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Abstract: Satellite optical-infrared remote sensing from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) provides effective air temperature (Ta) retrieval at a spatial 
resolution of 5 km. However, frequent cloud cover can result in substantial signal loss and 
remote sensing retrieval error in MODIS Ta. We presented a simple pixel-wise empirical 
regression method combining synergistic information from MODIS Ta and 37 GHz 
frequency brightness temperature (Tb) retrievals from the Advanced Microwave Scanning 
Radiometer for the Earth Observing System (AMSR-E) for estimating surface level Ta 
under both clear and cloudy sky conditions in the United States for 2006. The 
instantaneous Ta retrievals showed favorable agreement with in situ air temperature records 
from 40 AmeriFlux tower sites; mean R2 correspondence was 86.5 and 82.7 percent, while 
root mean square errors (RMSE) for the Ta retrievals were 4.58 K and 4.99 K for clear and 
cloudy sky conditions, respectively. Daily mean Ta was estimated using the instantaneous 
Ta retrievals from day/night overpasses, and showed favorable agreement with local tower 
measurements (R2 = 0.88; RMSE = 3.48 K). The results of this study indicate that the 
combination of MODIS and AMSR-E sensor data can produce Ta retrievals with 
reasonable accuracy and relatively fine spatial resolution (~5 km) for clear and cloudy  
sky conditions. 
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1. Introduction 

Surface air temperature (Ta), which is defined as the measurement at the height of ~2 m above 
ground in the standard weather (or meteorological) stations, is an important index of terrestrial 
environmental conditions [1], and plays a major role in applied meteorology and climatology [2]. Ta is 
an atmospheric Essential Climate Variable (ECV) [3] and key metric for gauging global climate 
warming at local, regional and global scales [4]. Ta is also major control on terrestrial biophysical 
processes, including plant photosynthesis, respiration, and evapotranspiration. Therefore, accurate 
monitoring of Ta is a fundamental prerequisite for assessing and understanding the biosphere response 
to a changing climate. However, characterizing the spatial distribution of Ta from sparse weather 
station observation networks is constrained over large areas due to measurement inconsistencies and 
bias, uncertainties involving landscape extrapolation and spatial interpolation of point measurements, 
and the representativeness of the station observation network [1,2,5]. 

Satellite remote sensing provides for spatially contiguous daily Ta monitoring from local to global 
scales. Various methods for estimating Ta from satellite optical-IR and passive microwave remote sensing 
have been widely implemented since the 1990s [1,2,6–13]. Satellite remote sensing estimation methods for 
Ta can be broadly classified as: (1) exploiting relationships between optical-infrared retrievals of land 
surface “skin” temperature (LST) and spectral vegetation indices such as the normalized difference 
vegetation index (NDVI) [1,11,14,15]; (2) exploiting relationships between LST and Ta [16–21]; (3) the 
use of infrared soundings of atmospheric temperatures [22,23]; (4) the use of lower frequency (≤37 GHz) 
brightness temperatures (Tb) and surface emissivities from passive microwave radiometry [7,24–27]. 

Satellite microwave remote sensing enables land surface observations under cloudy conditions and 
has been used for effective Ta retrieval. Previous studies have reported strong linear relationships 
between Ta and Tb for various regions and land cover types [24,26–28], especially at the 37 GHz 
frequency. The Tb at higher (e.g., 37 GHz) frequencies is equal to the physical temperature multiplied 
by the land surface emissivity, following the Rayleigh-Jeans approximation [24,29]. However, surface 
emissivity is sensitive to land surface properties and is difficult to quantify, though global land 
parameter records, including Ta, have been developed from satellite multi-frequency daily Tb 
observations and provide reasonable accuracy and consistency [27,30]. However, Ta derived from 
passive microwave remote sensing has a relatively coarse (~12–25 km) spatial resolution needed to 
increase sensor signal-to-noise for detecting low-level land surface microwave emissions. 

In contrast, satellite optical-infrared remote sensing provides for Ta retrievals at relatively finer 
spatial scales. A global operational Ta product is currently produced from MODIS infrared (IR) 
spectral channels [8]. The MODIS07_L2 atmosphere profiles product covers the entire globe at 1–2 day 
intervals, and produces various atmosphere variables, including Ta, at 5 km spatial resolution. The 
temperature variables derived from MODIS07_L2 product have been widely used to estimate surface 
radiation budget parameters, evapotranspiration, and plant productivity in previous applications [31–38]. 
However, the MODIS IR and temperature retrievals are significantly degraded by atmosphere aerosol, 
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smoke and cloud cover contamination, which hampers terrestrial monitoring applications. For this reason, 
many applications based on MODIS data tend to be restricted to clear-sky conditions. Previous studies 
have been conducted to fill resulting Ta retrieval gaps using ancillary meteorological data [16,36,38]. 
However, most applications have used global scale meteorological data having coarse spatial 
resolution (approximately 100 km), which may be lead to uncertainties for terrestrial ecosystem 
monitoring applications at local to regional scales [38]. Nevertheless, global gap-filling methods 
commensurate with the 5 km resolution of the MODIS Ta retrievals are lacking. 

