * 3469.53 
gVsqrt d3 0.62 0.62 3.57 1.77 * 32.54 * 2548.38 

Table 8. Summary of the best clustered subplot-level aboveground biomass and gross 

volume simple linear regression models for each point cloud metric set. * indicates  

p-values of less than 0.05. 

Plot-Level 

DV IV R2 Adj-R2 RMSE β0 β1 PRESS 

AGBMsqrt mean 0.83 0.83 1.45 1.96* 1.18* 119.73 
AGBMsqrt hb20-25 0.56 0.56 2.31 5.57* 63.59* 305.42 
AGBMsqrt d3 0.76 0.76 1.71 3.12* 21.54* 168.47 
gVsqrt p90 0.81 0.81 2.05 0.49 0.65* 237.39 
gVsqrt mean 0.80 0.79 2.12 2.26* 1.15* 258.30 
gVsqrt hb20-25 0.54 0.54 3.18 7.01* 83.90* 578.31 
gVsqrt d3 0.74 0.73 2.4 3.75* 28.53* 332.59 

Table 9. Summary of the best hectare plot-level aboveground biomass and gross volume 

simple linear regression models for each point cloud metric set. * indicates p-values of less 

than 0.05. 

Hectare Plot-Level 

DV IV R2 Adj-R2 RMSE β0 β1 PRESS 

AGBMsqrt mean 0.73 0.73 1.81 1.47 * 1.23 * 186.49 
AGBMsqrt hb15-20 0.63 0.63 2.12 3.16 * 65.55 * 254.03 
AGBMsqrt d3 0.73 0.72 1.83 2.39 * 23.65 * 190.55 

gVsqrt p90 0.73 0.72 2.45 −0.47 0.68 * 336.96 
gVsqrt mean 0.71 0.71 2.51 1.55 1.63 * 364.11 
gVsqrt hb15-20 0.62 0.61 2.92 3.81 * 86.77 * 482.64 
gVsqrt d3 0.71 0.71 2.52 2.74 * 31.51 * 361.20 

MR models for the subplot data were created utilizing independent variables selected with a mixed 

stepwise selection method (AIC criterion-based). The MR models showed only minor improvement in 

predictive ability when including more than one of the height percentile metrics. However, models based 

on multiple height bin metrics or multiple density metrics did improve the predictive ability of models 

(Tables 7 and 10). The AGBM and gV MR models based on the height bin metric set included hb5-10, 

hb10-15, hb15-20, hb20-25, and hbgt25. All variables in both models were significant at the α = 0.05 

level, and all VIFs were less than 10 indicating no multicollinearity issues. The height bin-based model 
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was able to explain 78% of the variability in field estimated AGBM at the subplot-level. The height bin 

based gV MR model was able to explain 75% of the variability in gV. The MR model for predicting 

subplot AGBM from density metrics utilized d2, d3, d5, and d6, while the MR model for predicting 

subplot gV from density metrics utilized d2, d5, and d6. All model variables were significant at the  

α = 0.05 level, and VIFs were below 10. The MR models were able to explain 78% and 74% of the 

variance in field estimated AGBM and gV, respectively. 

For MR models based on plot metric sets (Table 11), the addition of multiple independent variables 

improved models for every metric set. Models utilizing percentile metrics as independent variables were 

able to account for the greatest variability in the field estimated AGBM and gV, 87% and 88%, 

respectively. The most notable improvement was seen in models utilizing height bin metrics, where the 

use of multiple height bin metrics allowed height bin-based models of AGBM and gV to account for 

86% and 85% of the variability in the field estimated AGBM and gV, as compared to SLR models 

(utilizing hb20-25) which accounted for 56% and 54% of the variability in field estimated AGBM and 

gV. AGBM and gV models employing density metrics both utilized two density bins (d2 and d6), and 

were able to account for 86% and 84% of the variability in the field estimated AGBM and gV. All models 

reported in Table 11 were significant at the α = 0.05 level, and showed no multicollinearity issues (all 

VIFs were lower than 10).  

