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Abstract: This study proposes a novel method for multichannel image gray level  

co-occurrence matrix (GLCM) texture representation. It is well known that the standard 

procedure for the automatic extraction of GLCM textures is based on a mono-spectral 

image. In real applications, however, the GLCM texture feature extraction always refers to 

multi/hyperspectral images. The widely used strategy to deal with this issue is to calculate 

the GLCM from the first principal component or the panchromatic band, which do not 

include all the useful information. Accordingly, in this study, we propose to represent  

the multichannel textures for multi/hyperspectral imagery by the use of: (1) clustering 

algorithms; and (2) sparse representation, respectively. In this way, the multi/hyperspectral 

images can be described using a series of quantized codes or dictionaries, which are more 

suitable for multichannel texture representation than the traditional methods. Specifically, 

K-means and fuzzy c-means methods are adopted to generate the codes of an image from 

the clustering point of view, while a sparse dictionary learning method based on two 

coding rules is proposed to produce the texture primitives. The proposed multichannel 

GLCM textural extraction methods were evaluated with four multi/hyperspectral datasets: 

GeoEye-1 and QuickBird multispectral images of the city of Wuhan, the well-known 

AVIRIS hyperspectral dataset from the Indian Pines test site, and the HYDICE airborne 

hyperspectral dataset from the Washington DC Mall. The results show that both the 

clustering-based and sparsity-based GLCM textures outperform the traditional method 

(extraction based on the first principal component) in terms of classification accuracies in 

all the experiments. 
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1. Introduction 

Texture analysis, which is based on the local spatial changes of intensity or color brightness, plays 

an important role in many applications of remote sensing imagery (e.g., classification) [1,2]. It is well 

known that the introduction of textural features is an effective method of addressing the classification 

challenge resulting from spectral heterogeneity and complex spatial arrangements within the same 

class [3]. In addition, spatial-spectral methods can improve the accuracy of the land-cover/use 

classification for remote sensing imagery [4]. The gray level co-occurrence matrix (GLCM) is a classic 

spatial and textural feature extraction method [5], which is widely used for texture analysis and pattern 

recognition for remote sensing data [3,6]. The standard procedure for the automatic extraction of 

GLCM textures is based on a mono-spectral image. In most real applications, however, GLCM  

textural calculation is related to multi/hyperspectral images. If the textural features are calculated for 

each spectral band, this necessarily leads to a large amount of redundant and inter-correlated textural 

information, and increased storage requirements and computational burden. Consequently, most of  

the existing studies have chosen to extract the GLCM textures from one of the spectral bands, the  

first principal component, or the panchromatic band. For instance, Franklin and Peddle [7] raised the 

classification accuracy of SPOT HRV imagery from 51.1% (spectral alone) to 86.7% by adding  

the GLCM features created from one of the SPOT HRV bands into the spectral space. Gong et al. [8] 

used the GLCM textures extracted from one of the SPOT XS bands, as well as the multispectral 

information, to improve land-use classification. Puissant et al. [9] confirmed that the use of GLCM 

textures created from the panchromatic band was able to significantly improve the per-pixel classification 

accuracy for high-resolution images. Zhang et al. [10] enhanced the spectral classification by considering 

the GLCM textural information extracted from the first principal component of the multispectral bands. 

Huang et al. [11] improved the classification accuracy of road from 43.0% (spectral alone) to 71% by 

considering the GLCM texture features. Pacifici et al. [12] used multi-scale GLCM textural features 

extracted from very high resolution panchromatic imagery to improve urban land-use classification 

accuracy. However, important information may be discarded or missing when extracting textures from 

the first principal component only. 

In this context, in this study, we propose a multichannel GLCM textural extraction procedure for 

multi/hyperspectral images. Specifically, the multi/hyperspectral images are first coded using a gray 

level quantization algorithm, based on which the textural measures are then computed. Two effective 

techniques are proposed for the multichannel quantization: (1) clustering; and (2) sparse representation. 

To our knowledge, some studies have been reported on multichannel textural extraction. For 

instance, Lucieer et al. [13] proposed a multivariate local binary pattern (MLBP) for texture-based 

segmentation of remotely sensed images. Palm [14] proposed color co-occurrence matrix, which is  

an extension of GLCM for texture feature extraction from color images. Palm and Lehmann [15] 

introduced a Gabor filtering in RGB color space, and the color textures achieved better results than the 
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grayscale features in the experiments. Nevertheless, it should be noted that few approaches were  

made to transfer the GLCM to multichannel textures, especially for multi/hyperspectral remote sensing 

imagery. It is therefore worth testing whether the proposed multichannel GLCM textures have the 

potential to generate effective features for multi/hyperspectral image classification. 

