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Abstract: The aims are to validate and assess the performances of MODIS gross primary 

production (MODIS-GPP) and evapotranspiration (MODIS-ET) products in China’s 

different land cover types and their sensitivity to remote sensing input data. In this study, 

MODIS-GPP and -ET are evaluated using flux derived/measured data from eight sites of 

ChinaFLUX. Results show that MODIS-GPP generally underestimates GPP (R2 is 0.58, bias 

is −6.7 gC/m2/8-day and RMSE is 19.4 gC/m2/8-day) at all sites and MODIS-ET 

overestimates ET (R2 is 0.36, bias is 6 mm/8-day and RMSE is 11 mm/8-day) when comparing 

with derived GPP and measured ET, respectively. For evergreen forests, MODIS-GPP gives 

a poor performance with R2 varying from 0.03 to 0.44; in contrast, MODIS-ET provides 

more reliable results. In croplands, MODIS-GPP can explain 80% of GPP variance, but it 

overestimates flux derived GPP in non-growing season and underestimates flux derived GPP 

in growing season; similar overestimations also presented in MODIS-ET. For grasslands and 

mixed forests, MODIS-GPP and -ET perform good estimating accuracy. By designing four 

experimental groups and taking GPP simulation as an example, we suggest that the 

maximum light use efficiency of croplands should be optimized, and the differences of 

meteorological data have little impact on GPP estimation, whereas remote sensing leaf area 

index/fraction of photo-synthetically active radiation (LAI/FPAR) can greatly affect 

GPP/ET estimations for all land cover types. Thus, accurate remote sensing parameters are 

important for achieving reliable estimations. 
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1. Introduction 

The evaluation of terrestrial ecosystem carbon and water dynamic is a key issue in global climate 

change research [1,2]. Gross primary production (GPP) and evapotranspiration (ET) can provide useful 

information for water and soil resource management, global carbon-water cycle analysis and environmental 

change monitoring. To understand the mechanisms of climate change and improve the prediction of possible 

future climate change, we require accurate quantifications of carbon and water processes in terrestrial 

vegetation [3]. The mechanism of GPP and ET variations have been successfully interpreted in several 

studies [4,5]. However, substantial differences of GPP and ET are observed among estimated results from 

different models, which prevent us from fully understanding global carbon-water cycle. Therefore, the 

uncertainties of estimated GPP and ET still need to be addressed at global and regional scales. 

Satellite image offers a series of time-continuous vegetation and ecosystem observation data. Based 

on a combination of satellite data and ground measurements, several remote sensing methods are proposed 

to estimate GPP and ET. In the past decades, the spatial and temporal patterns of GPP and ET were explained 

by exploiting their good correlations with normalized differential vegetation index (NDVI), enhanced 

vegetation index (EVI), land surface temperature (LST), leaf area index (LAI) and the fraction of  

photo-synthetically active radiation absorbed by plant canopies (FPAR) [6]. Many remote sensing GPP 

and ET models presented better estimating accuracy at regional scale, such as the GPP models: the 

temperature and greenness (TG) model [7], the greenness and radiation (GR) model [2] and vegetation 

photosynthesis model (VPM) [8], etc. and the ET models: surface energy balance algorithm for land 

(SEBAL) [9] and air/surface temperature-vegetation index (T-VI) [10,11], etc. Compared with the above 

models, the main advantages of MODIS-GPP (MOD17A2) and -ET (MOD16A2) are that they provide 

continuous global GPP and ET products and these products can be freely shared. Scientists can use the 

model results to compare with the MODIS products [12,13]. MODIS-GPP and -ET have been widely 

validated against measurements from AmeriFlux, Fluxnet-Canada and EuroFlux [14–17], but many 

observation sites are still not included around the world. Therefore, many validation studies have been 

carried out in other regions [17], so the performances of MODIS-GPP and -ET estimate in China still 

need to be validated. 

The MODIS-GPP and -ET algorithms employ meteorological measurements, LOOKUP tables based 

on land cover types and remote sensing data. In many studies, the uncertainties of weather data for model 

simulations have always been controversial [16,17]. Since meteorological measurements are often not 

available at the same spatial scale as the remote sensing data, they can introduce substantial errors into 

carbon-water exchange simulations [7,18], for example, the downscaling question about coarse resolution 

metrological data. Turner et al. [16] has discussed about the uncertainties of meteorological data used 

for driving MODIS algorithms, but little has been conducted on further exploring the impact of uncertainties 

of remote sensing data on simulations [17]. Compared with the meteorological data, does the quality of 

remote sensing data have more influence for estimating results of remote sensing model? Therefore,  
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it is necessary to assess the sensitivity of MODIS-GPP and -ET to remote sensing input data. In addition, 

assessing uncertainties of GPP and ET models is useful for improving the model accuracy.  