For MR models based on hectare plot metric sets, the addition of multiple independent variables only 

improved models based on height bin metrics or density metrics. The percentile-based MR models (for 

ABGM and gV) identified several independent variables (mean height and p90 for AGBM and mean 

height p90, and p25 for gV), but not all of the selected variables were significant at the α = 0.05 level, 

and had VIFs larger than 10 (indicating multicollinearity). The resulting model had a lower R2 value and 

higher RMSE than the SLR models developed for AGBM and gV SLR. The initial height bin-based MR 

model for AGBM (utilizing the square root transformation) utilized hb5-10, hb10-15, and hb15-20 as 

independent variables. This model showed no multicollinearity issues (VIFs below 10). All independent 

variables utilized were significant at the α = 0.05 level. The height bin-based model for gV (utilizing the 

square root transformation) employed hb10-15 and hb20-25, and showed no indication of 

multicollinearity (VIFs below 10). All independent variables were significant at the α = 0.05 level. The 

height bin-based MR models for AGBM and gV accounted for 74% and 73% of the variability in field 

estimated AGBM and gV, respectively. Analysis of the VIFs for the initial density-based MR models 

for the square root transformed AGBM and square root transformed gV did not indicate multicollinearity 

issues. All selected independent variables (d2 and d4 for AGBM and d2 and d5 for gV) were significant 

at the α = 0.05 level. Density-based MR models for AGBM and gV accounted for 75% and 73% of the 

variability in the field estimated AGBM and gV, respectively.  

Modeling results presented above show that model R2 values improved from models based on 

individual subplots to models based on plots. When the scale of the analysis level is increased to the 

hectare plot-level, a decrease in model R2 values was observed. This pattern was visible in both SLR 

models and MR models (Tables 7–9 and 10–12, respectively). Overall, the best R2 values were obtained 

when using plot-level analysis. 
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Table 10. Subplot-level multiple regression analysis results. * indicates p-values of less than 0.05. 

Subplot MR Models 

DV IV R2 Adj-R2 RMSE β0 β1 β2 β3 β4 β5 PRESS 

AGBMsqrt p90, mean 0.78 0.78 1.99 1.58 * 0.13 * 0.85 * NA NA NA 802.77 

AGBMsqrt 
hb5-10, hb10-15, hb15-20, 
hb20-25, hbgt25 

0.78 0.77 2.02 2.85 * 8.72 * 11.47 * 18.45 * 17.81 * 39.00 * 832.19 

AGBMsqrt d2,, d3, d5, d6  0.78 0.77 2.02 2.85 * 11.58 * 6.61 * 20.64 * −30.14 * NA 821.39 
gVsqrt p95, max, mean 0.75 0.75 2.93 2.83 * 0.32 * −0.21 * 1.22 * NA NA 1771.70 

gVsqrt 
hb5-10, hb10-15, hb15-20, 
hb20-25, hbgt25 

0.75 0.74 2.97 3.38 * 9.77 * 15.90 * 26.42 * 19.56 * 54.08 * 1789.31 

gVsqrt d2, d5, d6 0.74 0.74 2.97 3.45 * 21.18 * 32.91 * −46.42 * NA NA 1775.36 

Table 11. Plot-level multiple regression analysis results. * indicates p-values of less than 0.05. 

