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Abstract: Automatic image classification is of major importance for a wide range of
applications and is supported by a complex process that usually requires the identification of
individual regions and spatial patterns (contextual information) among neighboring regions
within images. Hierarchical conditional random fields (CRF) consider both multi-scale and
contextual information in a unified discriminative probabilistic framework, yet they suffer
from two main drawbacks. On the one hand, their current classification performance still leaves
space for improvement, mostly due to the use of very simple or inappropriate pairwise energy
expressions to model complex spatial patterns; on the other hand, their training remains
complex, particularly for multi-class problems. In this work, we investigated alternative
pairwise energy expressions to better account for class transitions and developed an efficient
parameters learning strategy for the resultant expression. We propose: (i) a multi-scale
CRF model with novel energies that involves information related to the multi-scale image
structure; and (ii) an efficient maximum margin parameters learning procedure where the
complex learning problem is decomposed into simpler individual multi-class sub-problems.
During experiments conducted on several well-known satellite image data sets, the suggested
multi-scale CRF exhibited between a 1% and 15% accuracy improvement compared to other
works. We also found that, on different multi-scale decompositions, the total number of
regions and their average size have a direct impact on the classification results.



Remote Sens. 2014, 6 6728

Keywords: conditional random fields (CRF); multi-class maximum margin; standard
piecewise training; image segmentation; image classification

1. Introduction

In this work, we consider the following problem: after segmenting an image into several regions,
classify each region into one of the predefined classes. We refer to this process as region-based image
labeling. The result is both a segmentation of the image and labeling of each region (segment) as a given
object class. Automatic (region-based) image labeling is of importance for several applications, such as
scene understanding, image data base querying, etc.

In natural scenes, different classes are dependent across similar pixels or regions and also on their
co-occurrence. It is not surprising to find regions of certain classes (i.e., river and tree) located next to
each other, but it is very unlikely to find some aberrant co-occurrences, such as a building in the middle
of a lake. Spatial patterns provide valuable contextual information for achieving consistent labeling.
Moreover, since segmentation could provide very small (or too big) ambiguous regions, multi-scale
analysis allows one to determine the objects’ class more accurately [1,2] in the most appropriate scale
within a range (multi-scale) [3].

One of the popular choices to address image classification, including contextual and
multi-scale information, has been Markov random fields (MRF) [4,5]. Recently, a discriminative
probabilistic framework, named conditional random fields (CRF) [6,7], has been proposed for the same
purpose [1,8,9]. However, despite the undeniable improvements of CRF with respect to MRF, two main
issues are still common in most of the CRF state-of-the-art models.

The first issue is that classification results, in several cases, are still very low. We associate this
problem with an inappropriate pairwise energy expression that fails to model complex spatial patterns
(i.e., class transition detections or co-occurrence patterns). This problem can be alleviated by defining
proper features for the energies and by defining the appropriate framework to allow more complex
energy expressions.

The work of [10] suggests the use of non-linear (exponential) potentials. Similarly, in this work,
we model each potential as an unknown function ψc : Y → R (of unknown distribution) in a set
of possible functions ψC ∈ H, where H is a Hilbertian space endorsed with an inner product 〈·, ·〉H.
We also introduce a set of additional weighting parameters (variables) in order to control the
potential combination.

The work of Gould et al. [11] discusses the design of pairwise energies and augments these with
relative location information, but their segmentation strategy does not allow the use of multi-scale
analysis. The authors in [9] use multi-scale information to express pairwise potentials, despite their
local dependencies (intra-scale) involving image structure information (i.e., number of neighbors); their
long-range dependencies (multi-scale or inter-scale) only use color distances. We also make use of
spectral feature differences in the form of distances, and we go further by including image hierarchical
structure (multi-scale) information, such as the scale of analysis, lowest and highest spectral (color)
distances to neighboring regions, the number of siblings (the regions sharing the same parent region on
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the next coarser scale) and the region’s lifetime. We follow a strategy more close to [12], where the
region locations are determined by the multi-scale information ( inside, tangential, non-tangential, etc.),
but based on hierarchical definitions (parents, siblings, neighbors), since our segmentation strategy
guarantees a non-overlapping region’s hierarchical decomposition.

The first contribution of this work is a general energy expression that considers:

• Possible non-linear potential functions ψc(·; θ) = 〈θ, fΦ〉H (inner product) that differ
from the usual ψc(·; θ) = θTf (dot product), where f is a feature vector;
• A weighted mixture of potentials EW (·; θ, d) =

∑
c dcψc(.; θ), dc ≥ 0;

• Simpler (in number of features), yet rich and expressive pairwise energies involving contextual
and multi-scale information.

The second issue, present in most CRF models, is related to the complexity of the parameter
learning stage. The conditional maximum likelihood estimation (CMLE) approach requires approximations
to estimate the partition function [8,13,14] and achieves relatively simple and accurate parameter learning
using gradient descendant optimization methods [15]. Maximum margin confidence approaches do
not involve the partition function on their formulation, but poses a challenging quadratic program
(QP) for the parameter learning, usually solved with (online) sub-gradient [10,16] or cutting-plane
methods [17–19].

When using any of them in the context of CRF parameter learning, another challenge is related to the
necessity of solving an inference problem at each iteration during the optimization loop, which increases
the computational burden.

Other training strategies, such as the piecewise training framework [20] and its variants [21],
proposed simpler formulations to the parameter learning problem and have been shown to be very
competitive [19,21]. They have been extensively used in the context of CMLE [11,19,21–23].

An example is the work in [24], where the authors start from a decomposition on the dual formulation
of a max-margin QP [25] and introduce a piecewise pseudo-likelihood (PWPL) estimator [21] in order
to reduce the (per iteration) inference complexity during training.

In this paper, we consider a particular set of values for the energy weighting coefficients (dc), where
the final energy form involves only single sites and their corresponding pairwise factors, while in [24],
the single-site factors of neighboring sites are involved, too. Then, in order to learn the parameters,
we decoupled the associated QP into simpler individual multi-class sub-problems that can be efficiently
solved dually using the Crammer and Singer fixed-point method [26].

The second contribution of this work is a more general energy expression considering contextual and
multi-scale information, in a max-margin parameter learning approach within the piecewise framework,
which provides a novel strategy to tackle the resultant parameter learning problem. The proposed energy
expression connects to and generalizes other works, reaching the same expression as in [22,24] for
different weighting schemes (values for the weights).

The remainder is organized as follows. The multi-scale CRF formulation is provided in Section 2.
The proposed training strategy is detailed in Section 3, while the inference process is described in
Section 4. Experimental results, using remote sensing images, are reported and discussed in Section 5,
and conclusions are given in Section 6.
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2. Multi-Scale Conditional Random Fields for Image Classification

The CRF formulation model directly the labels conditioned on observations, decomposing the energy
expression according to the different clique order. The clique decomposition theorem defines the overall
form of a general CRF model as follows:

P (x | y, θ) =
1

Z(y, θ)
exp

(∑
c∈C

ψc(xc, y, θ)

)
(1)

where Z(y, θ) is a normalization function named the partition function.
The above model is known to follow an exponential distribution [4], while the potentials ψc are

functions defined over cliques c ∈ C, usually assumed to be linear and expressed as an inner product
between features y and model parameters θ [1,7,8,22]; xc are the labels limited to factors of order c ∈ C.

This general CRF model can be specified for (defined on) the multi-scale region-based image labeling
context. This includes an appropriate potential definition, features for the energy expression, among
others. For the region-based image labeling, there are some other stages involved in the overall process,
such as the image pre-processing (filtering), segmentation, parameter learning and classification. The
general framework is illustrated in Figure 1.

Figure 1. Stages involved in the proposed multi-scale region-based image labeling process.

2.1. PDE-Based Smoothing

In order to avoid blurring and the delocalization of the image features, an image adaptive scale-space
filter is used. In this work, we opted for a method that guides the filtering process in such a way that
intra-region smoothing is preferred over inter-region smoothing and edges are gradually enhanced. The
employed filter [27], belongs to the class of nonlinear anisotropic diffusion filters. It is a combination of
the Catté et al. [28] regularized Perona and Malik filter [29].