The remainder of the paper is organized as follows. Section 2 briefly reviews the basic concept of 

the GLCM texture. The multichannel GLCM based on clustering and sparse representation is then 

introduced in Section 3. The experiments are reported in Section 4. Finally, the concluding remarks are 

provided in Section 5. 

2. Gray Level Co-Occurrence Matrix (GLCM) 

The GLCM has been proved to be a powerful approach for image texture analysis. It describes how 

often a pixel of gray level i appears in a specific spatial relationship to a pixel of gray level j. The 

GLCM defines a square matrix whose size is equal to the largest gray level Ng appearing in the image. 

The element Pij in the (i, j) position of the matrix represents the co-occurrence probability for co-occurring 

pixels with gray levels i and j with an inter-pixel distance δ  and orientation θ . Haralick et al. [3] 

proposed 14 original statistics (e.g., contrast, correlation, energy) to be applied to the co-occurrence 

matrix to measure the texture features. The most widely used textural measures (Table 1) are considered in 

this study: energy (ENE), contrast (CON), entropy (ENT), and inverse difference (INV). Energy is a 

measure of the local uniformity [16]. Entropy is inversely related to the energy, and it reflects the degree 

of disorder in an image. Contrast measures the degree of texture smoothness, which is low when the 

image has constant gray levels. The inverse difference describes the local homogeneity, which is high 

when a limited range of gray levels is distributed over the local image. 

Table 1. The GLCM features used in this study. 

Method Formula 

Energy (ENE) 
2

, 1

gN

iji j
P

=  

Contrast (CON) ( )
2

, 1

gN

iji j
P i j

=
−  

Entropy (ENT) , 1
loggN

ij iji j
P P

=
−  

Inverse difference (INV) , 11
gN ij

i j

P

i j= + −  

3. Multichannel Level Co-Occurrence Matrix (GLCM) 

An appropriate and robust quantization [17] method, representing the spectral information of  

the multi/hyperspectral imagery, is the key for modeling the textures from multichannel images.  

In this section, we first describe the two methods for the multichannel quantization: (1) clustering;  

and (2) sparse representation. Subsequently, the procedure of multichannel GLCM texture extraction 

from the quantized (or coded) images is introduced. 
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3.1. Clustering-Based Quantization 

Clustering aims at partitioning pixels with similar spectral properties to the same class, and thus it 

can be used to quantize a multi/hyperspectral image into Ng levels. Suppose the multi/hyperspectral 
image I is a set of n pixel vectors { }, 1, 2,...,B

jX x R j n= ∈ = , where B is the number of spectral bands. 

In this study, the set X is subsequently partitioned into Ng clusters by the use of the K-means [18] or 

fuzzy c-means (FCM) [19] algorithms, which are briefly introduced as follows. 

(1) K-means algorithm: This is an iterative algorithm to find a partition where the squared error 

between the cluster center and the points in the cluster is minimized. For each iteration, a vector xj is 

assigned to the i th cluster if: 

( ) ( ){ }1, min ,
gj i q N j qd x C d x C≤ ≤=  (1)

where 

( )2

1
( , )

B

j q jp qpp
d x C x C

=
= −  (2)

and Ci is the center of the ith cluster. 

(2) FCM algorithm: FCM, as a soft clustering method, assigns a vector xj to multiple clusters.  
Let { }( ),1 ,1ij i j gu u x i N j n= ≤ ≤ ≤ ≤  be the membership degree of the vector xj to the ith cluster.  

The implementation of FCM is based on the minimization of the objective function: 

( ) 2

1 1

g
mn N

m ij j ij i
J u x C

= =
= −   (3)

where ∈ (1,∞) is used to adjust the weighting of the membership degree. 

The multichannel gray level quantization algorithm based on the clustering algorithms can be 

described in the following steps: 

Step 1: Set the quantization levels Ng, i.e., the number of clusters. 

Step 2: Implement the clustering algorithm (K-means or FCM) on the multi/hyperspectral image I. 

Every pixel of I then has a numerical label k (k = 1, 2, …, Ng) of the cluster it belongs to, and the 
corresponding cluster centers 1 2{ , ,..., }

gNC C C C=  can be obtained. 

Step 3: Sort the cluster centers { }1 2, ,...,
gNC C C C= in ascending order. 

Step 4: The numerical label k (k = 1, 2, …, Ng) of each pixel in the clustered image is replaced by the 
index corresponding to kC in the ascending order of C . The quantized image is then obtained based 

on the realignment of the clustered image. 

3.2. Sparsity-Based Image Representation 

A multi/hyperspectral image can be sparsely represented by a linear combination of a few atoms 

from a set of basis vectors called a dictionary, which can capture the high-level semantics from the 

data. The sparse representation of an unknown pixel is expressed as a sparse vector α , i.e., the pixel is 

approximately represented by a few atoms from the dictionary and nonzero entries corresponding to 

the weights of the selected basis vectors. The aim of quantization is to make the pixels with similar 

spectral properties have the same gray tone. Thus, the quantization gray tone of the pixels can be 
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indirectly determined by the property of the recovered sparse representation vectors. In other words, 

we can utilize a sparsity-based algorithm to quantize a multi/hyperspectral image into Ng levels.  