Plot MR Models 

DV IV R2 Adj-R2 RMSE β0 β1 β2 β3 β4 PRESS

AGBMsqrt p75, p95 0.87 0.87 1.26 1.03 0.32* 0.23* NA NA 97.33 
AGBMsqrt hb5-10, hb15-20, hbgt25 0.86 0.85 1.32 2.09* 19.91* 33.74* 58.81* NA 102.27 
AGBMsqrt d2, d6 0.86 0.86 1.30 1.98* 15.57* 36.97* NA NA 96.65 

gVsqrt p25, p75, p95 0.88 0.88 1.63 0.93 −3.25* 0.46* 0.06* NA 165.70 
gVsqrt hb0-5, hb5-10, hb15-20, hbgt25 0.85 0.84 1.87 5.10* −3.43* 20.28* 39.32* 76.50* 208.26 
gVsqrt d2, d6 0.84 0.83 1.91 2.31* 20.35* 50.08* NA NA 211.99 

Table 12. Hectare plot-level multiple regression analysis results. * indicates p-values of less than 0.05. 

 Hectare Plot MR Models 

DV IV R2 Adj-R2 RMSE β0 β1 β2 β3 PRESS

AGBMsqrt hb5-10, hb15-20, hbgt25 0.74 0.73 1.82 1.83 * 14.04 * 48.68 * 42.35 * 189.49 
AGBMsqrt d2, d4 0.75 0.74 1.77 1.67 * 11.92 * 15.67 * NA 178.87 

gVsqrt hb10-15, hb20-25 0.71 0.71 2.53 2.55 * 43.08 * 83.40 * NA 365.18 
gVsqrt d2, d5 0.73 0.72 2.45 1.38 21.16 * 22.93 * NA 343.98 
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4. Discussion 

Previous studies have found that ALS-derived variables describing the height of trees can produce 

accurate AGBM, gV, and other forest biophysical parameter predictions [15–27]. To our knowledge, 

few studies have compared the ability of height percentile, height bin, and density LiDAR metrics to 

estimate AGBM and gV for the same dataset. In one such study, Næsset and Gobakken [57] compare 

similar LiDAR metrics, but focused on forest growth using mean tree height, basal area, and volume 

under different forest conditions than those present in the Malheur National Forest. Our study is also 

unique in its analysis utilizing point cloud metrics from individual subplots, plots comprising a cluster 

of 4 subplots, and hectare plots to determine which dataset would best estimate AGBM and gV. Hectare 

plots were also utilized due to concern regarding geolocation and edge effect errors commonly associated 

with small area plots [51,52]. Table 5 provides descriptive statistics for the subplot center coordinates 

used to extract plot-level LiDAR data. Plot center GPS data utilized for this study exhibit superior 

geolocation precision when compared to the recreational-grade GPS receivers usually employed by FIA 

field crews. 

After our analyses, it can be inferred that geolocation and edge effect errors did not have noticeable 

effect on the ability of subplot point cloud metrics to estimate AGBM and gV within our study area. 

However, future research efforts will attempt to quantify how geolocation and edge effect errors affected 

our AGBM and gV estimates. The best predictors of AGBM and gV at the individual  

subplot-level were mean height, hb20-25, and d3. Individual subplot SLR models based on hb20-25 

exhibited a moderate relationship to AGBM and gV, while models based on d3 and mean height 

exhibited a stronger relationship. A visual examination of a subset of subplot point clouds identified that 

subplot-level mean height is commonly located near a high density cluster of LiDAR returns in the 

vertical distribution (as expected), while d3 typically covers a majority of the points within the upper 

forest canopy (Figure 9). This suggests that mean height is an accurate predictor of AGBM and gV 

because it accurately describes tree height for the majority of trees on a plot. The d3 metric typically 

provides information on the taller trees within a plot, although in the presence of mostly short trees it 

may fail to capture such information (Figure 9c,f). One possible reason for poor performance of SLR 

models based on subplot hb20-25 is the limited number of returns occurring within the 20–25 m. Thus, 

when larger trees are present within a plot this metric provides information useful for describing subplot-

level AGBM or gV (since these trees will typically contain a large portion of the AGBM or gV within a 

subplot). However, when subplots contain trees less than 20 m tall, this metric essentially reports that no 

vegetation layers are present within a plot (Figure 9b). This suggests that multiple height bin metrics 

might be required to correctly model AGBM and gV for forests with conditions similar to those exhibited 

in the Malheur National Forest. Our subplot MR models utilizing height bin-based independent variables 

(Table 9) provide evidence for this finding, with the final model utilizing multiple height bin metrics, 

exhibiting no multicollinearity issues, and accounting for a similar amount of variance in field estimated 

AGBM and gV as the best subplot SLR models.  