In this study, we investigated a method for estimating Ta at a relatively fine spatial resolution by 
integrating synergistic information from satellite optical-IR and passive microwave remote sensing, and 
considering data continuity and local to regional scale applications. Our objective was to estimate Ta at the 
surface level under clear and cloudy sky conditions primarily using the NASA EOS Aqua MODIS07_L2 
product. The Ta retrievals were directly derived from the MODIS07_L2 product (i.e., MYD07) under clear 
sky conditions, while Ta was estimated under cloudy conditions using a pixel-wise regression model 
developed between MODIS07_L2 Ta and 37 GHz frequency, vertically polarized Tb retrievals (Tb,37v) 
from AMSR-E. Both MODIS and AMSR-E are co-located on the same Aqua satellite platform, with 
simultaneous data acquisitions and global coverage with consistent local 1:30 PM/AM ascending and 
descending orbit equatorial crossings. We also estimated mean daily Ta using the gap-filled daytime and 
nighttime Ta retrievals, because daily Ta can be more useful for the ecological and agricultural applications 
than instantaneous Ta acquired during the Aqua satellite overpasses. 

2. Datasets and Methods 

2.1. Study Sites and Data Collection 

The domain of this investigation was the conterminous United States (US), which encompasses a 
broad range of ecological and climatic conditions (Figure 1). Level 2 half-hourly and hourly in situ air 
temperature measurement records were collected from the AmeriFlux tower monitoring network 
(Available online: http://public.ornl.gov/ameriflux/), and 40 tower sites within the US domain were 
selected to validate the satellite Ta retrievals (see Figure 1 and Table 1). The tower validation sites 
encompass the major regional climate and vegetation types, including evergreen needleleaf forest (ENF), 
deciduous broadleaf forest (DBF), mixed evergreen and deciduous forest (MF), woody savanna (WSV), 
closed shrubland (CSH), grassland (GRS) and cropland (CRP), indicated from the MODIS12Q1 the 
University of Maryland (UMD) global land cover classification [39]. The elevations of the selected 
tower validation sites vary from 6 to 3050 m above mean sea level, while additional tower site 
information is summarized in Table 1. 

2.2. Estimation of Ta for Cloudy Sky Conditions 

MODIS provides useful information for Ta (hereafter MODIS Ta) globally and with relative fine 
spatial resolution (5 km), though these data are largely limited to clear sky conditions [8]. This study 
presents a method to fill data gaps for continuous Ta monitoring by integrating satellite optical-IR and 
passive microwave remote sensing using pixel-wise empirical regression model relationships between 
MODIS Ta and AMSR-E Tb,37v retrievals to estimate Ta under cloudy conditions. Previous studies have 
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reported strong correlations between surface air and land surface temperatures measured by ground 
stations and microwave Tb,37v [24,26–28,40]. The 37 GHz frequency Tb retrievals from AMSR-E are 
relatively insensitive to atmospheric effects, including cloud cover. Furthermore, the vertically 
polarized Tb is less affected by surface emissivity and atmospheric variations [26,27,41,42], and hence 
it should be applicable for the near-surface Ta estimation. 

Figure 1. Land-cover map produced from the MODIS (MOD12Q1) land-cover product for 
2006 and the distribution of AmeriFlux tower measurement and validation sites (yellow dots). 

 

Table 1. Site descriptions of the AmeriFlux observation sites used in this study. 

ID 
Latitude (°N), 

Longitude (°W) 
LC  

Type 
State 

Elevation 
(m) 

ID 
Latitude (°N), 

Longitude (°W) 
LC  

Type 
State 

Elevation 
(m) 

Ne1 42.16, 96.47 CRP NE 361 Fuf 35.08, 111.76 ENF AZ 2180 
Ne2 41.16, 96.47 CRP NE 362 NR1 40.03, 105.54 ENF CO 3050 
Ne3 41.17, 96.43 CRP NE 363 GLE 41.36, 106.24 ENF WY 3190 