Let I = {I(1), I(2), . . . , I(R)} be a vector-valued image defined on a finite domain Ω. The
multiscale tower (u) of I is governed by the following system of coupled parabolic partial differential
equations (PDEs): 

∂tu
(r) = div

[
g (|∇uσ|) ∇u

(r)

|∇u(r)|

]
∀r = 1, 2, . . . ,R

u (t = 0) = I

∂nu = 0 on δΩ

(2)

where u(r) represents the r − th image band, t is the continuous scale parameter, δΩ is the image
boundary (with n denoting the normal direction to it) and σ is a regularization parameter, which ensures
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the well-posedness of the above system; g is the Lorentzian edge stopping function [30], which is
formulated as:

g(|∇uσ|) =
1

1 + |∇uσ |2
k2

(3)

The so-called contrast parameter k in Equation (3) separates backward from forward diffusion and
is estimated using the cumulative histogram of the regularized gradient magnitude (|∇uσ|) [27]. In this
work, a discrete version of the multiscale tower u, denoted as U = {u0, . . . , un, . . . , uN}, is obtained
by applying the natural scale-space sampling method [31]. From the scale space tower, we select a
scale, referred to as the localization scale, at which the diffusion filter has removed the noise without
affecting or dislocating the edges of the salient features in the image, and we apply to it the multi-scale
region adjacency graph (MSRAG) generation process described in Section 2.2. The localization scale is
determined using a maximum correlation criterion proposed in [32].

The maximum correlation criterion selects the scale that maximize the correlation between the
original image and the diffused image:

s0 = arg max
tj

[Cmρ(tj)] = arg max
tj

[
σ[u(t)]− σ[nout(0)]

σ[n(0)]
· σ[nout(t)]

]
(4)

where σ[u(t)] and σ[u(0)] are the standard deviation of both the diffused image at the t − th scale and
the noisy image, respectively, and σ[nout(t)] and σ[nout(0)] are the standard deviation of the outlier noise
of both the diffused image at the t− th scale and the noisy image, respectively. The values of σ[nout(t)]

and σ[nout(0)] are estimated by using the median absolute deviation of the gradient of the diffused and
original images (see [33] for details).

2.2. Multi-Scale Region Adjacency Graph (MSRAG)

In this work, the image classification is treated as a hierarchical labeling problem applied to the
nodes S of a multi-scale region adjacency graph (MSRAG). The MSRAG represents a nested hierarchy
of partitions, Sn = {rn1 , rn2 , . . . , rnmn}; n = 1, . . . , N (rnj being disjoint regions), which preserves the
inclusion relationship Sn ⊇ Sn−1, implying that each atom of the set Sn is a disjoint union of atoms
from the set Sn−1. In other words, a partition at a coarse level is obtained by merging regions of the finer
partition. The MSRAG is defined as a graph G = (S,E), with the set of nodes S being the partitions
at each scale, S = S1

⋃
S2

⋃
· · ·
⋃
SN , and the edges E are the set of common boundaries between the

regions at each scale (intra-scale) and the inter-scale (parent-child) links; see Figure 2.
Hierarchical feature representation through multi-scale segmentation offers new possibilities

in object-oriented and multi-scale image analysis [34]. State-of-the art, object-based and
object-oriented segmentation algorithms are often based on region growing and merging, or linear and
non-linear scale-space.
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Figure 2. The multi-scale region adjacency graph (MSRAG) defines the hierarchical
structure of an image. (a) Nested hierarchy of partitions; (b) multi-scale region adjacency
graph (MSRAG).

(a) (b)

In the proposed framework, starting from the localization scale s0 (obtained using the PDE of
Section 2.1), we follow the approach of [35], where the input multi-spectral image, u0, is first segmented
using the watershed transform. Then, the waterfall algorithm [36] is used for producing a nested
hierarchy of partitions: the multi-scale region adjacency graph (MSRAG); as illustrated in Figure 2.
Such a hierarchy preserves the topology of the initial watershed lines and extracts homogeneous objects
of a larger scale. The waterfall algorithm removes from the current partition (hierarchical level) all
of the boundaries completely surrounded by higher boundaries. Thus, the saliency of a boundary is
measured with respect to its neighborhood. The iteration of the waterfall algorithm ends with a partition
of only one region. To apply the watershed, the gradient of the multi-spectral image is obtained by
combining, using the approach of [37], the gradients of the texture (orientations) and the DiZenzo [38]
multi-spectral gradient. For producing the nested hierarchy, we use the approach proposed in [35], where
the saliency measure of a boundary is based on a collection of energy functions used to characterize
desired single-segment properties and pair-wise segment properties. The single segment properties
includes area, convexity, compactness and color variances within the segment. The pair-wise properties
includes color mean differences between two segments and edge strength. In [35], the saliency measure,
E(r̃ = ri ∪ rj|ri, rj), of a boundary between two neighboring segments ri and rj (being the cost of
merging the regions ri and rj), has been defined as:

E(r̃ = ri ∪ rj | ri, rj) = E(r̃) + E(ri, rj) (5)

The single segment properties, E(r̃), is expressed as:

E(r̃) = Earea(r) · 1
Ehom(r̃)

·
∑

cEvarc(r̃)·
(1 + |Econv(r̃)|)sign(Econv(r̃)) · (1 + |Ecomp(r̃)|)sign(Ecomp(r̃)) (6)

and the pair-wise property as:

E(ri, rj) = Eedge(ri, rj) · ECMDif(ri, rj) (7)
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The different energies associated with segment properties are given in Appendix (C), and additional
details can be found in [35].

2.3. Hierarchical Labeling for Region Classification

The labeling is performed using a finite set L = {1, . . . , L} of interpretation labels. We
consider a couple of random fields (X, Y ) on G, with X = {Xn,∀n ∈ [1, . . . , N ]} and
Xn = {Xn

s , ∀s ∈ Sn} being the label field and Y = {Y n, ∀n ∈ [1, . . . , N ]} and
Y n = {Y n

s ,∀s ∈ Sn} the observations field. In our current implementation Y n
s represents

the region properties at certain site s and scale n. A similar notation holds for the realizations:
x = {xns , ∀n ∈ [1, . . . , N ]∀s ∈ Sn}, xns ∈ L and y = {yns ,∀n ∈ [1, . . . , N ]∀s ∈ Sn},
yns ∈ Rp×B, with p the number of pixels in the region rns and B the number of spectral bands of
the image.

We define the general form of the proposed multi-scale CRF for determining the optimal labeling as:

P (x | y, θ) =
1

Z(y, θ)
exp

(
N∑
n=1

∑
s∈Sn

d1ψA(xns , y, ω)+

+
N−1∑
n=1

∑
s∈Sn

d2ψL(xns , x
n+1
s , y, βL) +

N∑
n=1

∑
i∈Sn

∑
j∈η(i)

d3ψI(x
n
i , x

n
j , y, β

I)


(8)

with s the parent of a node s, η(i) the set of neighbors of site i at the considered level and the
parameters θ = (ω, βI , βL)T defined in order to differentiate intra-scale and inter-scale spatial patterns;
the weighting parameters dm ∈ R+ regulate each potential individual contribution to the overall energy
expression. The pairwise potentials ψI(·; βI) and ψL(·; βL) encode contextual information between
neighbors within the same scale and between parent/child regions at any two consecutive scales,
respectively; while ψA(·;ω) is the association potential, which provides local evidence.

The considered model interactions are approximately represented in Figure 3. In order to make
the representation simpler to follow, we illustrate only parent-child and four neighbors, while in real
segmentation, they usually have any amount of neighbors. This structure falls within a research line of
higher order potential design [39,40].

The partition function Z(y, θ) is defined as the sum of per-clique model energy for every possible
realization x, Z(y, θ) =

∑
x

∏
c∈C ψc(xc, y, θ), where C account for up to second order cliques. The

number of possible values combinations for x is equal to the number of different labels exponential to
the number of sites (|L||S|); due to this, the exact computation of Z(y, θ) becomes very easily intractable,
even for small graphs with a low number of labels.

For the labeling, we consider inter-scale interactions directionally from parents to child, aiming to
collect classification results at the finest scale (see Figure 3), which provides the final classification map.
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Figure 3. In the considered structure, during classification, the information flows from
coarser (higher) to finer (lower) scales to regulate long-range labels consistency and flows
within the same scale to capture local interactions between neighboring regions.