In this study, two new sparsity-based algorithms for the GLCM sparse texture representation of 

multi/hyperspectral imagery are proposed. 

The two key steps of the proposed algorithms involve dictionary learning and sparse representation. 
Let 1 2[ , ,..., ] B n

nX x x x R ×= ∈  be the multi/hyperspectral image I (i.e., the input training set of signals), 

the dictionary learning [20,21] aims at optimizing the cost function: 

1

1
( ) ( , )

n

n ii
f D l x D

n

Δ

=
=   (4)

where gB ND R ×∈  denotes the dictionary, and each column denotes a basis vector. l is a loss function, 
and l(x,D) is defined as the optimal value of the 1ι -sparse coding problem: 

2

2 1

1
( , ) min α α

2
NgR

l x D x D
α

λ
Δ

∈
= − +  (5)

where λ is a regularization parameter. Therefore, Equation (4) can be expressed as a joint optimization 
problem about the dictionary D and the sparse coefficients 1 2[α ,α ,...,α ] gN n

nA R ×= ∈ : 

2

2 1
1

1
min ( α α )

2
N ng

n

i i iA R
i

x D λ×∈
=

− +  (6)

In order to solve this problem, the classical method is to alternate between the two variables, i.e., 

minimize one while keeping the other one fixed. However, this approach leads to much computational 
time of iteration for computation of the sparse coefficients α i . The authors in [22] proposed a new 

online dictionary learning algorithm based on stochastic approximation, which does not need to store 
the vectors ix  and α i . Therefore, this method has a low memory requirement and a low computational 

cost, and, can be adapted to large datasets. Thus, this algorithm is adopted in our study to compute the 

dictionary D in Equation (6). Subsequently, the least absolute shrinkage and selection operator (LASSO) 

algorithm [23] is used to learn the sparse representation vectors associated with the learned dictionary D. 
Let 1 2[ , ,..., ] B n

nX x x x R ×= ∈  be the multi/hyperspectral image I, and gB ND R ×∈  is the learned dictionary, 

then a matrix of coefficients 1 2[α ,α ,...,α ] gN n

nA R ×= ∈  can be obtained by the LASSO algorithm. For 

each column x of X, the corresponding column α  of A is the solution of: 

2

2
min αNgR

x D
α∈

−  subject to 
1

α λ≤  (7)

or 

1min αNgRα∈
 subject to 

2

2
αx D λ− ≤  (8)

where Equations (7) and (8) address the sparsity-constrained optimization problem. 

In theory, pixels with similar spectral properties will have similar sparse vectors. At the same time, 

pixels with similar spectral properties will have the same quantization gray tone. Thus, pixels with 

similar sparse vectors should have similar quantization gray levels. Therefore, the quantization gray 

tone can be determined according to the estimated sparse vector. In our study, we propose two rules to 

determine the numerical label k (k = 1, 2, …, Ng) of the cluster that each pixel belongs to (note that the 

pixels with the same numerical cluster label have the same quantization gray tone): 
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(1) Rule 1: The cluster of xi is determined directly by the property of the recovered sparse 
representation vector α i . Define the  residual (i.e., the error between ix  and the reconstruction from 

the j  basis vector and the  component of α i  as: 

2
γ ( ) αj

i i j ijx x D= − , j = 1, 2, …, Ng (9)

The cluster of xi is then defined as the one with the minimal residual: 

1,2,...,( ) arg min γ ( )
g

j
i j N icluster x x==  (10)

(2) Rule 2: Implement the K-means clustering on matrix A to assign the pixels of similar sparse 

representation vectors to the same cluster. 

Based on the above-mentioned rules, the multichannel sparsity-based gray level quantization 

algorithm for multi/hyperspectral image is carried out in the following steps: 

Step 1: Set the quantization levels Ng, and, accordingly, the size of the learned dictionary D is gB N× . 

Step 2: The dictionary learning and sparse representation learning are utilized to obtain dictionary D 

and sparse matrix A. 

Step 3: Rule 1 or 2 is used to determine the numerical label k (k = 1, 2, …, Ng) of the cluster for  

each pixel. 

Step 4: Calculate the cluster centers 1 2{ , ,..., }
gNC C C C=  with 

1
i

i x
i

C x
n ω∈

=  , where ni denotes the 

number of pixels belonging to the ith cluster. 

Step 5: Sort { }1 2, ,...,
gNC C C C=  in ascending order. 

Step 6: The numerical label k (k = 1, 2, …, Ng) of each pixel in the clustered image is replaced by the 
index corresponding to kC  in the ascending order of C . The quantized image is then obtained based 

on the realignment of the clustered image. 