ARM 36.60, 97.48 CRP OK 314 Blk 44.15, 103.65 ENF SD 1718 
Ro3 44.72, 93.08 CRP MN 259 SP3 29.75, 82.16 ENF FL 36 
Ro1 44.71, 93.08 CRP MN 259 SP1 29.73, 82.21 ENF FL 44 
IB1 41.85, 88.22 CRP IL 225 Aud 31.59, 110.51 GRS AZ 1469 
Bo1 40.00, 88.29 CRP IL 219 Wkg 37.73, 109.94 GRS AZ 1531 
SO2 33.37, 116.62 CSH CA 1393 Cop 38.09, 109.39 GRS UT 1520 
KS2 28.60, 80.67 CSH FL 6 FPe 48.30, 105.10 GRS MT 634 
MOz 38.74, 92.20 DBF MO 219 Ctn 43.95, 101.84 GRS SD 744 
WCr 45.80, 90.07 DBF WI 515 ARb 35.54, 98.04 GRS OK 424 
MMS 39.32, 86.41 DBF IN 275 ARc 35.54, 98.04 GRS OK 424 
UMB 45.55, 84.73 DBF MI 234 IB2 41.84, 88.24 GRS IL 226 
Ha1 42.53, 72.17 DBF MA 340 Dk1 35.97, 79.09 GRS NC 168 
Bar 44.06, 71.28 DBF NH 272 Fwf 35.44, 111.77 GRS AZ 2270 
Blo 38.89, 120.63 ENF CA 1315 Syv 46.24, 89.34 MF MI 540 
Me2 44.45, 121.55 ENF OR 1253 Dix 39.97, 74.43 MF NJ 48 
Me3 44.31, 121.61 ENF OR 1005 Ton 38.43, 120.96 WSV CA 169.1 
Wrc 45.82, 121.95 ENF WA 371 FR2 29.94, 97.99 WSV TX 271 
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The regression method is simple and feasible to estimate Ta using the relationship between Ta and 
Tb,37v. We checked the relationships between coincident Ta from MODIS07_L2, Tb,37v from AMSR-E, 
and in situ Ta measurements from the 40 AmeriFlux tower validation sites for the daytime and 
nighttime Aqua satellite overpasses. AMSR-E Tb,37v was selected for unfrozen conditions exceeding 
259.8 K, which marks the general threshold between frozen and unfrozen land surface conditions [26]. 
The scatterplot relationships between MODIS Ta, AMSR-E Tb,37v, and tower air temperatures under 
clear sky conditions in 2006 are summarized in Figure 2. Both MODIS Ta and AMSR-E Tb,37v show 
favorable relationships with the local tower observations. The MODIS Ta results show favorable 
accuracy with strong correspondence (R2 > 0.7643) and mean residual biases of –3.58 K and –0.08 K 
for daytime and nighttime overpasses, respectively. The MODIS Ta and AMSR-E Tb,37v results also 
show favorable R2 correspondences exceeding 63%, despite the effect of other environmental factors, 
such surface moisture variability, influencing the Tb,37v temperature sensitivity; these relationships also 
show substantial positive bias of +6.65 K and +12.54 K for respective daytime and nighttime 
conditions. The positive Ta bias relative to Tb,37v reflects the lower microwave emissivity of natural 
landscapes relative to a theoretical black body. Although the comparison between MODIS Ta and 
AMSR-E Tb,37v showed large bias at all sites, the high R2 correspondences were found at the individual 
sites ranging from 0.7647 to 0.9438. It provides the potential to establish the relatively simple 
empirical linear regression relationships at the pixel level between MODIS Ta and AMSR-E Tb,37v. 

Figure 2. The relationships between Ta from MYD07_L2, Tb from AMSR-E, and Ta from 
the tower site measurements over the 40 AmeriFlux validation sites, during day (a) and 
nighttime (b) overpasses of the Aqua satellite. 

 

In this study, the gap-filling plan for estimating MODIS Ta under cloudy sky conditions was 
designed on the basis of the results from the relationships between MODIS Ta and AMSR-E Tb,37v. 
Figure 3 shows the conceptual processing flow for the gap-filling of MODIS Ta for cloudy sky 
conditions using pixel-wise empirical relationships developed between 5 km MODIS (MODIS07_L2) 
Ta for clear sky conditions and coincident 25 km Tb,37v values from the overlying AMSR-E grid cell. 
AMSR-E Tb was divided into homogenous 25 subgrid cells over 25 km grid cell. The linear regression 
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relationships between AMSR-E Tb,37v and MODIS Ta were obtained at each pixel, and the regression 
functions were applied to estimate MODIS Ta under cloudy conditions defined from the MODIS07_L2 
Quality Control (QC) information. The satellite-based continuous Ta estimation was obtained by 
merging Ta datasets for clear (i.e., MODIS Ta) and cloudy (i.e., gap-filled Ta) sky conditions. The 
simple regression development and application approach were applied separately to the day and 
nighttime overpass data, respectively. 