2.4. Potential Definition

The different potentials are defined as follows:

ψA(xs, y, ω) =
∑
l∈L

1(xs=l)ω(l; fy) (9)

ψL(xs, xs, y, β
L) =

∑
l,k∈L

1(xs=l)1(xs=k)1(l=k)β
L(l, k;hLy )

(10)

ψI(xs, xj, y, β
I) =

∑
l,k∈L

1(xi=l)1(xj=k)1(l=k)β
I(l, k;hIy)

(11)

where fy is a unary feature vector, while hLy and hIy are pairwise feature vectors. The function 1(a=b)

returns one if the condition (a = b) is met and zero otherwise. The separation among the different
classes is determined as the following inner product:

ω(l; fy) = 〈ωl, fy,Φ〉H (12)

βL(l, k;hLy ) =
〈
βL1(l=k), h

L
y,Φ

〉
H

(13)

βI(l, k;hIy) =
〈
βI1(l=k), h

I
y,Φ

〉
H

(14)

being wl ∈ H a total of l unknown parameters (l ∈ L), while βL1(l=k) and βI1(l=k) are two and two
unknown parameters, respectively (four in total with 1(l=k) ∈ {0, 1}).
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The (mapped) features fy,Φ, hLy,Φ and hIy,Φ are the feature vectors (fy, hLy and hIy) mapped by a function
Φ : Y → H. In practice, neither the mapping function Φ(·) nor the space H needs to be explicitly
defined; it is sufficient to define a symmetric and positive definite kernel function K : Y × Y → R, to
inherit both the hypothesis spaceH as its unique reproducing kernel Hilbert space (the Moore–Aronszajn
theorem [41]) and the mapping function Φ(·) = K(y, ·).

Note that the distribution of the potentials ψc(·; θ) is assumed to be unknown. For the particular case
of using linear kernel functions, our work will recover the usual linear potential functions, and for any
other kernel functions, we will recover more complex potential functions. A bias value can be easily
introduced in Equations (12)–(14) (if wanted or necessary) by making use of algebraic methods.

In this work, we consider class transition detections for pairwise potential modeling
{1(xa=l)1(xb=k)1(l=k),∀ l, k ∈ L×L}, which can be seen as two binary models: a binary model (transition
occur: yes or no) for the intra-scale potential and a binary model (correct region merging: yes or no) for
the inter-scale potential.

However, the model has been designed for a broader multi-class pairwise potential definition
{1(xa=l)1(xb=k),∀ l, k ∈ L × L} as two multi-class co-occurrence models: a multi-class model of L× L
classes (the transition of class a to b occurs: yes or no?) for the intra-scale potential and a multi-class
model of L× L classes (correct region merging of class a to b: yes or no) for the inter-scale potential.

2.4.1. Unary Local Features

The association potential, ψA(·;ω), is defined as the probability of a site to acquire a certain label
considering the site observations independently. The single-site observation feature vector fy is obtained
as a concatenation of different features making use of an observation y. The following features have
been considered in the current implementation:

1. Spectral: the spectral signature of a region y is characterized for each channel by its mean, standard
deviation, kurtosis and skewness.

2. Textural: the texture of a region is characterized using the local binary pattern [42],
from which we compute the region’s mean value, repeating the process using eight different radius
(neighborhood) values.

3. Morphological: for the shape information, we compute the following morphological features:
elongation, area to length ratio and extent.

4. Scale: the actual scale of the region in question.

Considering a color RGB image, the resultant feature vectors will contain 24 components.

2.4.2. Inter-Scale Pairwise Features

The inter-scale potential, ψL(·; βL), aims at modeling the probability distribution of a good region
merging having taken place (detecting errors on segmentation) during the segmentation process. This
potential function is based on the observations of the region in question (named the actual region) and
other additional information, such as:

1. its parent region: a good merging is supposed to keep spectral homogeneity between the actual
region and its parent;
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2. all of its siblings: a region that is merged with several siblings is supposed to keep spectral
homogeneity with each one of them;

3. the number of siblings: the greater the number of regions that are merged (the number of siblings),
the more likely it is for a bad merging to occur;

4. the scale of the actual region: in hierarchical segmentation, higher levels are more likely to exhibit
regions that combine multiple objects (bad merging);

5. the lifetime of the actual region: whenever a region exhibits a high lifetime (strong edges), it
is because it can be well differentiated (in terms of spectral homogeneity) from its neighboring
regions; therefore, the merging of regions with a high lifetime implies a bad merging detection.

For the inter-scale pairwise energy expression, we combine all of the previous information in a
five-dimensional vector as follows:

hLy =

D(ys, ys),
∑
j∈ς(s)

D(ys, yj), |ς(s)|, n, lifetime(s)

T (15)

ς(s) being all of the siblings (which have a parent region in common) of the region in question;
lifetime(s) is the number of scales at which a region remains the same (without being merged) according
to the MSRAG structure; n denotes the level of the actual region in the MSRAG; |ς(s)| denotes the
number of siblings of the region in question; and D(·, ·) is the Bhattacharyya distance between any two
regions’ histogram.

2.4.3. Intra-Scale Pairwise Features

The intra-scale potential, ψI(·; βI), aims at modeling the probability distribution of two regions
sharing the same label. This potential function is based on the observations of the two regions in question,
but also benefits from additional information, such as:

1. the corresponding neighbor: a region that shares the same label with a neighbor is supposed to
keep spectral homogeneity;

2. lowest neighbor distance: the lowest spectral distance from all neighbors provides a measurement
of how homogeneous the surrounding area that contains the region in question is;

3. highest neighbor distance: the highest spectral distance from all neighbors provides a measurement
of how homogeneous the surrounding area that contains the region in question is;

4. the scale of the actual region: in hierarchical segmentation, higher levels are more likely to exhibit
regions that combine multiple objects (bad merging).

For the intra-scale pairwise energy expression, we concatenate all of the previous information in a
four-dimensional vector as follows:

hIy =

[
D(ys, ys), min

j∈η(s)
D(ys, yj), max

j∈η(s)
D(ys, yj), n

]T
(16)

n being the actual processing scale of site s in the MSRAG and D(·, ·) the Bhattacharyya distance
between the two regions’ histogram.
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3. Parameter Learning

3.1. Piecewise Training Framework

The piecewise training framework has been proposed by [20] in order to reduce the complexity of
the partition function estimation in CMLE approaches, consisting of dividing the full model into pieces
P ∈ T , according to a set of piece types T [21]. An illustration of the standard piecewise framework
(P = C2) can be seen in Figure 4b.

Figure 4. Piecewise pairwise factors of a Markovian model are considered individual pieces
of the same original model. (a) Original model. (b) Standard piecewise training of the same
model (pairwise factors).

(a) (b)

From the partitions P , a new family of upper bounds logZP(y, θ) can be used to provide a
simpler (tractable) estimator [20] for the minimization of the log-partition function logZ(y, θ) ∝∑
P∈T logZP(y, θ). This allows one to re-write the log-likelihood of Equation (1) as follows:

logP (x | y, θ) = log
1

Z(y, θ)
exp

(∑
c∈C

ψc(xc, y, θ)

)
(17)

=
∑
P∈T

∑
c∈P

ψc(xc, y, θ)−
∑
P∈T

logZP(y, θ)

=
∑
P∈T

(∑
c∈P

ψc(xc, y, θ)− logZP(y, θ)

)

where ψc(·; θ) consists of the per clique and per piece-type energy given θ and ZP(y, θ) the local partition
function estimator per model piece-type P [21]. Based on Equation (18), gradient descendant techniques
provide a simple way to learn θ.
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3.2. Max-Margin Parameter Learning

Within the max-margin parameter learning framework, the problem is posed differently. The
parameter learning problem aims to find a θ, such that, for the observed labels x̂ and observations y
in training samples, P (x̂ | y, θ) has to be the highest possible, among all possible values of x:

P (x̂ | y, θ) ≥ P (x | y, θ) ∀x 6= x̂ (18)

This will guarantee that for any possible value x, arg maxx P (x | y, θ) will attain the maximum when
x = x̂. Considering the clique decomposition theorem (Equation (1)), the previous inequality takes the
following form:

1

Z(y, θ)
exp

(∑
P∈T

∑
c∈P

ψc(x̂c, y, θ)

)
≥

1

Z(y, θ)
exp

(∑
P∈T

∑
c∈P

ψc(xc, y, θ)

)
(19)

therefore: ∑
P∈T

∑
c∈P

ψc(x̂c, y, θ) ≥
∑
P∈T

∑
c∈P

ψc(xc, y, θ) ∀x 6= x̂

(20)

where the partition Z(y, θ) function is no longer necessary to be computed.
In the max-margin learning approach, we want that the previous in-equivalence Equation (20) not

only holds, but also has the maximum margin. Assuming the following notations:

EP = −
∑
c∈P

ψc(xc, y, θ) (21)

ÊP = −
∑
c∈P

ψc(x̂c, y, θ) (22)

and introducing a generic loss function `(x, x̂), the parameter learning can be formulated as the following
optimization problem:

max
λ> 0, θ

λ (23)

s.t.
∑
P∈T

EP −
∑
P∈T

ÊP ≥ λ`(x, x̂)

‖θ‖2 ≤ 1 ∀x 6= x̂

which is similar to the max-margin parameter learning problems posed in [18] without considering noisy
data (hard margin). The application of cutting-planes or sub-gradient methods are a common choice to
solve this problem, requiring a full inference on every iteration step [16,18]. This is the first drawback
associated with the max-margin parameter learning. The second drawback is related to the number of
constraints included by x 6= x̂ in Equation (23), which is an exponential value in the number of sites
equal to |L||S| − 1.
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3.3. Proposed Efficient Max-Margin Parameter Learning

In our proposed learning strategy, we avoided using sub-gradient and cutting-plane methods by
decomposing the original problem into several individual multi-class sub-problems that can be efficiently
solved dually, and we significantly reduced the number of constraints included by x 6= x̂. Starting
from Equation (23), a usual assumption [43] is that, likewise the per-clique energy functions ψc(·; θ),
the loss function `(x, x̂) is decomposable according to the different cliques’ order. Using the notation
`P = `P(xP , x̂P), we can state that:

`(x, x̂) =
∑
P∈T

`P(xP , x̂P) (24)

=
∑
P∈T

`P (25)

Then, for any model partition (as simple or as complex as wanted) under T , we propose to decouple
our formulation of Equation (23), decomposing it into the following set of individual multi-class
sub-problems (see Appendix A):

∀P ∈ T

 min
θP

1
2
‖θP‖2

2 + C
∑

i ξi

s.t. EP − ÊP ≥ `P − ξi, ∀NPi=1, ∀xi ∈ ΩP

(26)

where ΩP is the set of label combinations for aP-order clique (see Appendix A) andNP the total number
of related factors [21]; xi ∈ ΩP represents the i-th factor (i = {1, . . . , NP}) possible labels, ξi are
slack variables and x̂i along with yi the corresponding (i-th) ground-truth and observations, respectively,
present in the training samples.

Note that, since T defines the relations of each site with its neighborhood in a Markov blanket (the
set of its parent, children and brothers), it will determine the number of constraints per each i-th site, as
well as the energy form related to each individual site i. Since they have a direct impact on the model
complexity, simple model partitions, such as piecewise (PW) or piecewise-pseudolikelihood (PWPL),
are often preferred, but any structure can be defined for T .

The per-site energy expression, usually defined as E(·; θ) =
∑
ψc(·; θ), can take different forms

and vary according to the site’s relations with its neighbors in the Markov blanket. It is known that
such simple energy expressions are sometimes inappropriate, and the use of extra weighting terms is
necessary to adjust the potential combination [9,18,22,39].

We propose a more general formulationEW (·; θ, d) for the per-site energy expression, which involves
a weighted mixture of potential functions, resulting in a weighted combination of local, contextual and
multi-scale information:

EW (xi, y; θ, d) = d1ψA(xi, y, θ) +∑
j∈Cneighbor |j∈η(i)

(
d4ψ

I
A(xj, y, θ) + d2ψI(xj, xi, y, θ)

)
+

∑
j∈Cparent/child |j∈η(i)

(
d5ψ

L
A(xj, y, θ) + d3ψL(xj, xi, y, θ)

)
(27)
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In order to establish connections with other energy expressions, we defined the model structure G
according to some MSRAG and considered, without loss of generality, some model partition, such as the
PWPL proposed in [21] and assumed in [24].

As can be seen, ψIA(·) and ψLA(·) are unknown potential functions involving single factors of neighbors
within the same scale and parent/child scales, respectively. The weighting terms dm,m = 1, . . . , 5

control the mixture of the different potential information.
The proposed energy expression, EW , generalizes the one used in the works of Alahari et al. [24],

referred to as EPWPL. Note that assuming a fixed set of weights d = (1, 1, 0, 1, 0), both energy
expressions EW and EPWPL become equivalents: EW ≡ EPWPL. It also generalizes the one
used in [22] within the context of CMLE and referred to as EPW , since, for the particular case of
d = (1, 1, 0, 0, 0), both energy expressions EW and EPW become equivalents: EW ≡ EPW .

Then, we introduce the weighted potential mixture into our learning strategy to obtain the following
set of QP problems:

∀P ∈ T

 min
θP

1
2
‖θP‖2

2 + C
∑

i ξi

s.t. EW
P − ÊW

P ≥ `P − ξi, ∀NPi=1,∀xi ∈ ΩP

(28)

where:

EW
P (xi, y, θ) = −

∑
c∈P

dcψc(xi, y, θ) (29)

We considered values for d, such that ∀5
m=1 dm ∈ R+ with d4 = d5 = 0 and solved the parameter

learning in a max-margin approach, where each resultant problem of Equation (28) takes the form of
a standard multiclass support vector machine (SVM) model, very similar to the work of Crammer and
Singer [26], that can be efficiently solved dually using the fixed-point method.

Similar to [39] for max-margin and to [22] for CMLE, we assume a fixed value for d during the
training stage, and we teach them afterword on a validation set.

Since each individual problem is solved dually, the obtained set of optimal dual variables
(α∗-coefficients) are related, under a strong duality assumption (see [25,26]), to the primal variables
(ω, βL and βI) by the Karush–Khun–Tucker (KKT) conditions. Therefore, the optimal ωl is
the following:

∀l ∈ L (ωl)∗ =
∑
i|x̂i=l

α∗i l yi (30)

where α∗i,l are the (already optimal) ith dual variables (also known as support vectors) for the class l and
yi the observation of the i− th sample; the same for βI , βL. For more details, we refer to [26].
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The following algorithm details the proposed training strategy:

1: function LEARNPARAMS( y, x̂,G, T )
2: for (P ∈ T ) do
3: yP ← StructuredObservations(y,G,P) . Defined ysn in Section 2.3
4: x̂P ← StructuredSamples(x̂,G,P) . Detailed in Section 3.4

5: αP ← MulticlassSVM(yP , x̂P) . Dual of Equation (28)
6: ωP ← ToPrimal(αP , yP , x̂P) . Using Equation (30)
7: end for

8: θ∗ = (ωP1 , . . . , wPN )T , N = |T |
9: return θ∗

10: end function

3.4. Structuring the Training Samples According to the MSRAG

Regarding the observations, since the training data is a limited set of labeled pixels (regions) from the
original image, it is structureless and has no related hierarchical information. Therefore, in our model,
they are represented by the observations on the first (finest) scale y1

s only.
In order to obtain the training samples at the other (higher) scales, we propagate this information to

the next coarser scales (see Figure 5), considering that a parent region will have the same label as its
child, only if all of the children share the same label. When children have different labels, we select the
most represented class, by counting the number of pixels related to each class and taking the highest one:

arg max
l

∑
i|i=s

|yni |1x̂ni =l (31)

1x̂ni =l = 1 if the region rnsi has been labeled with a label l on the ground-truth or zero otherwise, and |yni |
is the number of pixels inside the region in question. Then, a region at a higher scale will inherit this
class according to the following condition:

x̂n+1
s =

 l if 1−

∑
i|i=s

|yni |1x̂ni =l

|yn+1
s | ≥ th

0 otherwise
(32)

The above condition guarantees (for the training stage only) that a parent region will receive the same
label of the class most represented on its children regions, only if the total number of known pixels
on its children covers more than a certain percent of the parent region. Such a percent is given by the
threshold th; otherwise, it will remain as an unknown (non-labeled, represented by xn+1

s = 0) region,
and therefore, it will not be part of the training sample set. A similar threshold has been used in [39] for
the same purpose. We usually keep this value as th = 1

L
, where L is the total number of available classes.
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Figure 5. Information flows from the finest to coarsest scales in order to conform the
training sample set structured according to the MSRAG. (a) The provided training samples.
(b) Training at Scale 1. (c) Training at Scale 5.

