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Abstract: In many arid mountains, dwarf shrubs represent the most important fodder and 
firewood resources; therefore, they are intensely used. For the Eastern Pamirs (Tajikistan), 
they are assumed to be overused. However, empirical evidence on this issue is lacking.  
We aim to provide a method capable of mapping vegetation in this mountain desert. We 
used random forest models based on remote sensing data (RapidEye, ASTER GDEM) and  
359 plots to predictively map total vegetative cover and the distribution of the most 
important firewood plants, K. ceratoides and A. leucotricha. These species were mapped as 
present in 33.8% of the study area (accuracy 90.6%). The total cover of the dwarf shrub 
communities ranged from 0.5% to 51% (per pixel). Areas with very low cover were limited 
to the vicinity of roads and settlements. The model could explain 80.2% of the total 
variance. The most important predictor across the models was MSAVI2 (a spectral 
vegetation index particularly invented for low-cover areas). We conclude that the 
combination of statistical models and remote sensing data worked well to map vegetation 
in an arid mountainous environment. With this approach, we were able to provide tangible 
data on dwarf shrub resources in the Eastern Pamirs and to relativize previous reports about 
their extensive depletion. 

  

OPEN ACCESS 



Remote Sens. 2014, 6 6710 
 

 

Keywords: Central Asia; common pool resources; degradation; desertification; firewood; 
modeling; Pamir; post-Soviet transformation; rangeland ecology; Tajikistan 

 

1. Introduction 

Common pool resources play an important role in the sustainable development of many high 
mountain regions, as they provide crucial ecosystem goods and services. Despite the acquired 
knowledge about their importance, most “mountain commons are ecologically under-managed and 
suffer from the classic ‘commons syndrome’” [1] (p. 68). One important reason for this paradox is the 
lack of planning instruments that could support joint care of these natural resources, such as resource 
maps [1]. However, field-based generation of maps in high mountain regions is very time-consuming 
and costly for the usually large and often difficult-to-access areas. Therefore, in this study, we generate 
maps of common pool resources using remote sensing data that could provide a practical and  
economical alternative [2,3]. 

Despite the wide application of remote sensing data, arid regions and high mountains are 
underrepresented in studies, especially those focusing on more detailed aspects, such as species 
composition or species distribution [4–8]. However, even most of these studies do not work on single 
species, but mainly on plant communities. If single species are derived from remote sensing data, often 
hyperspectral data are used [9]. 

In mountainous environments, predominantly topographic gradients regulate species distributions 
and, thus, should be included in the mapping process [10]. The topographic conditions regulate the 
temperature, but also the water availability. The latter can hardly be quantified and differentiated for 
the whole region and is therefore neglected in the study. The altitude governs temperature, but also 
aspect and slope, all parameters easily derived from remote sensing-based DEMs. Furthermore, in arid 
environments, such as the Eastern Pamirs, vegetation is very open, and a large proportion of bare 
ground occurs. This can have a considerable influence on the spectral vegetation canopy reflectance; 
therefore, vegetation indices able to cope with soil noise should be included [11–13]. 

In this study, we use a machine learning method [14], derived from the RapidEye satellite system [15] 
and the ASTER Global Digital Elevation Model (GDEM) [16]. As such, we use the random forest 
algorithm [17] based on spectral, texture and topographic variables to predictively map dwarf shrub 
vegetation in the Eastern Pamirs as an example of an arid high mountain area. 

We exemplify our approach with a case study from the arid mountain plateau of the Eastern Pamirs. 
There, dwarf shrubs represent an important resource, used for energy purposes (i.e., heating and 
cooking) and livestock feeding (see Section 2.2). 