Eddy covariance technique provides the best approach for measuring net CO2 exchange and hydrothermal 

fluxes at the ecosystem scale that can be used for GPP and ET calculation. Many studies have confirmed 

that flux observation data at a long time scale provided favorable information for validation of GPP and 

ET models [19]. In this study, we used observations at eight sites of ChinaFLUX to evaluate the accuracy 

of MODIS-GPP and -ET. The objectives of the study are: (1) to assess the differences of MODIS-GPP 

and -ET with flux observations, respectively; (2) to analyze the performances of MODIS-GPP and -ET 

in different land cover types over China; and (3) to analyze the impacts of meteorological data and remote 

sensing input data on the model results. 

2. Data and Methods 

2.1. Study Sites and Flux Measurements 

The flux observed net ecosystem exchange (NEE), ecosystem respiration (Re), ET and meteorological 

data in the period of 2003–2005 were acquired from ChinaFLUX website [20]. The daily data were 

produced by summing the filled half-hourly values [20,21]. More information about original observed 

half-hour values is available in Yu et al. [20] and Gao et al. [12]. Gross ecosystem exchange (GEE) is 

then derived by subtracting Re from NEE as: GEE = NEE − Re. Then, the negative GEE is equal to GPP 

(GPP = −GEE), and flux derived GPP values are presented in the unit of gC/m2/d. In this study, eight sites 

include five different land cover types, such as croplands (Yucheng croplands site (YC) in Shandong 

province), grasslands (Xilinguole grasslands site (XLGL) in Inner Mongolia autonomous region, Haibei 

grasslands site (HB) in Qinghai province and Dangxiong grasslands site (DX) in Tibet autonomous 

region), mixed forests (Changbaishan forests site (CBS) in Jilin province), evergreen needleleaf forests 

(Qianyanzhou forests site (QYZ) in Jiangxi province) and evergreen broadleaf forests (Dinghushan 

forests site (DHS) in Guangdong province and Xishuangbanna forests site (XSBN) in Yunnan province). 

A brief description of these sites is presented in Table 1 and Figure 1. For consistency with the time 

interval of eight-day composite of MODIS-GPP and -ET, we also aggregated the eight-day GPP and ET 

from the site measurements based on daily values. 

2.2. Remote Sensing Data 

In this study, all remote sensing data during the period from 2003 to 2005 are eight-day composites at 

1-km resolution. MODIS-GPP and -ET datasets were downloaded from Numerical Terradynamic 

Simulation Group including MOD17 [22] and MOD16 [15] products. GPP products were calculated  

as follows: GPP = ௠௔௫ߝ × ݂ሺ ௠ܶ௜௡ሻ × ݂ሺܸܲܦሻ × ܴܣܲܨ × ܵ ௥ܹ௔ௗ × 0.45 (1)

where ε௠௔௫ is the maximum light use efficiency obtained from LOOKUP table on the basis of land cover 

types [22]. The attenuation scalars ݂ሺ ௠ܶ௜௡ሻ  and ݂ሺܸܲܦሻ  are simple linear regression functions  

of daily minimum temperature (Tmin) and vapor pressure deficit (VPD). Values of Tmin, VPD and SWrad 
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were obtained from the Data Assimilation Office (DAO) dataset. ET products were calculated using 

Penman-Monteith (PM) equation [23] as follows: λE = ∆ × A +ρ௔ × ௣ܥ × ሺ݁௦ − ݁௔ሻ/ݎ௔∆ + ߛ × ሺ1 + ௔ሻݎ/௦ݎ  (2)

where λE is the latent heat flux and λ is the latent heat of evaporation; ∆ is the slope of saturation vapor 

pressure curve; A is available energy partitioned among sensible heat, latent heat and heat fluxes on land 
surface; ρ௔ is the mean air density at constant pressure; ܥ௣ is the specific heat of the air; ݁௦ − ݁௔ is the 

vapor pressure deficit of the air; ݎ௔ and ݎ௦ are the surface and aerodynamic resistances, respectively; γ is 

the psychrometric constant. In ET products algorithm, ET is calculated as the sum of soil evaporation and 

plant evapotranspiration. More information about each detailed algorithm is available in Mu et al. [15]. 

Table1. Brief descriptions of flux sites in this study. MF: Mixed forests; EBF: Evergreen 

broadleaf forests; ENF: Evergreen needleleaf forests. 