3.3. Multichannel GLCM Texture Calculation 

The multichannel images are first processed with the proposed multichannel gray level quantization 

algorithm, e.g., clustering or sparse representation. The GLCM textural measures are then computed 
from the quantized images, with window size w w×  and displacement vector (δ,θ) . The clustering-based 

GLCM (C-GLCM) textures are called K-means GLCM and FCM GLCM, corresponding to the  

two clustering algorithms. The sparsity-based algorithms for the GLCM texture extraction from 

multi/hyperspectral image are called S-GLCM (1) and S-GLCM (2), related to the two different rules 

which transfer the sparse dictionary to the quantization levels. 

A graphical example is shown in Figure 1 to demonstrate the proposed multichannel GLCM  

texture calculation. 
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Figure 1. General framework of the multichannel GLCM texture calculation. 

 

4. Experiments and Analysis 

4.1. Datasets and Parameters 

In order to validate the effectiveness of the proposed multichannel GLCM algorithms for texture 

feature representation and the classification of multi/hyperspectral imagery, experiments were 

conducted on four test images: GeoEye-1 and QuickBird multispectral images of the city of Wuhan, 

the well-known AVIRIS hyperspectral dataset from the Indian Pines test site, and the HYDICE 

airborne hyperspectral dataset from the Washington DC Mall. The texture measures of GLCM adopted 

in this study are: energy (ENE), contrast (CON), entropy (ENT), and (INV). These measures are 

calculated by setting the inter-pixel distance of one in four directions (0°, 45°, 90°, 135°), and, 

subsequently, the directionality is suppressed by averaging the extracted features over the four 

directions. Considering the multi-scale characteristics of the land-cover classes in remote sensing 

imagery, the experiments were performed with multiple window sizes: 3 × 3, 5 × 5, …, 29 × 29, with 

four different quantization levels (8, 16, 32, 64). In addition, the GLCM texture features were also 

extracted from the first principal component of the multi/hyperspectral images and all the original 

multispectral bands, for the purpose of comparison, which are referred to PCA-GLCM and All-GLCM 

in the following text, respectively. Moreover, the GLCM texture features extracted from clustering and 

sparse strategies were combined (called C&S-GLCM in the following text) in order to test whether 

their integration can further improve the classification accuracy. In the experiments, the extracted 

GLCM texture features stacked with the spectral bands were classified via the SVM classifier. SVM was 

implemented by the use of a Gaussian radial-basis function (RBF) kernel. The penalty parameter and the 

bandwidth of the RBF kernel were selected by fivefold cross-validation [24]. The overall accuracy (OA) 

and Kappa coefficient were used to evaluate the classification accuracy. Moreover, the statistical 

significance test, z-score [25], is used to check whether the difference of the classification results 

obtained by the different algorithms is significant. z > 1.96, −1.96 ≤ z ≤ 1.96 and z < −1.96 denote 

positive, no, and negative statistical significance, respectively. In addition, the computation time for the 

considered algorithms is reported. 

Multispectral images

Sparse representation

Multichannel quantization Coded image GLCM texture features

Clustering-based
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4.2. Results and Analysis 

4.2.1. GeoEye-1 Wuhan Data 

The Wuhan GeoEye-1 test image, with 908 × 607 pixels in four spectral bands (red, green, blue, 

and near-infrared) and a 2.0-m spatial resolution, is shown in Figure 2a. The information for the 

ground truth reference is shown in Figure 2b and Table 2. The training (100 pixels for each class) 

samples were randomly selected from the reference image and the remainder composed the test set. 

The classification accuracies achieved by the different texture extraction algorithms with their 

optimal parameters and the corresponding computation time are compared in Table 3. The z-scores 

used to compare the classification results between the proposed methods and the traditional  

PCA-GLCM are also provided. From Table 3, we can obtain the following observations: 

(a) The accuracy of the spectral classification is significantly improved by introducing the textural 

features, and the increments in the OA are 13.6%~16.8%. 

(b) The proposed multichannel GLCM algorithms, including both the clustering-based (C-GLCM) 

and sparsity-based (S-GLCM) methods, outperform the traditional PCA-GLCM, with less 

computation time. Furthermore, this conclusion is also supported by the significance test  

(z > 1.96). Meanwhile, the proposed S-GLCM algorithms give better result than the All-GLCM. 

It is worth mentioning that the S-GLCM algorithms give better results than the C-GLCM, with 

an increment of 2.1% for the OA. 

(c) The sparsity-based GLCM can obtain satisfactory results with only 8-level quantization. This 

infers that the sparse approach is able to efficiently represent the multispectral images. 

Figure 2. (a) The RGB image for the GeoEye-1 Wuhan image; and (b) the reference map. 