Overall, the plot SLR and MR models were able to account for the largest amounts of variability in 

the field estimate AGBM and gV (Table 8). LiDAR-derived independent variables for the clustered 

subplot SLR models were mostly the same as those identified for the individual subplot models (mean, 

hb20-25, and d3). However, the best SLR model for gV utilized the percentile metric p90. This also 
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occurred in the hectare plot SLR gV model. The SLR model utilizing the mean height value is very 

similar to the model based on p90, which is also similar to the SLR modeling results based on the hectare 

plot point cloud metrics.  

Hectare plot-level SLR models utilizing height percentile metrics performed similarly to  

subplot-level SLR models, while density and height bin metric-based models were improved (Table 9). 

The best SLR models in each point cloud metric set were mean, hb20-25, and d3 for AGBM and p90, 

hb15-20, and d3 for gV. Table 9 also reports results for the gV model based on the mean, as this model 

was similar to the model based on p90. Models based on the previously mentioned independent variables 

accounted for 73%, 63%, and 73% of the variability in the field estimated AGBM and 75%, 62%, and 

71% of the variability in field estimated gV. We believe this improvement is the result of scaling the 

subplot estimates of AGBM and gV to the hectare plot-level, since the average of conditions observed 

for four relatively small subplots would more closely resemble the conditions found within the larger 

hectare plot.  

(Left)     (Middle)   (Right) 

 

Figure 9. Cross-sectional plots of two subplot point clouds displaying the location of the 

best aboveground biomass and gross volume predictor variables. The left subfigures identify 

the mean height for each example subplot. The middle subfigures identify the location of 

height bin 20-25 for each example subplot. The right subfigures identify the location of 

density 3 for each example subplot. 

In some cases, the best plot and hectare plot-level SLR models for a given metric set utilized a 

different independent variable than the corresponding individual subplot-level SLR models. For 
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example, the hectare plot-level height bin-based models for AGBM and gV models utilized hb15-20, 

while the subplot-level SLR utilized hb20-25. A visual examination of the two height bins in one of the 

hectare plots suggests that hb15-20 provides more information about the forest conditions on the hectare 

plot than hb20-25 (Figure 10). This conclusion is also supported by the descriptive statistics for tree 

species height (Table 3), which shows eight of the eleven tree species (including those composing the 

majority of trees within our plots) have mean heights within the hb15-20 range of 15 to 20 m.  

 

Figure 10. A visual comparison of height bin 15-20 and height bin 20-25 metrics for a 

hectare plot. Height bin15-20 provides more information about the conditions present on the 

hectare plot than height bin 20-25. (a) Cross sectional plot of one hectare plot and the 

location of height bin 15-20 and height bin 20-25; (b) Top-down representation of all points 

within the hectare plot; (c) Top-down representation of the points falling within height bin 

15-20; and (d) Top-down representation of the points falling within height bin 20-25. 

At the individual subplot-level, stepwise MR analysis identified that models based on height bin 

metrics and density metrics could benefit from multiple predictor variables, while improvements to 

models based on height percentile metrics were nearly negligible. In height bin and density-based 
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models, the inclusion of multiple predictors increased the predictive ability of the models to a level 

similar to the mean height-based SLR model, with R2 values ranging from 0.74 to 0.78. AGBM and gV 

models utilizing height bin metrics always required more predictor variables than models utilizing 

density metrics, in part due to the compartmentalized nature of height bin metrics. Density metrics 

exhibit strong spatial correlation, and as such the inclusion of a large number of density bins leads to 

multicollinearity issues.  