The aim is to evaluate the suitability of different combinations of variables to create maps of the 
spatial distribution of the two most important firewood shrubs in this region, Krascheninnikovia 
ceratoides and Artemisia leucotricha, and to quantify the vegetative ground cover as an index of the 
degree of degradation. 
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2. Material and Methods 

2.1. Study Area and Species 

The study area is located in the Murghab District of the Gorno Badakhshan Autonomous Province 
(GBAO), Tajikistan. It is part of the Eastern Pamirs that form a high plateau with elevations between 
3500 and 4000 m a.s.l. located in the outermost east of Tajikistan, and partly in China and 
Afghanistan. Wide valleys, filled with alluvial sediments, are separated by relatively low ranges with 
peaks mostly around 5000 m a.s.l. The high altitude causes low temperatures all year round, with an 
annual average of −1 °C in the valleys. Westerlies, which represent the prevailing winds, are 
substantially intercepted by the Western Pamirs. The Hindukush, the Wakhan Range and the 
Karakorum block the possible influence of the Indian Monsoon. Therefore, the area is characterized by 
extreme aridity with a mean annual precipitation of less than 100 mm in some places, resulting in a 
high mountain desert with dwarf shrubs as the predominant growth form [18–21]. The most frequent 
dwarf shrub species are Krascheninnikovia ceratoides (teresken, Amaranthaceae) and Artemisia 
leucotricha (shyvak, Asteraceae). Since the dissolution of the Soviet Union and the associated ceasing 
of coal supply, these dwarf shrubs are increasingly used as an energy resource [22]. However, they are 
also important forage plants for livestock, as well as wild ungulates, particularly in winter [23,24]. 
Several authors assume that the dwarf shrub resources are becoming overused, resulting in a decrease 
of vegetation cover [23,25]; however, recent studies show heterogeneous degradation patterns [26]. 

Available data on the dwarf shrub vegetation in the Eastern Pamirs almost entirely dates back to the 
Soviet time. According to several authors, the total vegetative ground cover in K. ceratoides-dominated 
formations usually ranges between 3% and 15% [27,28], sometimes up to 25% [29,30]. Exceptions are 
associations where A. leucotricha (ground cover up to 60%) or the cushion-plants, Acantholimon 
diapensioides and Sibbaldia tetandra (ground cover 30%–40%), are the dominant species [18]. 

Due to the availability of satellite images, a rectangle of 9027 km2 was selected as the focus area, 
which contains the region’s major land cover types, as well as most of the settlements (Figure 1). 

2.2. Explanatory Variable Data 

In this work, exclusively remotely sensed data were used as explanatory variables. Altogether, 
19 variables were produced and extracted from the ASTER Global Digital Elevation Model (GDEM) [16] 
and from RapidEye images [15] (Table 1). We used the georeferenced and orthorectified Level 3A 
product that is resampled to tiles of 25 km × 25 km with 5-m resolution [15]. Altogether, 16 tiles could 
be acquired that date between 2 and 21 August 2009, covering a total of 9027 km2 of the Eastern 
Pamirs. First, the reflectances were calculated from the digital numbers (namely the pixel gray-level 
values) of the different tiles and bands. Second, because of the time differences between the tiles, these 
values were calibrated to one another for each band to exclude atmospheric differences, using linear 
regressions based on the values from intersections of multiple tiles. According to Song et al. [31], 
no further atmospheric correction was performed. Third, the calibrated tiles were mosaicked and used 
to produce a raster of Qi et al.’s [32] MSAVI2 index, which is a spectral vegetation index that was 
invented especially to cope with soil noise. Furthermore, 6 rasters of texture parameters (Table 1) that 
were calculated by applying a range filter of 3 × 3 pixels to the rasters of the spectral bands and the 
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MSAVI2 were calculated. The associated standard deviation was used as a parameter for texture. 
Similar pixel values lead to a low standard deviation and indicated a homogeneous texture, whereas 
differing pixel values lead to high standard deviations that represented a heterogeneous texture [33]. 

Figure 1. Overview of the study area. 

 

Topographic variables were calculated on the basis of the GDEM. First, the GDEM was preprocessed 
with the SAGA GIS modules to close gaps and fill sinks [34]. Then, elevation was directly extracted 
and slope and aspect were calculated using the terrain function of the R-package raster [35]. Aspect 
was transformed into north exposedness (sin aspect) and east exposedness (cos aspect) [36]. 
Furthermore, slope, aspect and the latitude were used to calculate the heat load of a plot [37]. 