(a) (b) (c)

4. Inference

Once the optimal parameters θ∗ haven been learned, we can use them to label new samples, by finding
the most likely label configuration given the observations and parameters: arg maxx∈X P (x | y, θ∗),
where:

P (x | y, θ∗) = exp

(
N∑
n=1

∑
s∈Sn

d1ψA(xns , y, ω
∗)+

+
N−1∑
n=1

∑
s∈Sn

d2ψL(xns , x
n+1
s , y, βL

∗
) +

N∑
n=1

∑
i∈Sn

∑
j∈η(i)

d3ψI(x
n
i , x

n
j , y, β

I∗)

 (33)

The inference process can be performed using several methods in the case of multiclass problems
structured as a general graph with loops. Among them, we can find: message passing algorithms, such
as loopy believe propagation (LBP) [44] or tree re-weighted LBP (TR-LBP) [45], and move making
algorithms (graph-cut), such as α/β swap [46] or α-expansion [46].

We selected the LBP method for the inference process, which approximate the marginalized posterior
by a value named believes, computed using a message passing algorithm [44].

Initially, each site belief is equal to the association potential. Then, the neighbors and parent of each
region start to iteratively influence the site belief value, until all of the belief values settle, providing the
final belief value as an approximation of the marginalized posterior.
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Note that different classification maps are obtained from the inference process on different scales, and
coarser scale results have an influence on finer classification maps during inference (see Figure 6). This
influence consists in the enforcement of long-range dependencies from coarser scales to finer scales.

Figure 6. Inference at coarser (higher) scales will influence inference on finer (lower) scales,
enforcing long-range dependencies. (a) Inference result at Scale 1. (b) Inference result at
Scale 9.

(a) (b)

The convergence properties of LBP have been associated with the properties of Bethe free energy and
converge to stationary points of this free energy approximation; see [44] for further details. Recalling
Equation (33), it might be possible that the terms of each independent potential are correlated. This can
lead to over-counting problems during the inference. Once the parameter θ∗ has been found for a fixed
weighting scheme, likewise in [9,18,22,39], we learn the weights d1, d2, d3 via cross-validation.

5. Experimental Results and Discussion

For the evaluation of the proposed model, we selected two well-known remote sensing
datasets, namely the Pavia City Center and Pavia University (both images available online at
http://www.ehu.es/ccwintco/index.php/Hyperspectral Remote Sensing Scenes), and a high resolution
aerial RGB image. The Pavia images are used to compare the proposed method to state-of-art ones,
and the high resolution image is used to analyze the effectiveness of our multi-scale CRF approach.
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5.1. Pavia University Dataset

For the case of the Pavia University dataset (Figure 7a), both the training samples (Figure 7b) and
the ground-truth (Figure 7c) were available and used in the work of Aksoy [47], where a pixel-based
and a region-based classification method have been compared. The details of the training sample pixel
distribution can be found in [47].

Figure 7. The Pavia University dataset (45◦11′39.84′′N 9◦08′06′′E). (a) Image. (b) Training
samples. (c) Testing samples.

(a) (b) (c)

The segmentation scheme described in Section 2.2 has been applied to Pavia University using three
spectral bands (Bands 68, 30 and 2), out of the 103 available bands. We further used the five first obtained
scales in order to define the different potentials, learn the parameters and perform the classification. It
has to be noted that state-of-the-art hierarchical methods use a different number of scales: two in [39],
three in [40] and four in [1]; however, we found that scales higher than five usually do not provide
complementary information, due to the limited ground-truth.

Results using the the proposed multi-scale CRF model, the pixel-level Bayesian (P-L-B) model of [47]
and the region-based Bayesian (R-B-B) model of [47] are given in Tables 1 and 2.It can be observed that
the proposed approach outperforms both the previous results, as well as other region-based approaches,
despite the fact that our proposed model was trained using only three spectral bands, out of the 103
available bands used in [47].
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Table 1. Pavia University dataset: performance evaluation of the proposed approach in
comparison with previous results.

Model # of Used Spectral Bands Accuracy (%)

Pixel-Level Bayesian [47] 10 (PCA from 103) 74.92

Quadratic Gaussian [47] 10 (PCA from 103) 81.27

Region-Level Bayesian [47] 10 (PCA from 103) 84.44

Proposed CRF model 3 (68, 30 and 2) 87.16

Table 2. Pavia University dataset: performance evaluation of the proposed approach in
comparison with previous results; per-class accuracy (%) and overall accuracy (%). P-L-B,
pixel-level Bayesian; R-B-B, region-based Bayesian.

Class
Proposed Models in [47]

CRF P-L-B R-B-B

C1-Asphalt 86.38 61.00 69.67
C2-Meadows 95.91 78.87 92.48
C3-Gravel 57.22 69.84 64.79
C4-Trees 83.29 95.53 95.99
C5-Metal Sheets 90.04 99.70 99.93
C6-Bare Soil 76.09 74.47 79.82
C7-Bitumen 67.51 62.33 77.67
C8-Bricks 83.65 56.06 71.56
C9-Shadow 95.35 97.47 98.10
Overall Accuracy 87.16 74.92 84.44

5.2. Pavia Center Dataset

In the case of the Pavia Center dataset, the ground-truth was available, but not the training samples.
As consequence, we decided to take 10% of the ground-truth as the training samples. We used a random
uniform distribution for determining: (1) squares of a random size; and (2) to locate these squares in
random positions within the image. During the random training selection, we also granted that all of the
classes were roughly represented in a balanced way, resulting in 10% of each class selection conforming
to 10% of the ground-truth. The randomly obtained training samples are detailed in Table 3 and are
illustrated in Figure 8b. As such, compared to [47], we use less training pixels for the following five out
of the considered nine classes: trees, meadows, bricks, bare soil and shadow.
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Figure 8. Pavia Center dataset (45◦11′0.96′′N 9◦08′25.44′′E). (a) Image. (b) Training
samples. (c) Testing samples.

(a) (b) (c)

Results using the the proposed multi-scale CRF model, the pixel-level Bayesian (P-L-B) model of [47]
and the region-based Bayesian (R-B-B) model of [47] are given in Table 3.

Table 3. Pavia Center dataset: description of the randomly selected samples, and
performance evaluation (as accuracy %) of the proposed approach.

Class Training Pixels Total Pixels (%)
Proposed Models in [47]

CRF P-L-B R-B-B

C1-Water 4410 65,971 06.68 99.98 99.85 99.74
C2-Trees 713 7598 09.38 89.07 84.5 81.71
C3-Meadows 346 3090 11.20 69.19 87.96 95.21
C4-Bricks 174 2685 06.48 76.16 83.35 83.69
C5-Bare Soil 800 6584 12.15 95.37 78.77 93.24
C6-Asphalt 1058 9248 11.44 90.27 85.39 93.74
C7-Bitumen 1202 7287 16.50 95.1 83.18 89.28
C8-Tiles 4386 42,826 10.24 99.72 97.67 98.96
C9-Shadow 268 2863 09.36 89.31 82.82 86.20

Overall 13,357 148,152 09.02 97.20 94.89 96.76

From Tables 2 and 3, it is apparent and confirmed according to the measured accuracy considering
the available ground-truth that the multi-scale CRF-based strategy is generally more effective for
classification compared to state-of-art Bayesian (region and pixel) approaches.
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5.3. Airborne RGB Color Image

In order to asses the effectiveness of the proposed multi-scale CRF-based classification, we considered
an areal color (RGB) image, as illustrated in Figure 9a, with nine classes, namely: shadow, dark roads
and paths, light roads and paths, grass land, blue rooftop, red rooftop, green rooftop and arid land. We
conducted an assessment process consisting of: (i) evaluating the importance of the MSRAG structure,
i.e., hierarchical segmentation; and (ii) analyzing the discriminative power of the different models along
with the impact of the potentials on the result. For all of the experiments, we used the same training data
of Figure 9a.

5.3.1. Segmentation and MSRAG Generation Analysis

The proposed multi-scale CRF-based classification can be applied to any hierarchical decomposition
of the image. In this section, we evaluate the classification results using different hierarchical
decomposition approaches. Namely, the proposed MSRAG approach of Section 2.2 and a
scale-space-based hierarchy, denoted MRAT (multiscale region adjacency tree), as described in [3].

Figure 9. The considered areal color (RGB) image. (a) Training samples.
(b) Testing samples.