Sites (Abbreviation) Lat(°N) Lon(°E) Data Range Land Cover 

Changbaishan forests site (CBS) 42.40 128.10 2003–2005 MF 
Dinghushan forests site (DHS) 23.17 112.53 2003–2005 EBF 

Qianyanzhou forests site (QYZ) 26.75 115.67 2003–2005 ENF 
Xishuangbanna forests site (XSBN) 21.90 101.27 2003–2005 EBF 

Yucheng croplands site (YC) 36.95 116.60 2003–2005 Croplands 
Haibei grasslands site (HB) 37.62 101.32 2003–2005 Grasslands 

Xilinguole grasslands site (XLGL) 43.63 116.70 2003–2004 Grasslands 
Dangxiong grasslands site (DX) 30.83 91.12 2003–2004 Grasslands 

 

Figure 1. Spatial distributions of the eight sites in this study. MF: Mixed forests; EBF: 

Evergreen broadleaf forests; ENF: Evergreen needleleaf forests. 
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LAI/FPAR (MOD15 products) data were downloaded from Land Processes Distributed Active 

Archive Center [6]. GLASS-LAI data were obtained from the Center for Global Change Data Processing 

and Analysis of Beijing Normal University [24,25]. The GLASS-LAI retrieval algorithm employs general 

regression neural networks (GRNNs) to generate a long time-series of global LAI data [24,26]. GRNNs 

are trained by fused LAI from MODIS and CYCLOPES and the reprocessed MODIS reflectance of the 

BELMANIP sites during 2001–2003 [25]. The intercomparison of GLASS-LAI and other products, 

including MODIS, indicates that the quality of GLASS-LAI data has been greatly improved [26]. The  

3 × 3 homogenous pixels (3 × 3 km) around the center of flux towers were extracted for analyses in this 

study. For missing data owing to bad-quality, linear interpolation and adjacent values are used for gap-filling. 

2.3. The Experimental Design 

To differentiate the impacts of climatic factors and LAI/FPAR on GPP/ET estimations,  

we design four experimental groups and take GPP as an example: (1) the original MODIS-GPP products; 

(2) using in-site meteorology data, MODIS-FPAR and maximum light use efficiency in MOD17 

LOOKUP table to estimate GPP (GPP_MOD); (3) using in-site meteorology data, GLASS-FPAR 

(FPAR = 1 − (exp(−K*GLASS − LAI)) [16], K is set as 0.5 [27].) and maximum light use efficiency in 

MOD17 LOOKUP table to estimate GPP (GPP_GLA); (4) using in-site meteorology data, GLASS-FPAR 

and optimized maximum light use efficiency [28] to estimate GPP (GPP_GLA2). 

2.4. Analyses 

Three indices, including bias, RMSE and R2, were used to comprehensively evaluate the accuracy  

of MODIS-GPP and -ET in different land cover types over China. Bias can show the deviation between 

simulations and measurements. RMSE is the index reflecting the difference between overall samples. R2 

is the similarity index between samples or fitting degree index between simulations and measurements. 

They can well evaluate the error of data. 

3. Results 

3.1. Comparison of MODIS-GPP and Flux Derived GPP 

As shown in Figure 2, MODIS-GPP generally shows seasonal dynamics in different land cover  

types. For mixed forests (Figure 2a), croplands (Figure 2e) and grasslands (Figure 2f–h), MODIS-GPP 

presents a high R2 (>0.5) with flux derived GPP. MODIS-GPP of evergreen forests (Figure 2b–d) shows a 

worse quality than that of the above land cover types with R2 lower than 0.5. For evergreen broadleaf 

forests (Figure 2b,d), MODIS-GPP has the worst quality with R2 in a range of 0.03–0.44, bias from  

−2.5 gC/m2/8-day to −17.6 gC/m2/8-day and RMSE from 14.1 gC/m2/8-day to 31.0 gC/m2/8-day. Bias in 

forests is greater than that in other land cover types. Also, RMSE of MODIS-GPP in forests (Figure 2a–d) 

and croplands (Figure 2e) are greater than that in grasslands (Figure 2f–h). MODIS-GPP underestimates 

flux derived GPP during the vigorous growth period in alpine meadow (Figure 2f,h), suggesting that 

temperature limitation may be a key factor influencing the estimating uncertainty. Additionally, the 

underestimation of FPAR might also cause the underestimation of estimated GPP. For croplands  

(Figure 2e), although it has higher R2 (0.80) and smaller bias (−4.8 gC/m2/8-day), measured GPP is still 
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underestimated by MODIS-GPP in growing season and overestimated in non-growing season (Figure 2e), 

leading to a greater RMSE (30.0 gC/m2/8-day). At CBS site, MODIS-GPP can well show the seasonal 

change of flux derived GPP with R2 of 0.76, bias of −8.4 gC/m2/8-day and RMSE of 17.3 gC/m2/8-day. 

For evergreen forests (Figure 2b–d), MODIS-GPP has very large fluctuation for each eight-day, resulting 

in greater RMSE of MODIS-GPP product. 

 

Figure 2. Comparison between the flux derived GPP (site name_derived) and  

MODIS-GPP (site name_MODIS) for all sites, pink solid line and blue solid line represent 

the flux derived GPP and MODIS-GPP, respectively. (a) in mixed forests site; (b) in 

evergreen broadleaf forests site; (c) in evergreen needleleaf forests site; (d) in evergreen 

broadleaf forests site; (e) in croplands; (f,g,h) in grasslands site. (DOY: Day of year). 

