Remote Seng014, 6, 59385958 doi:10.3390/r6075938

remote sensing

ISSN 20724292
www.mdpi.com/journal/remotesensing

Article

TecLines: AMATLAB -Based Toolboxfor Tectonic Lineament
Analysisfrom Satellite Imagesand DEMs, Part 1: Line Segment
Detectionand Extraction

Mehdi Rahnama®?* and Richard Gloaguen*?

! Remote Sensing Groumstitute of Geology, TU Bergakademie Freiberg (TUBAF),

Bernhardvon-CottaStr. 2, 09599 Freiberg (Sachsen), Germany
Remote Sensing1@up,Helmholtz Institute Freiberg of Resource Techno|ddgisbruecker
Str. 34, 09599 Freiberg (Sachsen), Germ&ijail: r.gloaguen@hzdr.de

* Author to whom correspondence should be address&thiE meh.rahnam@gmail.con
Tel.: +49-3731:-394621; Fax +49-3731-393-599

Received22 April 2014 in revised form11 June 2014 Accepted1l June 2014
Published:25 June 2014

Abstract: Geological structuressuch as faults and fracturesappear as image
discontinuities or lineaments in remote senglatp. Geologic lineament mapping is a very
important issue in geengineering, especially for construction site selection, seismt

risk assessment, mineral exploration and hydrogeological research. Classical methods of
lineaments extraction are basau semiautomated (or visual) interpretation of optical data
and digital elevation modelsNe developed a freely availablealtab based toolbox
TecLines (Tectonic Lineament Analysis) for locating and quantifying lineament patterns
using satellite data andigital elevation models. TecLines consisfsa set of functions
including frequency filtering, spatial filtering, tensor voting, Hough transformatsoml
polynomial fitting. Due to differences in the mathematical backgrowifdthe edge
detection and edglinking procedure as well dse breadth othe methods we introduce

the approachin two-parts In this first study, wepresentthe steps that lead tedge
detection We introduce the data pngrocessing using selected filters in spatial and
frequency dmains. We then describe the application of tdmesorvoting frameworkto
improve position and lengthccuraciesof the detected lineament8Ve demonstrate the
robustness of the approach incamplex area in the northeast of Afghanistan using a
panchromat QUICKBIRD-2 image with imeter resolutionFinally, we compare the
results of TecLines with manual lineament extractiond ather lineament extraction
algorithns, as well asa published fault map of the study area.
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1. Introduction

Detection and extraction of lineaments are commonly used for construction site selection
(dams, bridges, roadsetc) [1i4], seismic and risk assessmeli 11], water resources and
hydrogeologicalnvestigationg12i 16], mineral exploratiol7i 22], and in the study of the structural
or tectonic history of a regioj23i 25]. Most of the tectonic features are associatih straight linear
elements (further denoteds 7 | i n ensatedite imags. Several regions cannot be studied in the
field for various reasons such as being impassable or unsaf2@g¥d The use of aerial photographs and
satellite images in the regional scale study of linear features such as faults, fracture zonesnsigead
lithological contacts has greatly reduced the effects of these limitflio 23]

Traditionally, lineament mapping is based on a visual or-setnimatic interpretation (phetgeology).
Lineaments are often extracted manually by digitizinigictv is subjectivetime consuming, expensive
and requires expertise, training and adequate scientific gkili&dition it cannot produce results for
large scale areaf?8]. Lineament extraction could be more advantageous if the results were
reproducilbe. Automatic lineament extraction is therefore needed.

Increasing spatial and radiometric resolution in satellite imédgesrs the development of
automatic, or criteridased, lineament extraction algorithf@9,30]. However algorithms are usually
slow and commonly generate false features that are related to artificial linear features such as road:
and power line$31]. Linear feature enhancement and detection mostly have been done in the spatial
domain (based on direct manipulation of pixels in an eZdxy using SobdB2], Prewitt[32,33], and
LOG filters [12,3436], as well as morphological filter§37] and frequency domain (based on
modifying the spectral transform of an image). The binary edge maps that have been derived in the
edge detection stepave been used as inputs for extraction algorifhensh as edge following
(graph searchingR9]), edge linking operators (standard Hough Transff2if35,38 40], and edge
tracing algorithms (STA, STARTENnd ALERT algorithnj41]).