Figure 3. Conceptual diagram for gap-filling of 5 km resolution MODIS (MYD07_L2) Ta 
for cloudy sky conditions using synergistic co-located 25 km resolution AMSR-E Tb 
records that are relatively insensitive to atmosphere degradation effects. This processing 
was applied separately for the day and nighttime overpasses, respectively. 

 

2.3. Daily Ta Estimation 

Daily scale Ta is generally more useful for ecological and agricultural applications than 
instantaneous day and nighttime overpass Ta retrievals. In this study, daily Ta was derived by averaging 
estimated daily Ta maxima and minima derived from the respective gap filled ascending orbit and 
descending orbit satellite overpass temperature retrievals. The overpass time of the Aqua satellite 
carrying the MODIS and AMSR-E sensors is close to the period of daily Ta maxima and minima. The 
local time (LT) of these overpasses at the study sites ranged from 13:00 to 15:00 LT (ascending orbit), 
and from 1:00 to 3:00 LT (descending orbit). The daily maximum Ta (Ta_max) generally occurs around 
15:00 LT, and the daily minimum Ta (Ta_min) occurs before sunrise. The Ta_max and Ta_min retrievals 
were calibrated by subtracting the biases derived from the tower measurement site comparisons. The 
day and nighttime Ta measurements from the tower data were separated using local downward solar 
shortwave radiation measurements (Rsd, W m−2). Tower Ta measurements with corresponding Rsd 
values above and below a 5 W m−2 threshold were separated into day and nighttime data sets, 
respectively. If Rsd was not available from the tower measurement records, daytime conditions were 
assumed to be within 08:00 and 19:00 LT. Daily mean Ta (Ta_mean) was calculated from the tower 
measurements when the number of successful measurement intervals exceeded 40 per day for the 
integrated half-hourly data records and 20 per day for hourly data records, respectively. 
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2.4. Satellite Remote Sensing Data 

In this study, synergistic MODIS and AMSR-E data records were used to estimate Ta under both 
clear and cloudy sky conditions. The operation of both sensors on board the same satellite platform 
facilitates co-located retrievals and consistent overpass time acquisitions. The MODIS Collection 5 
atmosphere profile product (hereafter, MYD07_L2) produces the profiles of atmospheric temperature 
and moisture, atmospheric water vapor and stability, surface air pressure, and total ozone burden. The 
global profiles of atmospheric temperature (Ta) that used in this study is produced to 20 vertical 
atmospheric pressure levels using a statistical regression retrieval algorithm with the several MODIS 
spectral bands ranging from bands 24 (4465 nm) to 36 (14,235 nm), and excluding band 26 [8,25]. The 
MYD07_L2 parameters were derived for day and nighttime overpasses with 5 km pixel resolution 
from the lowest valid layer among 20 vertical levels under clear and partial clear sky conditions. The 
sky condition was determined by the number of clear atmosphere pixels (ClearPix) indicated from the 
accompanying cloud mask QC information ranging from 0 to 25 and derived from the MYD07_L2 1 km 
resolution data (i.e. 25 pixels within 5 km pixel). A ClearPix value of 25 indicates completely clear sky 
conditions within a given 5 km pixel and overpass time. If a ClearPix value is less than 5, the 
MYD_L2 retrievals are not derived due to severely cloudy conditions. 

The AMSR-E Level 2A product contains the brightness temperatures at six frequencies (6.9, 10.7, 
18.7, 23.8, 36.5, and 89.0 GHz) [43,44]. The vertically polarized Tb record at 36.5 GHz frequency 
(Ka band) and 55° incidence angle was used for this study and denoted as 37 GHz (Tb,37v). The Tb,37v 
data is projected to the Equal Area Scalable Earth (EASE) Grid [45] with 25 km spatial resolution. 
In this study, the AMSR-E Tb,37v record was obtained from the National Snow and Ice Data Center 
(NSIDC) [46]. The AMSR-E data record provides global coverage at 1–3 day intervals; gaps in the 
Tb,37v daily ascending and descending orbital time series were filled through temporal linear 
interpolation of adjacent Tb retrievals [47]. 