3.2. Comparison of MODIS-ET and Flux Measurements 

Generally, MODIS-ET shows a good seasonal dynamic for each site (Figure 3). For mixed forests 

(Figure 3a), evergreen needleleaf forests (Figure 3c) and alpine grasslands (Figure 3f), MODIS-ET 

shows higher R2 (>0.5) with flux measured ET. MODIS-ET products at mixed forests site (Figure 3a) 

have very good fitting accuracy with flux measured ET (R2 = 0.88). MODIS-ET products in evergreen 

broadleaf forests (Figure 3b,d), croplands (Figure 3e) and temperate grasslands (Figure 3g) show relative 

higher R2 (slightly lower than 0.5) with flux measured ET. MODIS-ET in alpine meadow site  
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(Figure 3h) shows the lowest fitting degree with flux measured ET (R2 = 0.26). We also analyzed bias and 

RMSE in different land cover types. Bias in croplands (Figure 3e) is far greater than that in other land 

cover types with bias of 18 mm/8-day. Evergreen broadleaf forests (Figure 3b,d) also have very high 

bias (from 9 mm/8-day to 14 mm/8-day). RMSE (from 10 mm/8-day to 20 mm/8-day) of evergreen 

broadleaf forests (Figure 3b,d), croplands (Figure 3e) and alpine grasslands (Figure 3h) are greater than 

the RMSE of other land cover types. For alpine grasslands (Figure 3f,h), measured ET is underestimated 

by MODIS-ET in the growing season and overestimated in non-growing season. For croplands  

(Figure 3e), MODIS-ET greatly overestimates the whole period of measured ET, thus causing greater 

RMSE (20 mm/8-day) and bias (18 mm/8-day). 

 

Figure 3. Comparison between the flux observed ET and MODIS-ET for all sites, pink solid 

line and blue solid line represent the flux observation ET and MODIS-ET, respectively. 

(DOY: Day of year). (a) in mixed forests site; (b) in evergreen broadleaf forests site; (c) in 

evergreen needleleaf forests site; (d) in evergreen broadleaf forests site (e) in croplands; 

(f,g,h) in grasslands site. 

3.3. The Sensitivity of Estimates to Climate Factors and LAI/FPAR Data 

Through the comparison of the experiment (1) and (2), we can isolate the impact of climate cause on 

GPP. Table 2 shows that bias, RMSE and R2 between (1) and (2) present similar values, implying that 
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DAO data may be similar to site flux meteorological data. By comparing flux meteorological data with 

DAO meteorological data, Turner et al. [16] indicated that meteorological data generally performed 

good agreement for VPD and minimum temperature, but a high bias for DAO PAR. However, the results 

in YC reveal a high bias. A linear regression method is applied to MODIS-GPP (x) and GPP_MOD (y): 

y = 0.95x − 18.29 (R2 = 0.91, p < 0.001). The intercept value indicates this high bias. The noise existed 

in the forced data may result in this high bias when calculating MODIS-GPP products. Zhang et al. [29] 

pointed out that the annual MODIS-GPP only accounted for 1/5–1/3 for croplands, because the key 

parameter, maximum light use efficiency, was underestimated for croplands. When using flux measurements 

and optimized maximum light use efficiency to calculate GPP, they found that the MODIS-GPP algorithm 

significantly improved the accuracy of GPP estimations. Therefore, Case 1 shows that the differences of 

climate factors may have little impact on GPP estimation. 

Table 2. Comparison between the flux derived GPP and (1) the original MODIS-GPP 

products; (2) using in-site meteorology data, MOD17 maximum light use efficiency and 

MODIS-FPAR to estimate GPP (GPP_MOD); (3) using in-site meteorology data, MOD17 

maximum light use efficiency and GLASS-FPAR to estimate GPP (GPP_GLA); and (4) using 

in-site meteorology data, optimized maximum light use efficiency and GLASS-FPAR to 

estimate GPP (GPP_GLA2) for each site, respectively. Where, CBS in mixed forests site; DHS 

and XSBN in evergreen broadleaf forests site; QYZ in evergreen needleleaf forests site; YC 

in croplands; HB, XLGL and DX in grasslands site. 