(a) (b)

The creation of the MRAT is based on the creation of the multi-scale tower using the PDE approach
of Section 2.1. Then, at a manually selected localization scale, u0, a gradient watershed transformation
is performed to detect a set of regions with well-localized contours. To create the hierarchy, the regions
at the localization scale are tracked across the multi-scale tower, and a parent-child linking [27] process
is made. This is achieved by spatially projecting the regional minima at each scale into the coarser one.
Using the duality between the regional minima of the gradient and the catchment basins of the watershed,
each regional minimum residing in a given scale is linked with a regional minimum in the coarser scale,
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if and only if its projection falls in the catchment basin of that regional minimum (for more details, refer
to [27]). It has to be noted that, in [3], the MRAT has the form of a truncated tree, with each node
(apart from the ones at the highest scale) having a unique predecessor (its parent) and not considering
intra-scale links (edges denoting the region adjacency at a given scale).

An illustration of the different hierarchical segmentations is provided in Figures 10 and 11 along
with the respective classification results. The multi-scale CRF classification applied to the considered
multi-scale region adjacency graphs can be compared under visual inspection in Figure 12, and their
per-class accuracy is detailed in Table 4.

In our experiments, we considered the following multi-scale region adjacency graphs:

• A-MRAT (augmented MRAT): this being the MRAT produced using the approach of [3], where
the localization scale was selected manually, and we added the intra-scale edges/links to conform
to our definition of MSRAG (see Figure 2);
• MSRAG A–D: four multi-scale region adjacency graphs obtained starting from the same

localization scale used in the A-MRAT and applying the hierarchical segmentation scheme of
Section 2.2 with an extra step of small regions merging before the waterfall process, taking into
account an expected granularity during the waterfall, with different parameters;
• MSRAG E: this multi-scale region adjacency graph has been obtained by applying (on the original

image) the PDE filtering and localization scale selection of Section 2.1 followed by the hierarchical
segmentation scheme of Section 2.2.

The resultant classification accuracy is given in Table 5, along with the regions and average region
size, per scale and per multi-scale region adjacency graph.

Table 4. Per-class accuracy (%) and overall accuracy (%) of the multi-scale CRF applied to
the considered multi-scale region adjacency graphs.

Class A-MRAT MSRAG A MSRAG B MSRAG C MSRAG D MSRAG E

C1-Shadow 83.98 85.47 89.49 92.15 90.52 97.30
C2-Roads/Path (Dark) 79.65 77.52 75.55 87.87 85.36 87.49
C3-Grass land 82.88 79.90 80.19 68.05 80.18 83.22
C4-Rooftop 1 (Blue) 47.00 46.16 48.05 49.30 52.60 49.58
C5-Rooftop 2 (Red) 77.76 79.83 79.88 79.67 77.43 79.23
C6-Rooftop 3 (Green) 96.06 96.06 96.06 97.75 98.25 97.25
C7-Arid land 61.73 64.63 65.62 81.60 77.84 73.86
C8-Roads/Path (White) 71.19 71.86 77.80 74.99 69.49 74.55

Overall Accuracy 75.49 74.92 75.39 78.76 80.52 81.45



Remote Sens. 2014, 6 6749

Figure 10. Scales and classification maps of the augmented multiscale region adjacency tree
(A-MRAT), MSRAG A and MSRAG B. The first two columns provide regions at Scales
1 and 9, respectively, while the last column provides the classification map. (a) A-MRAT
Scale 1. (b) A-MRAT Scale 9. (c) A-MRAT class-map. (d) MSRAG A Scale 1. (e) MSRAG
A Scale 9. (f) MSRAG A class-map. (g) MSRAG B Scale 1. (h) MSRAG B Scale 9.
(i) MSRAG B class-map.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Figure 11. Scales and classification map of the MSRAG C, MSRAG D and MSRAG E.
The first two columns provide regions at Scales 1 and 9, respectively, while the last column
provides the classification map. (a) MSRAG C Scale 1. (b) MSRAG C Scale 9. (c) MSRAG
C class-map. (d) MSRAG D Scale 1. (e) MSRAG D Scale 9. (f) MSRAG D class-map.
(g) MSRAG E Scale 1. (h) MSRAG E Scale 9. (i) MSRAG E class-map.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Figure 12. Different MSRAG generations will provide different classification results.
(a) Training samples. (b) Testing samples. (c) A-MRAT. (d) MSRAG A. (e) MSRAG B.
(f) MSRAG C. (g) MSRAG D. (h) MSRAG E.

(a) (b)

(c) (d) (e)

(f) (g) (h)
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Table 5. The different hierarchical segmentation strategies provide different numbers of
regions, as well as average region sizes (between brackets) per scale, which influence the
classification results of the CRF model.

Scale A-MRAT MSRAG A MSRAG B MSRAG C MSRAG D MSRAG E

1 14,870 (43) 14,870 (43) 14,870 (43) 3224 (199) 3224 (199) 3081 (208)
2 12,997 (49) 11,781 (54) 6776 (94) 2499 (256) 1475 (434) 1417 (452)
3 11,481 (56) 9941 (64) 4253 (150) 2073 (309) 911 (703) 886 (722)
4 10,155 (63) 8680 (74) 3150 (203) 1767 (362) 659 (971) 647 (989)
5 8953 (71) 7773 (82) 2523 (254) 1381 (414) 526 (1217) 522 (1226)
6 7926 (81) 7106 (90) 2170 (295) 1241 (463) 440 (1455) 442 (1448)
7 6990 (92) 6557 (98) 1933 (331) 1130 (516) 387 (1654) 383 (1671)
8 6145 (104) 6096 (105) 1761 (363) 1035 (566) 348 (1839) 340 (1882)
9 5397 (119) 5710 (112) 1628 (393) 963 (618) 316 (2025) 303 (2112)

Total 84,914 78,514 39,074 15,313 8286 8021

Accuracy 75.49 74.92 75.39 78.49 80.52 81.45

As can be seen, multi-scale region adjacency graphs with a lesser number of regions seem to be better
for the proposed multi-scale CRF model, as far as the reduction of the number of regions not incurring
the addition of excessive region merging errors on the initial scales. Additionally, there seems to be
an influence of the average region’s size over the accuracy of the proposed multi- scale CRF model
classification results.

It is worth noting that the optimal region’s size depends on the size of objects present in the image and
naturally varies from one image to another. Moreover, to better characterize the spectral, textural and
morphological features of a region, the larger the region is, the better the characterization is. In summary,
the experimental results suggest a direct influence of the total number of regions and their average size
on the classification results. The obtained results also suggest that the proposed segmentation scheme
using the PDE smoothing and localization scale selection of Section 2.1 and the multi-scale segmentation
scheme of Section 2.2 produces satisfactory results.

5.3.2. Different Classification Models

For the valuation of the discriminative power of the proposed multi-scale CRF potentials, which
involves both intra-scale and inter-scale potentials trained using the above-described max-margin
training strategy, we compared it with: (i) a region-based support vector machine (SVM) model;
(ii) the MRF classification model of [3]; and (iii) a CRF model using standard potentials.

Classification accuracy results are detailed in Table 6, using the ground-truth of Figure 13b. The
classification maps of the MRF and the proposed CRF, using the A-MRAT hierarchy, are illustrated in
Figure 13c,d, respectively.
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Table 6. Per-class accuracy (%) and overall accuracy (%) of the proposed CRF model
considering different MSRAG structures and the region-based multi-scale Markov random
fields (MRF) of [3]; the highest per-class accuracy has been underlined. Std. CRF refers to
a CRF model with standard energies/potentials.

Std. CRF Proposed CRF Proposed CRF
Class SVM MRF [3] A-MRAT A-MRAT MSRAG E

C1-Shadow 84.49 85.42 83.45 83.98 97.30
C2-Roads/Path (Dark) 82.98 80.80 64.31 79.65 87.49
C3-Grass land 76.94 60.23 42.54 82.88 83.22
C4-Rooftop 1 (Blue) 48.47 40.32 48.34 47.00 49.58
C5-Rooftop 2 (Red) 80.77 79.93 76.08 77.76 79.23
C6-Rooftop 3 (Green) 00.00 98.74 00.00 96.06 97.25
C7-Arid land 60.99 56.31 54.35 61.73 73.86
C8-Roads/Path (White) 62.21 63.26 68.51 71.19 74.55

Overall Accuracy 72.78 66.88 55.71 75.49 81.45

The SVM is a discriminative unstructured model, which has been widely used in remote sensing
applications [48]. The related SVM classification is parameterized by a penalty factor C and the kernel
parameters. For our tests, we used the LibSVM (available at http://www.csie.ntu.edu.tw/ cjlin/libsvm/)
package, a linear kernel (K(x, x) = 〈x, x〉) and a hyper-parameter C = 0.1. Both training and
classification were performed over the finest scale of the hierarchy; each region was described by its
color, texture and shape features.