3. Results 

3.1. Validation of Ta Retrievals 

The relationships between satellite estimated Ta and corresponding tower measurements at the 40 
AmeriFlux validation sites is summarized in Figure 4; gray and black bars in the figure indicate 
respective partial clear sky (ClearPix ≥ 5) and clear sky (ClearPix = 25) conditions. The MYD07_L2 
instantaneous Ta records under clear and partial clear sky conditions (ClearPix ≥ 5) showed favorable 
agreement with the coincident tower validation site measurements for the 2006 study period. There 
were generally strong (R2 > 80.0%) linear associations between MODIS and tower Ta site 
comparisons, except for the KS2 (69.26%), Wrc (79.26%), Aud (79.77%), and Wkg (73.96%) sites. 
The MYD07_L2 Ta results generally underestimated tower measured temperatures at all sites; the 
mean residual error (ME) ranged from −0.01 (SO2) to −10.65 (Wkg) K; root mean square error 
(RMSE) differences ranged from 3.00 to 5.00 K, excluding the FR2 (5.17 K), Wrc (5.24 K), GLE 
(2.77 K), Cop (7.78 K) and Wkg (11.43 K) sites. The R2 correspondence, ME, and RMSE describing 
the overall relationship between the satellite retrievals and in situ tower Ta measurements were 86.58% 
(n = 12,285), −2.22, and 4.57 K, respectively, across all AmeriFlux sites. 
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Figure 4. Error statistics for comparison of air temperature (Ta) obtained from MYD07_L2 
with local temperature measurements from 40 AmeriFlux sites. The gray and black bars 
indicate for partial clear sky (25 ≥ ClearPix ≥ 5) and clear sky (ClearPix = 25) conditions at 
each site, respectively. 

 

For clear sky conditions (ClearPix = 25), the R2 correspondence between MODIS Ta and  
tower temperature observations was generally larger (87.17%) and associated errors were lower  
(i.e., ME = –1.63 K; RMSE = 3.98 K) across all sites (denoted as white circles in Figure 4). The 
highest and lowest correspondence under the clear sky conditions occurred at the Ro1 site  
(R2 = 96.04%) and Wkg site (R2 = 74.28%), respectively. For the KS2 site, the R2 correspondence 
increased from 69.26% under partial clear sky conditions to 86.59% under clear sky conditions. The 
ME and RMSE differences at the individual sites ranged from –9.72 (Wkg) to +0.54 (Ctn) K and from 
2.26 (Dix) to 10.27 (Wkg) K, respectively. The RMSE values for the Wkg (10.27 K) and Cop (7.26 K) 
sites were higher than other sites (RMSE < 5.00 K) under clear-sky conditions. The number of Ta 
retrievals from MODIS under perfect clear-sky conditions was 6219 across all sites, which represented 
nearly half (50.6%) of the total retrievals for 2006 relative to partial clear sky conditions. 

3.2. Estimation of Ta under Cloudy Sky Conditions 

The Ta under cloudy sky conditions was estimated for each pixel using regression models derived 
from the relationship between MODIS Ta and AMSR-E Tb,37v. The number of estimated data points 
under cloudy sky conditions was 11,857 and represented 82.7% of the total 2006 data record. The 
estimated Ta at the 40 validation sites showed generally favorable agreement with the tower 
measurements (R2 = 82.70%, ME = −1.95 K, RMSE = 4.99 K). For the individual sites, KS2 and Cop 
showed the lowest and highest R2 correspondences of 53.7% and 92.21%, respectively (Figure 5). The 
Ne1, UMB, Blo, SP1, and SP3 sites showed slightly lower R2 values ranging from 63.89% to 67.95%, 
relative to the other sites (R2 > 0.7). The ME differences under cloudy conditions ranged  
from −11.33 (Wkg) to +1.45 (SO2) K, which was similar to the temperature estimation performance 
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under clear sky conditions (ClearPix ≥ 5). The UBM site showed the lowest ME (+0.11 K) for cloudy 
sky conditions. For the Ro1 and Ro3 sites, the estimated Ta showed good correspondences with tower 
observations (R2 > 80.0%, ME > −1.1 K), while the temperature discrepancies more than 5 K between 
datasets were observed in January (not shown). The RMSE temperature difference was relatively large 
at the Wkg site (12.15 K), while the Ha1 site showed the smallest RMSE difference (3.3 K) of the 
40 validation sites. 

Figure 5. Error statistics for estimated Ta under cloudy conditions (ClearPix < 5) at the 
40 tower validation sites. 