 CBS DHS QYZ XSBN YC HB XLGL DX 

Bias(1) −8.4  −2.5  −11.9 −17.6 −4.8 −3.2 0.4  −1.5  
RMSE(1) 17.3  14.1  18.4 31.0  30.0 7.1  4.9  3.2  

R2(1) 0.76  0.39  0.44 0.02  0.80 0.95 0.71  0.85  
Bias(2) −8.5  −0.7  −15.7 −17.3 −24.8 −1.6 0.9  −0.5  

RMSE(2) 17.4  15.2  20.2 31.4  38.7 5.7  4.8  2.1  
R2(2) 0.75  0.42  0.48 0.00  0.79 0.94 0.72  0.89  

Bias(3) −5.7  11.1  −11.3 −11.2 −24.7 −1.0 0.3  −0.4  
RMSE(3) 11.3  15.3  12.9 22.9  38.0 3.9  4.1  1.7  

R2(3) 0.90  0.71  0.88 0.16  0.85 0.98 0.79  0.92  
Bias(4) −4.7  −7.7  −13.4 −33.6 3.1  2.0  1.8  0.6  

RMSE(4) 10.8  9.4  15.0 39.0  15.2 3.4  4.6  2.1  
R2(4) 0.90  0.71  0.88 0.16  0.85 0.98 0.79  0.92  

Through comparing the experiment (2) with (3), we can explain the impact of LAI/FPAR on GPP, 

since (2) and (3) have the same meteorological data but the different FPAR. Table 2 shows that GPP_GLA 

has lower bias and RMSE and a higher R2 than GPP_MOD. By substituting MODIS-FPAR with 

GLASS-FPAR in MODIS-GPP algorithm, it results in improving the accuracies of GPP estimations 

because of using the higher quality of GLASS-LAI/FPAR. The accuracies of GPP estimations improve 

by 2% for DHS to 43% for QYZ. Thus, accurate remote sensing parameters are important for achieving 

reliable estimations. The errors of MODIS-GPP/ET products are mainly caused by inaccuracy of LAI/FPAR. 

By comparison of the experiment (3) and (4), the MOD17 maximum light use efficiency is comparable 

with the optimized value based on flux observed calibration, especially in mixed forests, evergreen needleleaf 
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forests and grasslands. Their bias and RMSE do not significantly change. For croplands, the bias 

significantly decreases from −24.7 gC/m2/8-day to 3.1 gC/m2/8-day and RMSE significantly decreases 

from 38.0 gC/m2/8-day to 15.2 gC/m2/8-day. Croplands generally have strong management, such as 

irrigation and fertilization, which significantly affect photosynthesis capacity, thus the maximum light 

use efficiency may have a large variation in different regions. 

4. Discussion 

4.1. The Representativeness of Sites and Results 

In this study, the flux observed or derived data of eight sites were used for examining the 

performances of MODIS-GPP and ET products. The eight sites of ChinaFLUX were selected to 

represent major ecosystem and climate types in China [20]. Four forests sites (CBS, DHS, QYZ and 

XSBN) locate in the eastern part of China and they are affected by monsoon climate. Among them, CBS, 

QYZ and DHS are distributed along the North-South Transect of Eastern China. Three grasslands sites 

(XLGL, HB and DX) spanned from Daxinganling Mountain Range in the northeast to the Tibetan Plateau 

in the southwest along the Temperate-Alpine Rangeland Transect. CBS and XLGL sites are distributed 

along the North East Chinese Transect, which is a bridge between forests transect and grasslands transect. 

A cropland site (YC) is located in the North China Plain in which the dominant land cover is irrigated 

croplands of double-cropping winter wheat and summer maize. All eight sites are critical in regulating 

climatic change on the Eurasian continent and the selection of all sites is a trade-off between 

micrometeorological criteria and ecological considerations [20]. Given the above-mentioned sites 

representativeness, the flux observed data of eight sites may well represent the net ecosystem exchanges 

of CO2, H2O and heat in major ecosystems. 

Ideally, GPP validating sites should cover as many as land cover types and climate regimes as possible. 

However, limited available filed dataset generally cannot meet the requirement of validation. In this study, 

the flux towers are located across China from 20°N to 45°N and represent five land cover types: mixed forest, 

evergreen needleleaf forests, evergreen broadleaf forests, grasslands and croplands. This study shows 

MODIS-GPP underestimates flux derived GPP with R2 of 0.58, bias of −6.7 gC/m2/8-day and RMSE of 

19.4 gC/m2/8-day for all sites. Compared with results of Zhao et al. [17], we find that MODIS-GPP has 

a better performance in USA (R2 is about 0.70 and relative error is 19%) than in China. In their validation, 

the land cover types mainly include deciduous broadleaf forests, evergreen needleleaf forests, mixed 

forests, shrublands and grasslands across North America from the middle latitude to the polar region. 

The differences of land cove types in both regions can potentially affect the validation results. In addition, 

we find that the MODIS-GPP accuracy for evergreen broadleaf forests (Figure 2b,d) is the worst among 

all land cover types, suggesting that the performances in evergreen broadleaf forests have yet to be 

further optimized. 