At the plot analysis level, stepwise MR analysis identified that models for each metric set could 

benefit from multiple predictor variables. While multiple independent variables were utilized in models 

for each metric set, a decrease in the number of variables in the height bin and density based models is 

observed. At the hectare plot-level, stepwise MR analysis identified that models utilizing height bin or 

density metrics would benefit from multiple predictor variables, while no additional predictor variables 

were identified for models based on height percentiles. However, it should be noted that density metric 

based models received only a minor improvement when a second predictor variable was added.  

Results for the MR analyses show that point cloud metrics derived from the clustered subplots were 

able to account for the most variability in field estimated AGBM and gV, followed by models based on 

individual subplot metrics, and models based on hectare plot metrics. We hypothesize that the extent of 

hectare plot point cloud metrics was too large to adequately describe the average conditions present in 

the four subplots contained within each hectare plot. Future studies will investigate if a more appropriate 

plot size for LiDAR data covering the four subplots exists. 

While subplot-level and hectare plot-level analyses produced adequate SLR and MR models, the best 

SLR and MR models were produced with the plot-level analysis. We believe there are several reasons 

why the plot level analysis produced the best results. When moving from subplot- to plot-level, the 

sample size is increased three-fold. If AGBM or gV is spatially distributed as a uniform  

random process, where tree locations approximating a Poisson simple point pattern and tree sizes 

approximating a distribution skewed to the right (considered to be the usual case) we expect estimation 

accuracy to increase rapidly with initial increases in sample size. However, when the spatial extent of 

the analysis is increased from the plot-level to the hectare plot-level we are forced to assume that the 

population is distributed identically within the hectare as within the subplots. This assumption might not 

be valid for all hectare plots utilizing the current field data, which was collected for each of the subplots. 

Thus, reductions in model R2 values are a result of the discrepancies in the population distribution 

between hectare plots and plots. Such discrepancies would not be an issue if exhaustive tree tallies were 

available for the hectare plots. Overall, this finding provides evidence that the current FIA plot design 

can be used with dense airborne LiDAR data to produce area-based estimates of AGBM and gV. 

5. Conclusions  

This study represents an initial attempt to model biophysical parameters of interest to the FIA  

program utilizing the standard FIA plot design, data from FIA ground crews, and ALS data.  

As previously mentioned, other studies have successfully modeled similar forest parameters with ALS 

data [15–27,34,46,49,55]. However, to our knowledge none have done so for multiple analysis level 

(i.e., subplot, plot, and hectare plot) comparing the performance of percentile, height bin, and density 

metrics, and specifically focused on modeling AGBM and gV for FIA purposes. Models based on 
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subplot point cloud metrics, for AGBM and gV provided results similar to those presented in the 

literature and cited throughout this study.  

Overall results from this study show that ALS can be used to create models that describe the AGBM 

and gV of Pacific Northwest FIA subplots with results comparable in accuracy to those of other 

published studies. Point cloud metrics based on PNW FIA hectare plots or individual subplots were not 

able to describe AGBM and gV as well as those based on plot point cloud metrics. The ability of ALS 

to collect data over large areas coupled with these results demonstrates the potential of ALS systems to 

augment current FIA data collection procedures by providing a temporary intermediate estimation of 

AGBM and gV for plots with outdated field measurements. We hypothesize that these intermediate 

estimates could prove beneficial for increasing the accuracy of forest C budgets by reducing  

variance caused by temporal measurement discrepancies in the currently available FIA measurements. 

However, more work must be done to quantify the amount of variance that would be reduced due to 

temporal measurement discrepancies, as well as the contribution of ALS-based estimates to this variance.  

Future research identified by this study, includes: (1) utilization of regional species-specific growth 

and yield models to mitigate error caused by out-of-date tree measurements, while increasing the number 

of samples available for use in modeling efforts; and (2) investigations of how GPS accuracy and ALS 

data can be utilized to identify plots to be withheld from future modeling exercises.  
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