(a) (b) 

 
Roads Shadow Bare soil TreesGrass Roofs
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Table 2. The numbers of samples in the reference data for the GeoEye-1 Wuhan image. 

Information Classes No. of Samples 

Roads 3187 
Roofs 20,074 
Grass 4098 
Trees 5377 

Shadow 1330 
Bare soil 18,249 

Table 3. The classification accuracies achieved by the different texture extraction 

algorithms with their optimal parameters. The z-scores between the proposed methods and 

PCA-GLCM are also reported (GeoEye-1 Wuhan image). 

Methods 
Quantization 

Level (Ng) 
Window 

Size 
OA (%) Kappa z-Score Time (s) 

Spectral classification -- -- 74.7 0.662 -- -- 

Traditional 
All-GLCM 16 17 × 17 89.6 0.857 -- 750.105 

PCA-GLCM 16 19 × 19 88.9 0.847 -- 254.003 

Clustering-based 
K-means GLCM 64 13 × 13 89.4 0.855 2.98 252.409 

FCM GLCM 8 15 × 15 88.3 0.842 −3.84 200.855 

Sparse 
representation 

S-GLCM (1) 8 15 × 15 91.5 0.882 17.81 194.516 

S-GLCM (2) 8 11 × 11 90.1 0.862 6.73 120.463 

Cluster & Sparse C&S-GLCM 16 11 × 11 90.3 0.867 8.81 286.854 

In order to test the robustness of the proposed algorithms, the average accuracies of each technique 

over the 14 window sizes and four quantization levels are compared in Table 4. It can be seen that the 

proposed C-GLCM, S-GLCM, C&S-GLCM outperform the traditional PCA-GLCM, and the increments 

in the average accuracy are 1.4%~3.7%. In addition, the S-GLCM algorithms give better result than 

the All-GLCM by an average increment of 2%. The C-GLCM algorithms achieve similar results with 

the All-GLCM, which outperforms the PCA-GLCM. 

Table 4. The average accuracies (OA%) of each GLCM method over the 14 window sizes 

and four quantization levels for the GeoEye-1 Wuhan dataset. 

Methods Average Accuracies 

Traditional 
All-GLCM 83.3 

PCA-GLCM 81.6 

Clustering-based 
K-means GLCM 83.3 

FCM GLCM 83.0 

Sparse representation 
S-GLCM (1) 85.3 

S-GLCM (2) 85.3 

Cluster & Sparse C&S-GLCM 84.3 

The average accuracies of each texture classification algorithm with the various quantization levels 

are provided in Table 5. It can be clearly observed that the proposed multichannel GLCM algorithms 

provide more accurate results than PCA-GLCM in all the quantization levels. Furthermore, in general, 
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the two sparse GLCM methods give higher accuracies than the clustering-based GLCM, especially for 

low quantization levels (e.g., 8, 16). It is interesting to see that when comparing PCA-GLCM and S-GLCM 

with a quantization level of 8, the improvement in OA achieved by the latter is as high as 10.4%. 

Table 5. The average accuracies (OA%) of each texture classification algorithm with the 

various quantization levels for the GeoEye-1 Wuhan dataset. 

Quantization 
Levels (Ng) 

 All-GLCM PCA-GLCM
K-Means 
GLCM 

FCM 
GLCM

S-GLCM (1) S-GLCM (2) C&S-GLCM

8  81.8 75.2 82.4 83.2 85.6 85.6 83.8 
16  84.2 84.4 83.4 83.0 85.4 86.5 85.4 
32  82.5 83.5 83.8 82.8 85.6 85.0 84.0 
64  84.7 83.3 83.7 83.0 84.1 84.1 84.1 

The classification maps of the spectral classification, All-GLCM, PCA-GLCM, the proposed S-GLCM, 

C-GLCM and C&S-GLCM are compared in Figure 3, for a visual inspection. 

Figure 3. SVM classification results of the GeoEye-1 Wuhan dataset by (a) the original 

multispectral image; (b) All-GLCM with a quantization level of 16; (c) PCA-GLCM with a 

quantization level of 16; (d) K-means GLCM with a quantization level of 64; (e) S-GLCM (1) 

with a quantization level of 8; (f) C&S-GLCM with a quantization level of 16. 

(a) (b) 
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Figure 3. Cont. 

(c) (d) 

(e) (f) 

 

4.2.2. QuickBird Wuhan Data 

In this case, a QuickBird multispectral image of Wuhan city was also used to validate the proposed 

multichannel texture extraction algorithms. The color composite image is shown in Figure 4a, 

Roads Shadow Bare soil TreesGrass Roofs
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comprising 1123 lines and 748 columns with a spatial resolution of 2.4 m. The information for the 

reference map is provided in Figure 4b and Table 6. We randomly chose 100 samples for each class 

from the reference image for training, and the remaining samples composed the test set. 