Mu et al. [15] indicated that bias significantly increased by 24.1%, RMSE also slightly increased, but 

the correlation coefficients of the measured ET with estimated ET decreased to 0.58 (R2 is about 0.34) 

across 46 towers, when they utilized the DAO meteorological data to run the improved ET algorithm in 

America. Their validated results are close to our results that present that MODIS-ET usually overestimates 

the observed ET with R2 of 0.36, bias of 6 mm/8-day and RMSE of 11 mm/8-day for all eight sites.  
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4.2. Impact of Maximum Light Use Efficiency on GPP Estimate 

The maximum light use efficiency is one of most important parameter in light use efficiency model 

to affect the GPP estimates. Zhang et al. [29] suggested that an important reason for underestimated  

GPP in croplands was that the maximum light use efficiency was underestimated. Using the optimized 

maximum light use efficiency (17.66 gC/MJ/8-day) replacing MOD17 algorithm recommended value 

(5.44 gC/MJ/8-day), Liu et al. [28] found RMSE decreased from 80.87% to 48.43% and bias changed 

from 4.83 gC/m2/8-day to 2.85 gC/m2/8-day when estimating GPP, indicating that adjusting the MOD17 

maximum light use efficiency is necessary for the GPP estimate of croplands. The maximum light use 

efficiency of EBF is also underestimated in MOD17 algorithm except that in croplands. But for MF, 

ENF and grasslands, the maximum light use efficiency values in MOD17 algorithm were close to the 

optimized values. In addition, this study suggested that optimized maximum light use efficiency was 

effective for reducing the bias and RMSE between estimated GPP and flux derived GPP (Table 2), owing 

to that it changed the magnitude of GPP value, however, only optimized maximum light use efficiency 

did not change the R2 of estimated GPP with flux derived GPP. 

4.3. Impact of Different Remote Sensing FPAR on GPP 

As an “internal” factor, FPAR can potentially determine a very important part in remote sensing-based 

GPP model and directly related to the primary mechanism of the canopy photosynthetic process [30]. In 

MODIS-GPP algorithm, light, temperature, and water are just the “external” environmental stresses, 

which will limit maximum light use efficiency, while FPAR as remote sensing forcing data can determinate 

the seasonal change of GPP through adjusting PAR absorbed by the vegetation.  

In experiment (3), after we replaced MODIS-FPAR with GLASS-FPAR, R2 values between estimated 

GPP and flux derived GPP increased by 0.16 (XSBN) ~0.40 (QYZ), implying that the error of  

MODIS-FPAR significantly affects estimated GPP in experiment (2). By comparing MODIS-FPAR 

with GLASS-FPAR, the results show R2 values for evergreen forests (DHS, QYZ and XSBN) are lower 

than 0.16 and RMSE values are greater than 0.23 (Table 3). In contrast, R2 values of MODIS-FPAR and 

GLASS-FPAR in grasslands (HB, XLGL and DX) are more than 0.80, and RMSE and bias are close to 0. 

Therefore, the accuracy of estimated GPP using MODIS-FPAR is comparable with that using  

GLASS-FPAR. Generally, the estimated GPP based on GLASS-FPAR more approaches flux derived 

GPP. For mixed forests and croplands, MODIS-FPAR also gives a good performance with higher R2 

and lower bias. Thus, when using GLASS-FPAR to calculate GPP, the result only performed a little 

improvement compared with estimating GPP based on MODIS-FPAR. 

Table 3. Comparison between MODIS-FPAR and GLASS-FPAR. Where, CBS in mixed 

forests site; DHS and XSBN in evergreen broadleaf forests site; QYZ in evergreen needleleaf 

forests site; YC in croplands; HB, XLGL and DX in grasslands site. 

 CBS DHS QYZ XSBN YC HB XLGL DX 

Bias 0.01 −0.28 −0.12 −0.12 0.04 0.00 0.03 0.00 

RMSE 0.17 0.38 0.26 0.23 0.13 0.07 0.06 0.06 

R2 0.71 0.06 0.16 0.01 0.72 0.96 0.88 0.80 
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As shown in Figure 4, the flux derived GPP fluctuation is consistent with that of FPAR during the 

vigorous growth period in CBS, especially for GLASS-FPAR (R2 = 0.91). It can be concluded that the 

differences between MODIS-GPP and flux derived GPP are mainly caused by MODIS-FPAR during these 

period (Figure 4a). In subtropical regions, clouds can often impact satellite observations. Therefore, FPAR 

appears very large fluctuation for each eight-day in subtropical evergreen forests. Although the fluctuation 

of MODIS-FPAR has been processed by temporal filtering method in MODIS-GPP algorithm [17], our 

study finds that the impact of contamination MODIS-FPAR on GPP still exists. Statistical analysis 

suggests that such MODIS-FPAR fluctuation leads to MODIS-GPP fluctuation and then results in the 

large bias and RMSE of MODIS-GPP compared with flux derived GPP. In Figure 4b–d, the relationship 

between flux derived GPP and GLASS-FPAR gives higher R2 ranging from 0.56 to 0.80, however, R2 

of flux derived GPP and MODIS-GPP only ranges from 0.03 to 0.17. Our results also reveal that  