 

Figure 6a shows the comparison of Ta integrated for clear (blue circles) and cloudy (orange circles) 
sky conditions. The total number of data points was 24,142 for the 2006 study period. Although the 
estimated Ta was slightly underestimated relative to the local tower site measurements (ME = −2.09 K), 
our results showed strong linearity between both datasets. The total RMSE for the 40 tower validation 
sites was 4.79 K, which was slightly larger than the RMSE for clear sky conditions. Figure 6b shows the Ta 
comparison results for the individual tower sites. The KS2 and Cop sites show the lowest (R2 = 62.07%) 
and highest (R2 = 91.18%) Ta correspondence, respectively. The ME and RMSE differences ranged 
from −10.96 (Wkg) to +0.33 (SO2) K and from 3.16 (SP1) to 11.76 (Wkg) K, respectively. The Wkg 
site represents a regional outlier with relatively extreme Ta bias that was approximately 240% larger 
than the other site differences. The satellite-based Ta estimation method for clear and cloudy sky 
conditions was applied for the United States domain. Figure 7 shows the examples of spatial maps of 
Ta for daytime overpasses on April 20 (a and b) and August 1 (c and d) in 2006. There are lots of data 
gaps due to cloud presence of the domain in Figure 7a,c, whereas the gaps were successfully filled 
using the pixel-wise empirical relationships suggested in this study (Figure 7b,d). The spatial variation 
of Ta has come out well in the United States domain. 
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Figure 6. Comparison of the satellite Ta retrievals for clear (blue circles) and cloudy 
(orange circles) sky conditions relative to local temperature measurements at the tower 
validation sites (a) and the associated error statistics (b). 

 

Figure 7. The daytime satellite Ta retrievals over the United States on April 20 (a and b) 
and August 1 (c and d) in 2006. Both spatial maps of a and c were obtained from 
MYD07_L2 for clear sky conditions, and the gaps of them were filled using the proposed 
method in this study (b and d). 

 
 
3.3. Daily Ta Estimation 

The gap-filled day and nighttime Ta retrievals from this study were assumed to be approximately 
equivalent to Ta_max and Ta_min, and were used to estimate the mean daily air temperature (Ta_mean). The 
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satellite-derived Ta_max estimates was slightly underestimated in comparison with the tower measured 
Ta_max. The R2 correspondence for Ta_max was 86.58% (n = 13,552) for all tower validation sites, while 
associated ME and RMSE differences were –4.41 and 6.13 K, respectively. Although Ta_max for cloudy 
conditions showed larger variability (R2 = 83.77%, RMSE = 6.43 K) in satellite retrieval performance 
than for clear sky conditions (R2 = 86.30%, RMSE = 5.84 K), the linear trends were similar between 
clear and cloudy sky conditions (Table 2). For the Ta_min comparisons, the overall R2 correspondence 
was 78.86% (n = 13,699), which was slightly lower than for Ta_max. The satellite Ta_min estimated in this 
study was generally overestimated relative to the local tower Ta_min measurements (ME = +1.55 K, 
RMSE = 4.86 K). The associated R2, ME, and RMSE statistics for the daily mean air temperature 
(Ta_mean) for all sites were 88.33%, −1.52 K and 3.80 K, respectively. The satellite-based Ta_mean retrievals 
were generally underestimated relative to the tower measurements, except for the KS2 (ME = +0.06 K), 
Ro1 (+0.29 K), and SO2 (+1.22 K) sites. 

The Ta_max and Ta_min satellite retrievals from this study were calibrated to improve estimation 
accuracy at the tower sites for Ta_mean by adding systematic offsets of −4.41 K (Ta_max) and +1.55 K 
(Ta_min) to the retrievals. The adjusted Ta_mean results derived from the calibrated Ta_max and Ta_min 
retrievals is presented in Figure 8. The ME and RMSE differences for the calibrated Ta_mean results 
were reduced by approximately 94% and 8%, respectively, relative to the uncorrected Ta_mean results. 
For the uncorrected Ta_mean results, respective ME and RMSE differences were −1.52 K and 3.80 K for 
all sites, and were reduced to −0.09 K and 3.48 K for the corrected Ta_mean results. Figure 8b shows the 
individual site comparison results for the corrected and uncorrected Ta_mean retrievals. In general, the 
ME was slightly larger for the adjusted Ta_mean results relative to the uncorrected retrievals, and ranged 
from −9.04 (Wkg) to 2.65 (SO2) K. On the other hand, the RMSE differences were generally lower for 
the adjusted Ta_mean retrievals and ranged from 2.02 (Blo) to 9.65 (Wkg) K. 

Table 2. Statistical summary of comparisons between satellite and tower measurement based 
daily maximum and minimum air temperatures (Ta_max and Ta_min) under clear sky, cloudy 
sky and total (clear and cloudy) conditions for the 40 AmeriFlux tower validation sites. 