Then, the median values of the field plots were extracted for the 17 rasters. To avoid redundant 
information, collinear variables were eliminated using an iterative VIF analysis (variance inflation 
factor; see [38]). The variable with the highest inflation factor was dropped, and the analysis was  
run again. This procedure was repeated, until all remaining variables had a VIF <3 [38]. Hence,  
10 explanatory variables went into the analysis. This analysis caused the exclusion of common indices, 
like the NDVI. 
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Table 1. Description of the utilized explanatory variables (NIR = near-infrared, RE = red 
edge, R = red). 

No. Explanatory Variable Derived From 

1 Band 1  Reflectance of RapidEye Band 1 (blue; 440–510 nm) 

2 Band 2  Reflectance of RapidEye Band 2 (green; 520–590 nm) 

3 Band 3  Reflectance of RapidEye Band 3 (red; 630–690 nm) 

4 Band 4  Reflectance of RapidEye Band 4 (red edge; 690–730 nm) 

5 Band 5  Reflectance of RapidEye Band 5 (near-infrared; 760–880 nm) 

6 
NDVI 

 

Band5 − Band3
Band5 + Band3

  

7 
MSAVI2 

 
=

(2 × Band5 + 1 −�(2 × Band5 + 1)2 − 8 × (Band5 − Band3))
2

 (Qi et al. [32]) 

8 Band 1 texture Standard deviation of a 3 × 3 pixel neighborhood calculated from Band 1 

9 Band 2 texture Standard deviation of a 3 × 3 pixel neighborhood calculated from Band 2 

10 Band 3 texture Standard deviation of a 3 × 3 pixel neighborhood calculated from Band 3 

11 Band 4 texture Standard deviation of a 3 × 3 pixel neighborhood calculated from Band 4 

12 Band 5 texture Standard deviation of a 3 × 3 pixel neighborhood calculated from Band 5 

13 NDVI texture Standard deviation of a 3 × 3 pixel neighborhood calculated from NDVI 

14 MSAVI2 texture Standard deviation of a 3 × 3 pixel neighborhood calculated from MSAVI2 

15 Elevation derived from ASTER GDEM 

16 Slope derived from ASTER GDEM using the terrain function 
(Hijmans and 

van Etten [35] ) 

17 North exposedness 
cos(aspect); aspect derived from ASTER GDEM using the  

terrain function 

(Leyer and 

Wesche [36]) 

18 East exposedness 
sin(aspect); aspect derived from ASTER GDEM using the  

terrain function 

(Leyer and 

Wesche [36) 

19 Heat load 

= –1.467 + 1.582 × cos(latitude) × cos(slope) − 1 × 

cos(foldedaspect) × sin(slope) × sin(latitude) − 0.262 × 

sind(latitude) × sin(slope) + 0.607 × sin(foldedaspect) × sin(slope) 

(McCune and 

Keon [37]) 

2.3. Sample Data and Statistical Analysis 

For this study, data on the total vegetative ground cover, the dwarf shrub cover and the presence/absence 
of Krascheninnikovia ceratoides and Artemisia leucotricha were recorded. Altogether, 359 test plots 
were established, of which, 326 were compiled during four field campaigns (2007–2011) by GPS. 
Plots in water bodies (16) and snow-covered areas (17) were digitized on screen from RapidEye 
satellite images [15]. Because 31 plots were covered by clouds or located outside of the coverage of 
the available satellite images, information on total vegetative ground cover and dwarf shrub cover were 
present for 311 plots, while presence-absence data of dwarf shrub species were available for 281 plots. 
The plots were set up in selected valleys, distributed over the entire study area, with at least one plot on 
the valley bottom and one on each of the two valley slopes, wherever possible. The size of the plots 
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was 60 × 60 m. The size was calculated according to Justice and Townshend [39] and was related to 
the resolution of the ASTER GDEM. The presence/absence of the two relevant species, as well as the 
total vegetative ground cover and dwarf shrub cover were recorded. 