MODIS-FPAR/GLASS-LAI in evergreen forests (Figure 4b,d) showed a saturation phenomenon with 

most values centralized in the range from 0.8 to 0.9. In the non-growing season, MODIS-FPAR is greater 

than 0.2 in croplands (Figure 4e); while it is generally lower than 0.1 in grasslands (Figure 4f–h). As 

MODIS-FPAR in croplands can explain 70% variations for flux derived GPP, the overestimation in  

non-growing season and underestimation in growing season of MODIS-GPP compared with the flux 

derived GPP can basically attributed to MODIS-FPAR error which was overestimated/underestimated 

by remote sensing data in corresponding seasons. GLASS-FPAR explains 88% variations for flux derived 

GPP in croplands. Thus, when using a better accuracy GLASS-FPAR to estimate GPP, R2 increased from 

0.80 to 0.85. For grasslands (Figure 4f–h), MODIS-FPAR and flux derived GPP has a higher R2 and 

shows a consistent variation in the vigorous growth period. Through these analyses at site scale, it shows 

that improving the accuracy of FPAR is essential for GPP estimations. 

FPAR shows a very high correlation with flux derived GPP, which can be explained biophysically 

with observations that larger canopy and longer growing season allow vegetation to absorb more PAR 

and assimilate more carbon [31]. In turn, as more carbon transformed to GPP, more carbon will be assigned 

to leaf production, which caused larger FPAR and it can maintain the balance by absorbing more PAR. 

If other factors, such as light, temperature and water, are not restricted, change of FPAR should explain 

more variations of GPP. Furthermore, it is also observed that FPAR can well capture the dynamics of 

interannual GPP, but the deviation is larger in the short term which may be caused by short-term stress 

effect due to light, temperature, water, etc. By analyzing the correlations between MODIS-NDVI, -EVI, 

-LAI and -FPAR products with short-term and annual flux measured GPP, Hashimoto et al. [31] pointed 

out that EVI was useful for the analysis of short-term variation in site-estimated GPP. The relationship 

between EVI and GPP has also been widely used in classic remote sensing GPP models [2,7,8]. EVI may 

display better short-term variation of GPP than FPAR and thus could potentially improve the accuracy of 

MODIS-GPP. MODIS-FPAR is derived from MODIS-LAI/FPAR algorithm (a complex three-dimensional 

radiative transfer model with LOOKUP table inversions per biome type [32]), differing form the early 

method of empirical relationships between values of LAI/FPAR and NDVI, but MODIS-FPAR is 

linearly proportional to NDVI [32]. Like NDVI, MODIS-FPAR is sensitive to canopy background variations 

and saturates in areas with dense tree canopy (i.e., Figure 4), while EVI is developed to optimize the 

canopy background information with improved sensitivity in high biomass areas and improved vegetation 

monitoring through a decoupling of the canopy background signal and a reduction in atmosphere 

influences [2,33–35]. 
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Figure 4. Relationship between flux derived GPP (with gC/m2/8-day) and GLASS-FPAR 

(pink)/MODIS-FPAR (blue) for each site. (a) in mixed forests site; (b) in evergreen 

broadleaf forests site; (c) in evergreen needleleaf forests site; (d) in evergreen broadleaf 

forests site; (e) in croplands site; (f,g,h) in grasslands site. 

4.4. Impact of Different Remote Sensing LAI/FPAR on ET 

Many studies have shown that LAI/FPAR and ET have a very good relationship via in-situ observations 

and it has been widely applied in ecosystem process models. For example, in BEPS-EASS model, 

canopy LAI is directly involved in the calculation process of canopy ET [27,36,37]. In addition, canopy 

ET usually occupies a large proportion in total ET. The relationship between LAI/FPAR and ET can be 

explained biophysically that LAI changes will affect stomatal conductance, further affect vegetation 

transpiration rate [38]. On the basis of an analysis of the carbon sequestration, vegetation controls the 

size of stomatal opening to absorb more carbon dioxide from the surrounding air, but at the same time it 

will also consume more water [31]. As assimilated more carbon is fixed as GPP, the corresponding allocation 

to leaf production also increases and further promotes LAI increasing and water consumption [39,40]. 

Without restriction of other environmental factors, the change of ET agrees with that of LAI/FPAR, 

since LAI/FPAR plays an important and positive role in calculating ET [27]. 
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Figure 5. Relationship between flux observed ET (with mm/8-day) and GLASS-LAI  

(pink)/MODIS-LAI (blue) for each site. (a) in mixed forests site; (b) in evergreen broadleaf 

forests site; (c) in evergreen needleleaf forests site; (d) in evergreen broadleaf forests site; 

(e) in croplands; (f,g,h) in grasslands site. 