For the MRF, we used the implementation of the multiscale region-based classification of
Katartzis et al. [3], where the authors proposed a causal Markovian model, defined on the hierarchy
of a multiscale region adjacency tree (MRAT). As mentioned above, their proposed MRAT graph has
the form of a truncated tree, with each node (apart from the ones at the highest scale) having a unique
predecessor (its parent). It has to be noted that this model does not consider intra-scale information.
In [3], the observation model is a unary region property that represents the spectral signature of the
region at the original image. The parameters were learned using a maximum likelihood approach
(using expectation-maximization) and using an efficient exact inference procedure thanks to the tree-like
structure of the model.

As standard CRF, we used the Undirected Graphical Models (UGM) matlab code [49]. The model
is based on Equation (1) using linear unary and pairwise energies E(·; θ) = θTf . We adapted the
implementation to the proposed multi-scale structure and used the max-margin parameters learning
strategy of Section 3.3, however, keeping the original standard energies.
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Figure 13. The proposed multi-scale CRF exhibits superior classification results compared
with MRF for the airborne image. (a) Training samples. (b) Testing samples. (c) Multi-scale
MRF (MRAT) [3]. (d) Proposed multi-scale CRF (A-MRAT).

(a) (b)

(c) (d)

As can be seen from Figure 13, the MRF model of [3] does not exhibit the salt and pepper effect.
This is due to the use of the region-based approach and the long-range dependencies enforced using the
multi-scale information. However, it is unable to properly enforce spatial consistency, as it does not
model intra-scale dependencies.

From Table 6, the higher performance of the proposed multi-scale CRF model compared to the MRF
of [3] has to be related to: (i) the CRF’s discriminative nature [7] compared to the generative nature [6,7]
of MRF, which is also confirmed when comparing to the SVM results; (ii) the design of the unary and
pairwise potentials; and (iii) the type of MSARG.

The highest per-class performance has been underlined in Table 6. It is worth noting that, using the
MRAT as defined in [3], MRF is capable of achieving slightly better performance in one of the eight
classes compared to the CRF models and in five of eight classes compared to the CRF applied on the
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A-MRAT. However, the accuracy improvements of the MRF compared to the CRF models is in the order
of 1.5% in the highest case, while the proposed CRF, using MSRAG E, is capable of improving the
classification results in the order 22% of the accuracy value for certain classes (i.e., C3). The low overall
accuracy of the standard CRF can be due to the parameter settings in our implementation.

5.3.3. The Impact of the Intra- and Inter-Scale Potentials

The above comparison between the MRF and CRF models does not use the same features to
characterize the classes. Indeed, for MRF, only the spectral signature of the regions has been used, while,
for the CRF, each region was characterized by its spectral, texture and shape information. Therefore, in
order to measure the real impact of each individual potential (intra- and inter-scale) in the classification
results, we considered different sets of values for the potential combination of the energy expression
Equation (33). The obtained results are detailed in Table 7 using the considered areal color image.

The results indicate that for the proposed model, for the considered image and model structure
(MSRAG), the multi-scale information is valuable. This can be seen comparing the results that involve
multi-scale information (d2 and d3 used, with the second column as Yes) with the others that do not
involve it (only d1 used, with the second column as No).

From the potentials’ influence point of view, it is clear that their different combinations on the energy
expression of Equation (33) lead to different classification results. However, each potential contribution
will vary depending on the image nature and on the training samples.

For instance, if certain images exhibit clear class transition patterns and these patterns are present in
the training samples, then we expect the intra- scale potential to be influential on the energy expression
in order to improve the classification results. If, on the contrary, no clear class transition patterns can be
distinguished in the image or if they are not present in the training samples, then we should not expect
the intra-scale potential to provide valuable information on the energy expression. A similar analysis can
be done for the inter-scale potential.

Table 7. The potentials mixture weights (dm,m = 1, . . . , 3 in Equation (33)) establish the
final performance of the multi-scale CRF classifier.

Solution # Multi-Scale Information Unary (d1)
Pairwise

CRF Acc
Intra-Scale (d2) Inter-Scale (d3)

1 No 1.0 0.0 - 78.30
2 Yes 1.0 0.0 0.0 80.30
3 Yes 1.0 0.0 1.0 80.30
4 Yes 1.0 0.1 1.0 80.52
5 No 1.0 0.3 - 78.87
6 No 6.0 0.3 - 79.17
7 Yes 6.0 0.3 0.0 81.45
8 Yes 6.0 0.3 11.0 81.45
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5.3.4. Computational Complexity

All of the reported experiments of Section 5.3.2. have been made on an Intel Core i7 at 3.40 Ghz
PC with 8 GB of RAM. Table 8 summarizes the computational costs of the evaluated approaches,
considering the same hierarchical segmentation as the input.

Table 8. Execution time for the parameter learning and inference stage of different models:
SVM as Support Vector Machines; Prop. CRF as the proposed CRF model; Std. CRF
(Max-Margin) as CRF model with standard energies/potentials trained using max-margin
approach; Std. CRF (Max-Likelihood) as CRF model with standard energies/potentials
trained using max-likelihood approach.

Stage SVM MRF Prop. CRF Std. CRF (Max-Margin) Std. CRF (Max-Likelihood)

Params Learning - - 3 s 36 s >4000 s *
Inference - - 340 s 716 s 757 s

Total <1 s 789 s 343 s 752 s > 4500 s

* Ended before convergence after 150 iterations using l-BFGS descent (Broyden–Fletcher–Goldfarb–Shanno).

For all evaluated models, we assume that they share the same computational complexity for the
hierarchical segmentation stage, which can be more or less efficient (it can vary depending on the used
segmentation scheme). As can be seen, SVM applied on the localization scale is the most computational
efficient, since it is simple, but cannot benefit from any available contextual information (hierarchy). For
the MRF and CRF models, the major difference in computational complexity is due to the parameter
learning and inference process for multiclass problems. The computational complexity is dependent
on: (i) the parameter learning approach (maximum likelihood or max-margin); and (ii) the inference
process according to the type of input structure of the hierarchy (with or without loops). From the
theoretical point of view, likewise in [24], the proposed parameter learning is much more efficient,
mainly due to the reduction of the number of constraints (∀x 6= x̂ in Equation (23)) to a much less
number of constraints (∀xP 6= x̂P ,∀P ∈ T in Equation (38) in Appendix A); but it is also due to
the proposed problem decomposition into multiple individual problems that can be solved using the
fixed-point method (see [26] for the details on the method’s efficiency). The execution time values
detailed in Table 8 confirm the suitability of the proposed max-margin parameter learning strategy.
The proposed CRF and the standard CRF models, both involving loopy structures and trained using
max-margin approach, perform similar to the MRF with a loopy-free, tree-like structure. The proposed
CRF also largely outperforms the standard CRF model when trained in a traditional maximum likelihood
fashion. For the CRF models, the reported execution time for the inference process accounts for a fixed
set of values for d1, . . . , d5.
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6. Conclusions

The contributions of this paper are a multi-scale CRF model with novel energies along with an
efficient parameter learning strategy, where the complex learning problem is decomposed into simpler,
individual multi-class sub-problems.

The paper described the main principles of our method and illustrated classification results
on a set of remote sensing images, together with qualitative and quantitative comparisons with
pixel-based techniques, region-based approaches that follow a Bayesian–Markovian framework, either
on hierarchical structures (MRF) or the original image lattice, region-based SVM and standard CRF
models. The extensive experimental results validated the suitability of the model for region-based
image labeling.

We found that there is a relationship between the obtained segmentation and the classification process.
The performed experiments suggested that this influence is related (although not exclusively) to the
created hierarchy (parent-child link), the total number of regions and their average size, as well as
the features used.