The cover was estimated by percentage on four randomly selected 4 × 4-m plots within each large 
plot. The data from the four plots were aggregated and their median considered as representative for 
the related larger 60 × 60-m plot. Boxplots were used to visualize the sampled data and make 
comparisons to previous (Soviet) studies, as summarized under Section 2.1. 

The mapping procedure was divided into four steps: First, spatial information on the vegetation 
attribute of interest (presence/absence of K. ceratoides/A. leucotricha; total and dwarf shrub vegetative 
ground cover) was compiled from the recorded field plots and used as a response variable. Second, 
digital maps derived from the satellite images served to determine the values of the explanatory 
variables at the locations of these plots. Third, these values were used to fit a model predicting the 
likelihood of the response variable. Finally, the model results were used to predict the likelihood of the 
response variable at all locations of the study area [40]. 

As vegetation-environment interaction behaves often non-linearly, traditional maximum likelihood 
methods, which assume the normal distribution of the training data, are ineligible [41]. In contrast, a 
feasible model approach that can deal with any type of distribution is the random forest algorithm 
introduced by Breiman [17], which is an advancement of single classification and regression trees. It is 
based on random subsets from the training data set, generated by bootstrap resampling [42,43]. This 
means that it generates a multitude of datasets by drawing a user-defined number of data points from 
the original data pool. After each iteration of the bootstrapping procedure, all values are returned to the 
data pool. Thus, it is possible for each value to be drawn more than one time during the generation  
of the entire bootstrap dataset. The data subsets are then used to grow a high number of single 
classification or regression trees (hence forest). The trees are successively split into smaller binary 
classes, utilizing the best fitting predictor within a randomly chosen subset of the explanatory 
variables. In this regard, a threshold value is chosen that maximizes the homogeneity of the two resulting 
classes with respect to the response variable [44]. Subsequently, the resulting single trees are combined 
to a stable final classification or regression [45]. If the response variable is a factor, random forests 
perform a classification. When processing continuous data, they execute regression analysis [42]. 
Another advantage of random forests is the so-called out-of-bag-validation. This is a bootstrap-based 
resampling technique intended to produce “honest” error estimates [42,45]. At each bootstrap iteration, 
the data that is not part of the bootstrap sample (i.e., out-of-bag or OOB) is utilized as the test data. 
That is, it is predicted on the basis of the tree grown with the bootstrap sample. The predictions for all 
single trees grown with the bootstrap samples are aggregated, and the total error rate is calculated. 
As such, OOB accuracy estimates are efficiently cross-validated and unbiased, given that sufficient 
trees were fitted [17]. If regression analysis is performed, the “mean of squared residuals” (MSE) is 
computed with the OOB data (Equation (1)), where OOB

iy'  is the average of the OOB predictions for 

the i-th observation. Based on this measure, the “percent variance explained” can be computed 
(Equation (2)), where 2'yσ  is computed with n as divisor (rather than n−1). 

1 2

1
{ ' }

n
OOB

OOB i iMSE n y y−= −∑  (1) 
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In addition to the model fit, the function produces an importance value of the explanatory variables. 
It is based on the increment of the prediction error that occurs when the data for the examined variable 
is permuted, while the other variables remain unaltered. This value was used to reduce the set of 
explanatory variables and, thus, create simpler models. The less important variable was removed, and 
the model was calculated again. This step was repeated until the explained variance started  
to decrease [42]. 

All methodological steps were carried out with the R environment (http://www.r-project.org). 
Random forest models were calculated with the package, randomForest [46]. The package, raster [35], 
was used to apply the model results to the spatial data. 