Figure 4. (a) The RGB image for the QuickBird Wuhan image; and (b) the reference map. 

(a) (b) 

Table 6. The numbers of samples in the reference data for the QuickBird Wuhan dataset. 

Information Classes No. of Samples 

Roads 5103 
Roofs 18,296 
Grass 9179 
Trees 17,415 

Shadow 4378 
Bare soil 3709 

Water 16,614 

The classification results achieved by the different texture extraction algorithms with their  

optimal parameters are reported in Table 7, and the classification maps are compared in Figure 5.  

The classification accuracies based on the original multispectral image are: OA = 87.6% and  

Kappa = 0.854. By analyzing Table 7, the original spectral classification is substantially improved by 

taking the textural features into account. In addition, it can be seen that the highest accuracy is 

achieved by C&S-GLCM (OA = 97.0%), while S-GLCM ranks in the second place. Furthermore, it 

should be noted that the proposed algorithms give better results than All-GLCM with less computation 

time. The conclusion is also supported by the significance test with all the z-scores > 1.96, which 

indicates that the difference of the classification results obtained by the proposed algorithms 

significantly outperform PCA-GLCM. 

Roads Shadow Bare soil TreesGrass RoofsWater
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Table 7. The classification accuracies achieved by different texture extraction strategies 

with the optimal parameters. The z-scores between the proposed methods and PCA-GLCM 

are also reported (QuickBird Wuhan image). 

Methods 
Quantization 

Level (Ng) 
Window 

Size 
OA (%) Kappa z-Score Time (s) 

Spectral classification -- -- 87.6 0.854 -- -- 

Traditional 
All-GLCM 32 21 × 21 93.8 0.928 -- 1740.681

PCA-GLCM 32 19 × 19 93.6 0.925 -- 488.460 

Clustering-based 
K-means GLCM 8 11 × 11 94.5 0.934 5.10 182.815 

FCM GLCM 32 19 × 19 94.1 0.929 2.49 494.369 

Sparse 
representation 

S-GLCM (1) 8 15 × 15 95.6 0.947 13.02 304.815 

S-GLCM (2) 16 17 × 17 95.0 0.939 7.87 385.275 

Cluster & Sparse C&S-GLCM 8 15 × 15 97.0 0.964 22.33 589.519 

The average accuracies of each texture classification algorithm for all the parameters and different 

quantization levels are presented in Tables 8 and 9, respectively. It can be seen from Table 8 that the 

proposed algorithms give better results than the traditional PCA-GLCM and All-GLCM, with an 

increment of 0.5%~2% in the OA. Moreover, the S-GLCM and C&S-GLCM strategies give the best 

accuracies. From the results in Table 9, it can be seen that S-GLCM, C-GLCM, and C&S-GLCM 

achieve higher accuracies than PCA-GLCM and All-GLCM in all the quantization levels. 

Figure 5. SVM classification results of the Wuhan QuickBird by (a) the original 

multispectral data; (b) All-GLCM with a quantization level of 32; (c) PCA-GLCM with a 

quantization level of 32; (d) K-means GLCM with a quantization level of 8; (e) S-GLCM (1) 

with a quantization level of 8; (f) C&S-GLCM with a quantization level of 8. 

(a) (b) 
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Table 8. The average accuracies (OA%) of each technique over the 14 window sizes and 

four quantization levels for the QuickBird Wuhan dataset. 

Methods Average Accuracies 

Traditional 
All-GLCM 91.3 

PCA-GLCM 91.3 

Clustering-based 
K-means GLCM 91.8 

FCM GLCM 91.9 

Sparse representation 
S-GLCM (1) 93.0 

S-GLCM (2) 93.0 

Cluster & Sparse C&S-GLCM 93.3 

Roads Shadow Bare soil TreesGrass RoofsWater
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Table 9. The average accuracies (OA%) of each texture classification algorithm with the 

various quantization levels for the QuickBird Wuhan dataset. 

Quantization 
Levels (Ng) 

All-GLCM PCA-GLCM
K-Means 
GLCM 

FCM 
GLCM

S-GLCM (1) S-GLCM (2) C&S-GLCM

8 91.5 92.0 92.7 91.8 93.8 93.0 94.4 
16 91.6 90.9 91.6 91.6 93.2 93.1 93.3 
32 91.7 91.6 91.6 92.4 92.0 93.0 93.0 
64 90.3 90.7 91.4 91.6 93.1 92.9 92.6 

4.2.3. AVIRIS Indian Pines Dataset 

The proposed algorithms were further tested with the AVIRIS hyperspectral dataset from the Indian 

Pines test site. This image comprises 145 lines and 145 columns, with a spatial resolution of 20 m/pixel 

and 220 bands. The reference image contains 16 classes, representing various types of crops (Table 10). 