 
Ta_max Ta_min 

Clear Sky Cloudy Sky Total Clear Sky Cloudy Sky Total 
n 6978 6574 13,552 6705 6994 13,699 
R2 0.86 0.84 0.86 0.82 0.76 0.79 

slope 0.88 0.81 0.85 0.91 0.81 0.85 
intercept 30.44 50.01 38.71 43.33 27.38 54.62 
ME (K) –4.46 –4.36 –4.41 +1.20 +1.89 +1.55 

RMSE (K) 5.84 6.43 6.13 4.38 5.27 4.86 
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Figure 8. Comparison of daily mean Ta calculated from satellite derived daily maximum 
and minimum Ta (a) and local temperature measurements, and associated retrieval error 
statistics for daily mean Ta at the 40 tower validation sites (b). The blue and orange circles 
denote clear and cloudy sky conditions, respectively. Clear and partial clear sky conditions 
were determined when both daily maximum and minimum Ta were observed from MODIS 
(ClearPix ≥ 5). 

 

4. Discussion 

In this study, the Ta for clear and cloudy sky conditions were estimated using synergistic MODIS 
and AMSR-E data, and evaluated against local tower temperature measurements from 40 AmeriFlux 
sites spanning the continental US. For the clear sky conditions, the instantaneous Ta was obtained from 
the MODIS (MYD07_L2) atmosphere profiles product, which showed generally favorable agreement 
with the tower observations (RMSE = 4.57 K; Figure 4). The retrieval accuracies according to the 
different sky conditions were evaluated using the number of clear 1 km resolution pixels within each 
5 km resolution grid cell determined from the MYD07_L2 product. The R2 correspondence between 
the satellite retrievals and tower measurements increased from 86.58% under partial cloud cover to 
87.17% under clear-sky conditions, while associated ME and RMSE differences decreased from −2.22 
to –1.63 K, and from 4.57 to 3.98 K, respectively (Figure 4). Although the temperature retrieval 
accuracies were improved under clear sky conditions, the number of retrieved clear-sky data from 
MODIS was nearly half of the total retrievals for the 2006 study period. Fortunately, retrieval 
differences for the different sky conditions were not significantly large (~0.6 K). The Ta retrieval errors 
for clear sky conditions were generally similar to or slightly larger than those reported in previous 
studies using Terra and/or Aqua MODIS07_L2 ranging from 2.4 to 9.8 K [31,33,38,48]. Ta retrievals 
under all-weather conditions determined from relatively sophisticated radiative transfer (RT) 
algorithms and AMSR-E passive microwave sensor Tb observations have reported RMSE retrieval 
accuracies within 3.5K, but at relatively coarse (25 km) spatial resolution [27]. Similar Ta retrieval 
accuracies have also been reported from the Atmospheric Infrared Sounder (AIRS) atmospheric 
sounding measurements [49]. 



Remote Sens. 2014, 6 8399 
 

 

The Ta under cloudy sky conditions were estimated using pixel-wise regression model relationships 
between MODIS Ta for clear sky conditions and corresponding AMSR-E Tb,37v records. The regression 
method between two variables was applied for each pixel following the scheme presented in Figure 3, 
and then Ta was successfully generated for cloudy sky conditions over all AmeriFlux tower validation 
sites from the AMSR-E Tb,37v data (Figure 5). The accuracy of estimated Ta for cloudy conditions was 
dependent upon the accuracy of MODIS Ta for clear sky conditions, as well as AMSR-E Tb,37v. 
The estimated Ta under cloudy sky conditions at the Ro1 and Ro3 sites were underestimated by more 
than 5 K in January and may reflect snow, frost and frozen soil effects on AMSR-E Tb,37v and associated 
surface emissivity [26]. The atmosphere is also generally more opaque to the 37 GHz frequency 
(Ka band) observations than for alternative 23.8 GHz frequency (Ku band) AMSR-E observations.  
Jones et al. [27] found the best correlations between AMSR-E 23.8 GHz frequency Tb retrievals and 
in situ temperature measurements (see Figure 2 in Jones et al.’s paper); they used the 23.8 GHz 
frequency daily Tb records to estimate Ta_max and Ta_min for regional and global applications. However, 
37 GHz frequency Tb observations from overlapping passive microwave sensor records provide  
long-term continuous global observations from the late 1970s to the present [26]. Thus, the simple 
regression method using two different sensors to estimate Ta under cloudy conditions proposed in this 
study can be applied retrospectively to earlier satellite records and to next generation satellite sensors 
such as the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi NPP and the 
Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the JAXA GCOM-W1 satellite. The 
VIIRS and AMSR2 sensors provide general continuity of global observations initiated by the NASA 
EOS MODIS and AMSR-E sensors, respectively. 