3. Results and Discussion 

3.1. Descriptive Statistics 

The total vegetative ground cover in all vegetation samples (Figure 2a, n = 275) ranged from 0% to 
90%, while the majority of values (1.5 interquartile ranges) stayed below 62%. The median was 15%. 
Only 18 plots that all belong to the riparian meadows exceeded 70%. Focusing only on those samples 
with K. ceratoides and/or A. leucotricha (Figure 2b) the median was also 15%, and the majority of 
values ranged between 0.5% and 40%. Only five plots that are formed by dense A. leucotricha steppes 
show higher values of up to 55%. Dwarf shrub cover, regardless of whether for all or only the  
K. ceratoides/A. leucotricha plots, was estimated to values between near zero (only remnants of dwarf 
shrubs) in the vicinity of the town of Murghab and 30% in A. leucotricha dominated steppes on slopes 
in the southwest of the study area. Only six plots showed high coverage of more than 22%. The 
median was at 4% (all plots) and 5% (dwarf shrub plots), respectively. These results reflect very well 
those from the literature review (see Section 2.1). 

3.2. Species Distribution Model 

Altogether, three different classification models were calculated using the presence/absence of  
K. ceratoides and/or A. leucotricha as the response variable. The differentiation between the 
distribution areas of the two plants, based on optical remote sensing, turned out to be nearly 
impossible, due to a great overlap of their habitat and strong similarities regarding plant morphological 
and spectral properties. Particularly, the A. leucotricha model achieved a low accuracy (Table 2a). 
Although the K. ceratoides model performed much better (Table 2b), a joint model, which used the 
presence/absence of either of these plants as the response variable, was favored for further analysis. 
According to the variable importance, a model with four explanatory variables was selected, with 
MSAVI2 as the most important predictor, followed by elevation, MSAVI2 texture, and Band 5 
reflectance (Figure 3a). The result was a common vegetation map, representing the presence and 
absence as discrete classes (Figure 4a). 
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Figure 2. Boxplots of total vegetative ground cover for all vegetation plots (a) and 
vegetation plots with the presence of A. leucotricha and/or K. ceratoides (b). Dwarf shrub 
ground cover for all vegetation plots (c) and vegetation plots with the presence of  
A. leucotricha and/or K. ceratoides (d). 

 

Compared with other studies about species composition, our results give a considerably accurate 
picture about the distribution of single species. The other studies on arid and similar mountain 
ecosystems do not map single species, but species composition or vegetation classes [4,5,7,8], plant 
richness [47]; however, using similar indices. Studies on species separation mainly use hyperspectral 
data often under experimental conditions [9]. As to expected, elevation was an important predictor 
apart from spectral information gained by remote sensing in our study region and in all studies in 
mountain areas [4,5,8]. 
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Table 2. Description and evaluation of the calculated models (mtry: number of variables randomly sampled as candidates at each split; ntrees: 
number of trees grown for the model; OOB: out-of-bag). 

 a b c d e f g 
Type Classification Class. Class. Class. Class. Regression reg. 

Response variable 
pres./abs.  

A. leucotricha 
pres./abs.  

K. ceratoides 

pres./abs.  
K. ceratoides  
A. leucotricha 

pres./abs. 
water 

pres./abs. 
snow/ice 

Total vegetative 
ground cover 

dwarf shrub cover 

n explanatory variables 2 4 4 1 2 4 5 

Explanatory variables  
(in order of importance) 

Heat load 
MSAVI2 

MSAVI2 
Elevation 

MSAVI2 tex. 
B5 refl. 

MSAVI2 
Elevation 

MSAVI2 tex. 
B5 refl. 

NDWI 
Elevation 
B5 refl. 

MSAVI2 
MSAVI2 tex. 

Elevation B5 refl. 

MSAVI2 
Elevation Slope 

MSAVI2  
tex. heat load 

mtry 2 2 2 1 1 2 3 
ntrees 5000 5000 5000 5000 5000 5000 5000 

n observations 278 278 278 307 307 307 307 
n presence 52 179 189 15 17   
n absence 226 99 89 292 290   

correctly vs. wrongly classified (presence) 30:22 170:9 181:8 15:0 17:0   
correctly vs. wrongly classified (absence) 207:19 71:28 71:18 292:0 290:0   

OOB class. accuracy (%) (presence) 57.7 95.0 95.8 100 100   
OOB class. accuracy (%) (absence) 91.6 71.8 80.0 100 100   

OOB class. accuracy (%) (total) 85.2 86.7 90.6 100 100   
OOB accuracy (%) var. expl.      80.2 47.5 
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Figure 3. Importance values of the explanatory variables included in the classification (a) 
and regression (b) model. 