The RGB image and the reference image are shown in Figure 6. We randomly chose 50 samples for each 

class from the reference image for training, except for the classes of “alfalfa”, “grass/pasture-mowed”, 

“oats”, and “stone-steel towers”. These classes contain a limited number of samples in the reference 

data, and, hence, only 15 samples for each class were chosen randomly for training. The remaining 

samples composed the test set. 

Table 10. The numbers of samples in the reference data for the AVIRIS Indian Pines image. 

Classes No. of Samples 

Corn-notill 1434 
Corn-min 834 

Corn 234 
Grass/pasture 497 

Grass/trees 747 
Hay-windrowed 489 
Soybeans-notill 968 
Soybeans-min 2468 

Soybeans-clean 614 
Wheat 212 
Woods 1294 

Bldg-grass-tree-drives 380 
Alfalfa 54 

Grass/pasture-moved 26 
Oats 20 

Stone-steel towers 95 

The classification results achieved by the different texture extraction algorithms with their optimal 

parameters are listed in Table 11. The classification maps of the different feature combinations are 

compared in Figure 7. In this dataset, the spectral-only classification cannot effectively discriminate 

between different information classes, resulting in an OA of only 68.2%. The exploitation of the GLCM 

textures can significantly improve the results, regardless of the specific GLCM texture extraction 
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algorithm, and the increments of the OA are 12.8%~19.4%. It can be seen from Table 11 that both the 

clustering-based (C-GLCM) and sparsity-based (S-GLCM) methods outperform the original PCA-GLCM, 

with a 2.1%~3.6% increment in OA. In particular, the C&S-GLCM gives higher accuracy than  

PCA-GLCM by about 6.6%. The z-scores from Table 11 also verified the above observations. 

Figure 6. (a) RGB composite of the Indian Pines image (channels 47, 24, and 14 for 

RGB); and (b) the reference image. 

(a) (b) 

Table 11. The classification accuracies achieved by different texture extraction algorithms 

with the optimal parameters. The z-scores between the proposed methods and PCA-GLCM 

are also reported (AVIRIS Indian Pines dataset). 

Methods 
Quantization 

Level (Ng) 
Window 

Size 
OA (%) Kappa z-Score Time (s)

Spectral classification -- -- 68.2 0.644 -- -- 

Traditional PCA-GLCM 64 27 × 27 81.0 0.786 -- 18.371 

Clustering-based 
K-means GLCM 64 29 × 29 83.1 0.809 5.52 20.196 

FCM GLCM 16 29 × 29 82.2 0.799 3.03 17.524 

Sparse 
representation 

S-GLCM (1) 64 29 × 29 84.6 0.826 9.77 19.852 

S-GLCM (2) 32 29 × 29 82.4 0.802 3.37 17.764 

Cluster & Sparse C&S-GLCM 8 29 × 29 87.6 0.860 17.04 31.376 

4.2.4. HYDICE DC Mall Dataset 

In this experiment, the well-known HYDICE airborne hyperspectral dataset over the Washington 

DC Mall was used for evaluation of the proposed algorithms. This image comprises 1280 lines and  

307 columns, with a spatial resolution of 3 m/pixel and 191 bands. The testing images and  

the reference data are provided in Figure 8 and Table 12. 50 samples for each class are randomly 

chosen from the reference image for training, and the remaining samples compose the test set. 
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Figure 7. SVM classification results of the AVIRIS Indian Pines by (a) the original 

hyperspectral bands; (b) PCA-GLCM with a quantization level of 64; (c) K-means  

GLCM with a quantization level of 64; (d) S-GLCM (1) with a quantization level of 64;  

(e) C&S-GLCM with a quantization level of 8. 

 
(a) (b) (c) 

  

(d) (e) 

The classification results achieved by the different texture extraction algorithms with their optimal 

parameters are reported in Table 13, and the classification maps are compared in Figure 9. From the 

table, it can be seen that both the clustering-based (C-GLCM) and sparsity-based (S-GLCM) methods 

outperform the original PCA-GLCM, with a 2.2%~2.6% increment in OA. Meanwhile, the C&S-GLCM 

gives higher accuracy than PCA-GLCM by 3.7%. The conclusion is also supported by the significance 

test since all the proposed multichannel GLCM methods have the z-scores larger than 1.96 compared 

to the PCA-GLCM. 
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Figure 8. (a) The RGB image for the HYDICE DC Mall image (channels 60, 27, and 17 

for RGB); and (b) the reference map. 

 

(a) 

 

(b) 

 

Table 12. The numbers of samples for the reference data in the HYDICE DC Mall dataset. 

Information Classes No. of Samples 

Roads 2875 
Roofs 5263 
Grass 3075 
Trees 2047 

Shadow 1093 
Trails 1034 
Water 2634 

Table 13. The classification accuracies achieved by different texture extraction algorithms 

with the optimal parameters. The z-scores between the proposed methods and PCA-GLCM 

are also reported (HYDICE DC Mall dataset). 