In the future, we will be investigating how to pose the per-clique weight (d) and potential (θ) parameter
learning as one joint optimization problem and how to solve it efficiently. We are also planning to
compare the model accuracy and performance with respect to other (more recent) state-of-the-art models
in other (not necessarily aerial) type of images (e.g., [2]).
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Appendix

A. Decomposition of QP

Starting from the problem (23), recalling from Equations (21) and (22) that EP and ÊP are dependant
on θ, and considering Equation (25), we obtain the following optimization problem:

max
λ> 0, θ

λ (34)

s.t.
∑
P∈T

(
EP − ÊP

)
≥
∑
P∈T

λ`P ∀x 6= x̂ (35)

‖θ‖2 ≤ 1
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From Corollary 1 (see Appendix B), under the maximum margin criteria, we can redefine
constraints (35) as a set of P constraints EP − ÊP ≥ λ`P , ∀P ∈ T , as follows:

max
λ> 0, θ

λ (36)

s.t. EP − ÊP ≥ λ`P ∀x 6= x̂,∀P ∈ T (37)

‖θ‖2 ≤ 1

Considering a model partition (i.e., Piecewise) ) [20,21], labels can be structured as ∀x 6= x̂ ∝ ∀xP 6=
x̂P ,∀P ∈ T ; then:

max
λ> 0, θ

λ (38)

s.t. EP − ÊP ≥ λ`P ∀xP 6= x̂P ,∀P ∈ T
‖θ‖2 ≤ 1

Transforming to eliminate λ [50], we obtain the following QP:

min
θ

1

2
‖θ‖2

2 (39)

s.t. EP − ÊP ≥ `P ∀xP 6= x̂P ,∀P ∈ T

Taking into account the per-potential type (P) block structure of θ, the equivalence
‖θ‖2

2 =
∑
P ‖θP‖2

2 [51] leads us to:

min
θ

1

2

∑
P

‖θP‖2
2 (40)

s.t. EP − ÊP ≥ `P ∀xP 6= x̂P ,∀P ∈ T (41)

where the problem decouples as:

∀P ∈ T

 min
θP

1
2
‖θP‖2

2

s.t. EP − ÊP ≥ `P , ∀xP
(42)

Note that for the case of xP = x̂P , Constraint (41) is met, since both sides of the inequality (EP − ÊP
and `P) become zero; therefore, we considered ∀xP instead of ∀xP 6= x̂P .

Let us define ΩP as the set of label combinations for any clique-order P and NP = |P| the total
number of (related) factors [21]; in our problem, ΩP=site ∈ {1, . . . , L}, ΩP=neighbor ∈ {0, 1} and
ΩP=parent/child ∈ {0, 1}. For each i-th factor (i = {1, . . . ., NP}), we associate a possible label
xi ∈ ΩP with the corresponding observation yi and the corresponding true label x̂i from the training data:

∀P ∈ T

 min
θP

1
2
‖θP‖2

2

s.t. EP − ÊP ≥ `P , ∀NPi=1,∀xi ∈ ΩP

(43)

The introduction of slack variables ξ will allow one to assume errors on the obtained separating
hyperplane (soft margin):

∀P ∈ T

 min
θP ,ξi

1
2
‖θP‖2

2 + C
∑

i ξi

s.t. EP − ÊP ≥ `P − ξi, ∀NPi=1,∀xi ∈ ΩP

(44)



Remote Sens. 2014, 6 6759

B. Necessary and Sufficient Conditions for Maximum Margin

Proposition 1: Constraints xn ≥ ln ∀n are sufficient (although not necessary) conditions for the
constraint

∑
xn ≥

∑
ln to be satisfied.

Proof: This is a property of inequalities in algebra. Let {xn, ln}Nn=1 be a set of arbitrary real numbers
satisfying that xn ≥ ln ∀n:

x1 ≥ l1 =⇒ x1 + l2 ≥ l1 + l2

x2 ≥ l2 =⇒ x1 + x2 ≥ l1 + l2

· · ·
xN ≥ lN =⇒ x1 + · · ·+ xN ≥ l1 + · · ·+ lN

=⇒
∑

xn ≥
∑

ln (45)

Proposition 2: The constraint
∑
xn ≥

∑
ln admits a representation of the form

∑
u∈U xu ≥ l̃, where

U = {n | xn < ln} are indexes related to unsatisfied constraints, U ⊆ A,A = {1, . . . , N} and l̃ is a
slack variable.

Proof: Let S = A \ U be the relative complement of U in A. Let us consider the residual (xp − lp),
where xp =

∑
s∈S xs and lp =

∑
s∈S ls, part of the following slack definition:

l̃ =
∑
u∈U

lu − (xp − lp) (46)

then: ∑
u∈U

xu ≥ l̃ ⇐⇒
∑
u∈U

xu ≥
∑
u∈U

lu −
∑
s∈s

xs +
∑
s∈S

ls due to Equation (46)

⇐⇒
∑
n∈A

xn ≥
∑
n∈A

ln sinceA = S
⋃

U

Theorem 1: Let x ∈ RN = {xn | ∀n ∈ A} be a solution of a problem P satisfying the constraint∑
xn ≥

∑
ln, ln ∈ R, where A = {1, . . . , N}. Let M : RN → R,M(x) =

∑
xn −

∑
ln be a solution

margin of P associated with x, U = {n | xn < ln} and S = A \ U be the relative complement of U
in A. Any solution margin MU 6=∅ of P , such that U 6= ∅, will be bounded above by another solution
margin MU=∅ of P , where U = ∅.
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Proof:

M =
∑
s∈S

(xs − ls) +
∑
u∈U

(xu − lu) where (xs − ls) ≥ 0 by definition of S

if U = ∅

then
∑
u∈U

(xu − lu) vanishes (zero)

if U 6= ∅ ⇐⇒ xu − lu < 0 ∀u ∈ U
then

∑
u∈U

(xu − lu) < 0

therefore, MU 6=∅ < MU=∅.

Corollary 1: For any candidate solution x of a problem P, the constraints xn ≥ ln ∀n are:
(i) sufficient conditions to satisfy the constraint

∑
xn ≥

∑
ln; and (ii) necessary and sufficient

conditions to maximize the margin
∑

(xn − ln).

Proof:

Proposition 1 is the proof of (i), while Proposition 2 confirms the possible existence of solutions x that
do not necessarily satisfy xn ≥ ln ∀n. However, a consequence of Theorem 1 is that only solutions that
satisfy xn ≥ ln ∀n (U = ∅) will guarantee the maximum margin M =

∑
(xn − ln), which proves (ii).

C. Single and Pairwise Energy of Segments

- Area

Earea(ri) = 0.002 · N ·M
Area(ri)

(47)

where N ×M is the image size and Area(ri) is the area of the region. The 0.002

term means that regions with a 0.2% area of the whole image have energy 1.0.

- Convexity

Econv(ri) =
Area(ConvexHull(ri))

Area(ri)
− 1.25 (48)

represents the region convexity energy. We assume that regions with convexity
larger than 1.25 are not preferred, and those with convexity energy smaller than
1.25 are desired. Therefore, the offset for the convexity energy is set to −1.25.

Compactness

Ecomp(ri) =
Perimeter(ri)

2

4πArea(ri)
− 1.25 (49)

represents the region compactness energy.
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The compactness energy Perimeter(ri)
2

4πArea(ri)
is always greater than or equal to one (one

for a circle, 4/π for a square). We assume that regions with compactness larger than
1.25 are not preferred. Again, the offset for compactness energy is set to −1.25.

Homogeneity
Ehom(ri) = 1− σ(ri)V (ri) (50)

represents the region’s intensity (I) homogeneity. Homogeneity is largely related to
the local information extracted from an image and reflects how uniform a region is.

Color variance

Evarc(ri) =
1

15
σc(ri) (51)

represents the color homogeneity of a region, with σc(ri) the standard deviation of
the color c ∈ {L, a, b}within region ri. The normalization factor for color variances
is derived from statistical analysis of the color variance results on the image data
base [52].

Color contrast

ECMDif(ri, rj) =
√

(∆µL(ri, rj))2 + (∆µa(ri, rj))2 + (∆µb(ri, rj))2 − Td (52)

represents the normalized mean color difference. The normalization factor Td (for
color merging) is estimated as Td = µd − σv, with µd the mean of the color
differences Dis, and σv =

√
1/n

∑n
i=1(Di − µd)2 the standard deviation of the

n = k(k−1)
2

color differences between the k regions.

Edgeness Eedge(ri, rj) represents the dynamics of the contour of the edge between ri and rj .
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