 

The map shows that firewood dwarf shrubs are still distributed over large parts of the Eastern 
Pamirs. They were mapped for an area of 3125 km2, which is 33.8% of the entire study area. Their 
main occurrence is in the southwest (Alichur Pamir and adjacent valleys in the Northern and Southern 
Alichur Range below 4500 m a.s.l.), the southeast (high plateau of Uch Kul and Cheshtebe) and the 
northeast (Sarez Pamir, Kara Suu Valley, Madian Valley and Akbaital Valley). In the northwest, they 
are limited to narrow areas in valleys (Pshart and Madian Valley, adjacent valleys). Furthermore, they 
rarely grow in valley bottoms. In contrast, 5157 km2 (57.1%) belong to other land cover classes. 
Within this area, 79 km2 (0.9%) are covered by water bodies, of which, the lakes Tus Kul and Sasyk 
Kul (west of Alichur), and the eastern end of Lake Sarez (in the north-west), as well as Uch Kul (in the 
south) make the largest portion. Furthermore, the area covered by snow and ice accounts for 343 km2 
(3.8%) and is mainly located in the north-west of the study area. Eight percent was covered by clouds 
and, thus, could not be analyzed. 

3.3. Vegetation Cover Model 

In a second step, random forest regression models were performed with total vegetative ground 
cover and dwarf shrub ground cover as response variables. Altogether, information from 307 test  
plots was considered for the models. According to the variable importance, the final model for total 
vegetative ground cover was run with the same four explanatory variables, with MSAVI2 being the 
most important, followed by MSAVI2 texture, elevation and Band 5 reflectance (Figure 3b). The model 
did not perform as well in the prediction of dwarf shrub cover (see Section 3.3.).  
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Figure 4. Vegetation map representing (a) the presence/absence of A. leucotricha and/or 
K. ceratoides. (b) The total vegetative ground cover. (c) The total vegetative ground cover 
for the area where A. leucotricha and/or K. ceratoides are present. (d) The area with less 
than 5% total vegetative ground cover for the area where A. leucotricha and/or  
K. ceratoides are present. 
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Therefore, in this paper, we omitted the dwarf shrub coverage and developed a continuous field 
map showing only total vegetative ground cover in percentage values (Figure 4b). The highest cover 
values were mapped in the valley bottoms and the large Pamirs. There, riparian Carex and Kobresia 
meadows with ground cover values sometimes exceeding 80% grow along rivers and streams 
(e.g., Alichur River between Alichur and Bash Gumbez; Murghab River in the Madian Valley west of 
the town of Murghab; see Figure 4b). 

In a further step, non-dwarf shrub areas were masked using the output of the distribution model, so 
that Figure 4c shows the vegetation cover for the predictively mapped area of K. ceratoides and  
A. leucotricha. The values range from just above 0% to 51% (whereas values above 36% are rare). The 
lowest values (represented by bright colors in Figure 4c) predominantly occur around the larger 
settlements (Alichur, Kuna Kurgan/Murghab) and along the main roads, indicating the importance of 
facilitated access for degradation of dwarf shrub resources. It is very probable that these areas are the 
result of overexploitation due to dwarf shrub extraction [26]. However, they are also often dominated 
by unpalatable plants, such as Zygophyllum obliquum and Neotorularia korolkowii, which show that 
heavy grazing may also contribute to the situation. This would concur with the fact that the highest 
livestock numbers were recorded in the same area [22,24]. Social disparities among different groups of 
pastoralists and unsettled questions about formal user rights and rangeland stewardship are the main 
reasons for the concentration of livestock in this area [48,49]. On the whole, however, these areas are a 
minor share of the total area of dwarf shrub vegetation (Figure 5). For example, only 183 km2, which is 
5.9% of the dwarf shrub area or 2.0% of the entire study area, shows a total vegetative ground cover of 
less than 5% (Figure 4d). In contrast, 2278 km2 (72.9%) of the dwarf shrub area shows cover values of 
more than 10%. Such high values were also mapped in the vicinity (less than 5 km) of all four 
settlements within the study area, at least on slopes. 