Methods 
Quantization 

level (Ng) 
Window 

size 
OA (%) Kappa z-Score Time (s) 

Spectral classification -- -- 89.8 0.877 -- -- 

Traditional PCA-GLCM 64 25 × 25 95.1 0.941 -- 436.329 

Clustering-based 
K-means GLCM 32 11 × 11 97.3 0.967 12.08 378.020 

FCM GLCM 16 13 × 13 97.3 0.967 12.01 338.058 

Sparse 
representation 

S-GLCM (1) 32 11 × 11 97.6 0.971 12.75 366.328 

S-GLCM (2) 8 15 × 15 97.7 0.972 14.06 323.216 

Cluster & Sparse C&S-GLCM 8 13 × 13 98.8 0.986 21.04 598.384 

Roads Shadow Trails TreesGrass RoofsWater
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Figure 9. SVM classification results of the HYDICE DC Mall by (a) the original 

hyperspectral bands; (b) PCA-GLCM with a quantization level of 64; (c) K-means  

GLCM with a quantization level of 32; (d) S-GLCM (2) with a quantization level of 8;  

(e) C&S-GLCM with a quantization level of 8. 

 
(a) 

 
(b) 

 
(c) 

(d) 

 
(e) 

Roads Shadow Trails TreesGrassWater
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4.2.5. Discussion 

Some important issues for the proposed methods and the experimental results are discussed below. 

(1) Accuracies: The proposed multichannel GLCM methods can provide accurate classification 

results for both multispectral and hyperspectral images, by exploiting the synthesized texture 

information from multi/hyperspectral bands. Compared to the original spectral classification, 

the accuracy increments achieved by the optimal multichannel textures are 16.8%, 9.4%, 19.4%, 

and 9.0%, respectively, for the GeoEye-1, QuickBird, AVIRIS, and HYDICE images. 

(2) Comparison: The traditional texture extraction methods from multi/hyperspectral remote 

sensing images are based one of the spectral bands [7,8], panchromatic band [9,12], or the first 

component of PCA images [10]. In this study, we compared the proposed multichannel GLCM 

and the PCA-GLCM. It can be found that the proposed methods significantly outperformed the 

traditional PCA-GLCM in terms of the significance test. This phenomenon can be attributed to 

the fact that the proposed methods can consider the contributions of multi/hyperspectral bands 

to the texture representation more effectively. 

(3) Uncertainties: A possible uncertainty for the proposed method refers to the selection of 

parameters, including the window size and quantization level. From the Tables 3, 7, 11, and 13, it 

can be seen that the optimal quantization levels are different for different methods. However, it 

can be noticed that 8-level quantization (Ng = 8) is appropriate for sparsity-based strategy, since 

most of the best accuracies for the sparsity-based GLCM were given by Ng = 8. With respect to 

the window size, no clear regularity can be observed. The suitable window size should be tuned 

according to the spatial resolution of an image and the characteristics of the objects in the image. 

5. Conclusions 

The traditional GLCM (Gray Level Co-occurrence Matrix) texture is calculated based on a  

mono-spectral image, e.g., one of the multispectral bands, the first principal component, or the 

panchromatic image. In this study, we propose a novel multichannel GLCM texture feature representation 

for multi/hyperspectral images, based on a series of image coding methods. The motivation of this study is 

to more effectively represent the texture information from multi/hyperspectral images. 

Specifically, clustering and sparse representation techniques are adopted to generate codes or 

quantized levels for the multichannel texture extraction. It should be noted that although the sparse 

representation methods have been applied in computer vision and pattern recognition, few studies have 

been reported concerning their application in texture analysis.  

The experiments were conducted on four multi/hyperspectral datasets. The optimal overall 

accuracies (OA) achieved by the proposed multichannel GLCM methods are satisfactory. With the 

multispectral datasets, 91.5% and 97.0% accuracy scores were obtained for the GeoEye-1, and 

QuickBird images, respectively. With respect to the hyperspectral datasets, 87.6% and 98.8% for  

the overall accuracy (OA) were given, respectively, for the AVIRIS and HYDICE images. The 

experimental results verify that the proposed sparse GLCM (S-GLCM) outperforms the traditional 

PCA-GLCM in terms of the classification accuracies and significance test. It is also found that the  

S-GLCM achieves slightly better results than the clustering-based GLCM (C-GLCM). Considering 
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that most of the remote sensing applications are related to multi/hyperspectral images, the proposed 

multichannel texture extraction strategies could be included as one of the standard feature extraction tools. 

A possible direction for the future research is to extend the proposed strategy to other texture 

measures, e.g., multichannel local binary pattern (LBP). We also plan to focus our research on the 

texture extraction from hyperspectral data, which has high-dimensional and sparse spectral space. 
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