Both the instantaneous MYD07_L2 Ta retrieval under clear sky conditions and the estimated Ta retrieval 
under cloudy conditions showed generally favorable agreement with in situ air temperature measurements 
spanning a broad AmeriFlux tower network. Although the results of Ta produced in this study showed 
slightly large RMSE (~4 K) rather than previous studies using LST-NDVI relationship [1,11,14,15], the 
proposed method in this study can be applied to any region regardless of sky conditions such as cloud 
presence. Figure 7 is the good examples to show the spatial variability of Ta for all sky conditions at the 
regional scale. However, large errors were detected at relatively high altitude sites (e.g., Wkg and Cop 
sites in Figures 4 and 5); these discrepancies may reflect differences between the MYD07_L2 Ta 
retrieval height and the local tower elevation. There are efforts to improve the Ta retrieval accuracy from 
MODIS under clear sky conditions. Tang and Li [50], and Bisht and Bras [16] assume hydrostatic 
atmosphere conditions to estimate near-surface Ta by considering complex terrain, and applied the air 
temperature lapse rate to interpolate or extrapolate Ta given the lowest vertical pressure level from the 
Terra MOD07_L2 product. The MODIS07_L2 atmospheric profile product provides air temperature 
profiles at 20 vertical atmospheric pressure levels [25]. The vertical pressure levels for 850, 920, 950, 
1000 hPa from MODIS07_L2 correspond approximately to surface altitudes of 1500, 800, 550, and 
100 m, respectively. However, the apparent mismatch between the retrieval heights and local station 
elevations was observed at the Wkg and Cop sites. Interestingly, the pattern of linearity in comparison 
with tower measurements was strong, and the slope of the regression function was nearly 1.0. These 
systematic errors may occur from mismatches between the retrieval height and local topography. For 
example, the actual altitude is 1531 m for the Wkg site, while the MYD07_L2 Ta retrieval is generally 
produced at the 780 hPa pressure height level. The corresponding altitude of this level is approximately 
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2200 m above mean sea level. Although adjustment for the retrieval height was not considered in this 
study, it may improve the near-surface Ta retrieval accuracy from the MODIS07_L2 product and should be 
considered for future studies, especially over complex terrain areas. 

In this study, the day and nighttime Ta derived from MODIS were assumed to be proxies for Ta_max 
and Ta_min to estimate Ta_mean. The resulting Ta_max and Ta_min estimates were under- and overestimated 
relative to the local tower measurements, respectively. The magnitudes of errors for Ta_min were 
generally similar to previous studies. Lee et al. [35] estimated Ta_min from 2003 to 2006 over the US 
Corn-Belt region by assuming equivalence between the Aqua MODIS nighttime overpass Ta retrievals 
and Ta_min; they reported resulting error ranges from −0.9 to +5.2 K (ME) and from 2.6 to 5.7 K 
(RMSE). Systematic offsets were applied to the satellite based Ta_max and Ta_min estimates to improve 
Ta_mean estimation accuracy at the local tower sites. The corrected Ta_mean results showed general 
improvement over the uncorrected results relative to the tower temperature measurements (Figure 8a). 

5. Conclusions 

Cloud contamination is a significant source of error for monitoring of the Earth surface from 
satellite optical-IR remote sensing. We presented a simple empirical regression method combining 
synergistic information from MODIS and AMSR-E sensors for estimating Ta under both clear and 
cloudy sky conditions. The fusion of data from both sensors is facilitated by their co-location on the 
same Aqua satellite platform, which enables spatially and temporally consistent Earth observations at 
optical-IR and microwave wavelengths. The simple regression method developed for Ta gap filling 
under cloudy conditions produced generally similar accuracy relative to MODIS (MYD07_L2) Ta 
retrievals under clear sky conditions, and in relation to in situ temperature measurements spanning a 
broad range of AmeriFlux tower sites, and representing diverse climate and land cover conditions. The 
instantaneous Ta retrievals for clear and cloudy sky conditions were successfully estimated and 
evaluated using local temperature measurements from 40 AmeriFlux tower validation sites. Although 
the RMSE bias of Ta produced in this study showed approximately 4 K, the suggested method for 
estimating Ta under cloudy sky condition is noticeable in the field of Ta estimation using satellite 
remotely sensed dataset because most of current methods are restricted for the clear sky. The 
instantaneous Ta retrievals at the satellite overpass times were successfully used as proxies for daily 
minimum and maximum air temperature, and for estimating mean daily air temperatures required for 
other science applications. The results of this study indicate that the combination of MODIS and 
AMSR-E sensor data can produce daily Ta records with consistent and reasonable accuracy, and 
relatively fine (~5 km) spatial resolution for both clear and cloudy sky conditions. The resulting Ta 
retrievals for all sky conditions are suitable for various model applications, and as environmental 
inputs for estimating higher order parameters, including vegetation gross primary productivity and 
evapotranspiration. Furthermore, the simple regression method used to estimate Ta under cloudy sky 
conditions proposed in this study can potentially be applied to similar satellite records involving 
retrospective studies or next generation sensors. 
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