Figure 5. Spatial extents of the areas with less than 1% to less than 10% total vegetative 
ground cover. 
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3.4. Model Evaluation 

Validation of the combined K. ceratoides/A. leucotricha classification model, based on OOB 
estimation, indicated an overall accuracy of 90.6% (presence 95.8%, absence 80%, Table 2c). Water 
and snow/ice were mapped with individual models that were 100% accurate (Table 2d,e). 

The variance of dwarf shrub cover could be explained to 47.5% (Table 2g). A better result was 
achieved for the total vegetative ground cover model, where 80.2% of the variance could be explained 
(Table 2f), a result similar to other studies in arid, respectively mountainous, regions, e.g., [5,47]. 

For the latter model, comparisons between observed and predicted values showed good agreement 
(adjusted R2 = 0.8; p < 0.01; Figure 6a). However, it has to be mentioned that tree-based models, such 
as the random forest, tend to overestimate small and underestimate high values [50,51]. This was also 
the case in this study. Although the average and the median between observed and predicted values 
indicated a good agreement, significant differences were detected for low and high values. The 
0.25 quantile of the predicted values exceeded its counterpart for the observed values by nearly 2%. 
In contrast, the 0.75 quantile and the maximum were underestimated by 1.3% and 11.5%, respectively 
(Figure 6b). The differences between observed and predicted values were visualized by  
quantile-quantile plots (Figure 6c) [52]. It can be clearly seen that values below 20% observed cover 
were slightly overestimated by the model, whereas values over 25% tend to be underestimated. Taking 
this finding into account, it is likely that the area displayed in Figure 4d represents stands with less 
than 3% vegetation cover, rather than 5%. 

Figure 6. Comparison of observed and predicted values with linear regression (a), boxplot (b), 
and quantile-quantile plot (c). 

 

4. Conclusions 

In summary, it can be stated that the application of the presented mapping approach led to suitable 
and reproducible vegetation maps in an arid, mountainous environment, such as the Eastern Pamirs. 
The presence of firewood dwarf shrub areas is still widespread within the study area (33.8%). 
However, extremely low vegetative ground cover could be detected around the permanent population 
centers and along roads, which is an indication of the partial overuse of dwarf shrubs. 
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Therefore, the situation of the region’s dwarf shrub resources has to be rated as vulnerable [24,26]. 
It stands to reason that degradation could expand with increasing pasture exploitation and firewood 
extraction. The maps produced in this study provide a first step towards an instrument for the 
sustainable management of the mountain commons in this region. 

From the technical point of view, MSAVI2 was identified as the most important explanatory 
variable for mapping dwarf shrub vegetation in this arid and mountainous environment. This is in 
contrast to other studies [47] and demonstrates the usefulness of this variable for remote sensing 
vegetation studies in arid lands. Among the single-band reflectances, only Band 5 reflectance (IR) 
significantly contributed to the model accuracies. Furthermore, MSAVI2 texture increased the predictive 
power of most of the performed models. This reflects the spatial heterogeneity of vegetation cover in 
arid regions. Elevation, which is a proxy for temperature, was the only relevant topographic variable 
for the accuracy of the models. Additionally, slope and aspect were used to calculate heat load. Only 
the Artemisia leucotricha model strongly depended on heat load. 

However, none of the implemented models were able to distinguish between the two major dwarf 
shrub species. Furthermore, the model accuracy for the estimation of dwarf shrub cover was relatively 
low (explained variance 47.5%). Hence, the study underlines the difficulty of predicting vegetation 
parameters under arid conditions with sparse vegetation cover, even with a spatial resolution of  
6.5 m × 6.5 m and the red edge band (RapidEye). Future studies should therefore consider technical 
innovations, such as hyperspectral data, to achieve better performance. 
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