As shown in Figure 5, statistical analysis between flux observed ET and MODIS-LAI at site scale 

shows that MODIS-LAI can explain more than 50% variations of flux observed ET in five sites (CBS, 

YC, HB, XLGL, and DX, p < 0.01). For evergreen forests, GLASS-LAI with flux observed ET gives a 

higher R2 when comparing with that of MODIS-LAI. In particular, R2 increased by more than 30% in 

DHS and QYZ, owing to that GLASS-LAI values aggregated more relative to the scatter of  

MODIS-LAI. For evergreen broadleaf forests (Figure 5b,d), the fluctuation of MODIS-LAI is very large 

in the vigorous growth period, so the quality of MODIS-LAI directly impacted on the final ET. Thus, the 

consistency of MODIS-ET and flux measured ET is relatively poor. The reason of overestimated ET in 

croplands (Figure 5e) is hard to explain only by analyzing the relationship between LAI and flux observed 

ET, which is probably coming from the setting of key parameters in ET algorithm. Sun et al. [41] indicated 

that when using MODIS-ET algorithm to calculate cropland’s vapor flux, the estimated ET was about 

20% more than the measured ET during the growing season of winter wheat. After they calibrated the 

crop physiological temperature parameters and coefficients for calculating the aerodynamic resistance 

and the fractional vegetation cover, the estimated results became more close to the measured values. 
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Although R2 varies from different land cover types, MODIS-LAI and flux observed ET generally show 

the same fluctuations at each site. The above results indicated that the accuracy of remote sensing LAI 

might directly impact the accuracy of ET. 

4.5. Uncertainties, Errors, and Accuracies 

The concept of FPAR or FPARcanopy (the fraction of photo-synthetically active radiation absorbed by 

plant canopies) is employed in this studies, just like it is widely used in many classical models, such as 

GLO-PEM [42], 3-PG [43], MODIS-PSN [44], C-Fix [45], EC-LUE [46], etc. However, only the PAR 

absorbed by chlorophyll (FPARchl) or other photosynthetic pigments throughout the canopy is used for 

photosynthesis. Therefore, A few studies indicate that this widely used FPARcanopy has proved to be 

physiologically insufficient to calculate GPP [47–50]. For all this, they utilize MODIS reflectance products 

to calculated FPARcanopy and FPARchl, and evaluate differences between FPARcanopy and FPARchl. By 

using FPARchl instead of FPARcanopy to calculate GPP, Zhang et al. [49] presented that uncertainty of 

estimations was reduced. It indicates that FPARchl rather than FPARcanopy should be widely employed to 

calculate GPP in the further study. 

5. Conclusions 

GPP and ET are very important carbon and water fluxes in terrestrial ecosystem, and they determine 

several ecosystem functions, such as respiration and growth. Accurate simulation of these fluxes will be 

helpful for quantifying ecosystem carbon-water exchange and their response to climate change. In this study, 

flux measured data of eight sites provided by ChinaFLUX were used for validating the uncertainties of 

MODIS-GPP and -ET products in different land cover types over China. Results showed that MODIS-GPP 

generally underestimated measured GPP and MODIS-ET overestimated measured ET in China. The 

performance in evergreen forests is very poor for MODIS-GPP. MODIS-ET, in contrast, provides more 

reliable estimates than that of MODIS-GPP in evergreen forests. MODIS-GPP performs well in 

croplands with R2 of 0.80, but it overestimated flux derived GPP in non-growing season and 

underestimated flux derived GPP in growing season; while MODIS-ET overestimated measured ET of 

croplands. MODIS-GPP and -ET algorithms provided very good products in grasslands and mixed forests. 

By designing four experimental groups and taking GPP as an example, we differentiate the impacts of 

max light use efficiency, climate factors and LAI/FPAR on the estimations. The MOD17 maximum light 

use efficiency for croplands and EBF need to be optimized, otherwise it will significantly underestimate 

estimated GPP, especially in croplands. But the MOD17 maximum light use efficiency for other land cover 

types are comparable with the optimized maximum light use efficiency based on flux observed calibration. 

Statistical analysis showed that the differences between the Data Assimilation Office (DAO) meteorological 

data and site measured meteorological data had little impact on GPP, but the remote sensing input data 

(FPAR/LAI) could be more sensitive to the estimate of GPP and ET. Although there are a few uncertainties, 

our results suggest that MODIS-GPP and -ET algorithms can effectively estimate the seasonal dynamics 

of GPP and ET over China. They are effective algorithms for estimating GPP and ET at regional and global 

scales. Meanwhile, high accuracy of LAI and FPAR data can help improve the estimating accuracy of 

GPP and ET. In these cases, the improved algorithms of remote sensing products for cloud detection and 

removal are necessary. 
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