The success of automatioeament extraction procedures depends on the reliability and accuracy of
edge detection mechanid@8,42,43] Until now it has beemmpossible to recognize or measure linear
features of interest that have to be detected and to remove all remainiagts{@3]. Selection of
image preprocessing procedures and appropriate edge detection methods are very important in tecton
linear feature extraction, because they have significant effects on the accuracy of the final results.

The main goal of this studg to develop a new MATLAB based toolbox (TecLines) for automatic
lineaments mapping from satellite images and digital elevation models (OEkLines contains a set
of functions for detecting and extracting potential edges with integration betweenfreggency and
spatial filtering, Tensor voting framework, Hough transformation and polynomial fitting methodology.

The extraction of lineaments using the TecLines toolbox is performed in two main steps: edge
detection and edge linking. Edge detection méshshould ideally generate sets of pixels lying only on
edges. In practice, these pixels seldom completely characterize edges because of unwanted noise al
breaks. The general shape of the objects may be initially unknown, but in many cases they can be
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approximated by piecewise linear segments. It is not easily feasible to fit linear segments to all the
edges in an image and discard false segments. These problems are addresszthalinkeng step.

The goal of edge linking is to describe an edge @asearn segment of specified shape and estimate the
missing edge pixels from the assumed equation of the curvilinear segment. Due to differences in the
mathematical background of the edge detection and edge linking procedure as well as the breadth o
topics, we present the approach in a tpart paperWe chose MATLAB because it provides a
multipurpose environment for mathematical processing based on-teligtprogramming language.
Additionally, the functions provided in MATLAB are easy to modify and ofggnmprovements.

The specific objective of the first part is to describe and assess the comprehensive edge detectior
procedure by integration of frequency domain filters, edge detection metiodistensor voting
framework.We introducethis part with a focus ontectonic lineament extraction (binary edge maps
with efficient thickness, length and pixel connectivity, and increased degrexafacy of theedge
detection. Finally, wevalidatethis functionalityusing a synthetic image with known discomnities
and ahigh-resolution satellite image (QUICKBIRR) from an active tectonic area: the Andarab fault
zone in NE Afghanistan

2.Data

In this paperwe demonstrate the performance of the TecLines for edge detection, where validation
has been performazh a synthetic and a real dataset

2.1. Synthetic Dataset

In recent decades, several approaches for performance evaluation of edge detection methods hay
been proposed according to the presence or absence of ground tryddta@h These approaches
are based on the characteristic of the images (eal images, synthetic imagdg},49 51]. Most of
the edge detection methods that rely on ground truth use simple synthetic [52i&&$ because it is
easy to specify the ground truth edge locatiphs45] In these cases, the edge detection can be
guantitatively evaluated based on the known ideal detection considered to be the groufidbltruth
The synthetic DEM (Figure 1) used here is the result of landscape evolution algorithm created using
set river incision and different uplift rates across tectonic faults. The drainage system adapts to the
evolving surface conditions.

2.2. Real Dataset
Study Area and Data

We evaluatedhe performance of TecLines on satellite images of the active Andarab faalt zo
northeastern part of Afghanistan (Figure 2a). The selected area has a long history of damaging
earthquakes[56]. Furthermore, it encompasses regions interpreted as deformed by primarily
transtensional forces in the TraHg8malayan orogenic be[67,58] The Andarab fault is dextral and
coincides with an approximately 150 km long, eassttrending valley north of the intersection
between the Paghman and HRud faults. In the high valley of Darya, many evidences of recent
tectonic movements were obged along the fault trad&7]. In this study, we used panchromatic band
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of the Quickbird2 (1 m spatial resolution) fo2 March 2006 (Figure 2b). This data is in UTM
coordinate system, datum AWGS840 and zone 42

Figure 1. The synthetic DEM that is theesult of landscape evolution algorithm created
using set river incision and different uplift rates across tectonic faults. The drainage system
adapts to the evolving surface conditions

937-977 g+

Figure 2. (a) location of the study area MortheastAfghanistan(b) panchromatic band of
the Quickbird2 (1-m spatial resolutionfor 2 March 2006 of the study area.
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3. Methodology

TecLines is a new MATLAB based framework that contains various functionsutmmatic
detection and extraction déctonc lineaments from satellite images and digital elevation nsodel
(DEM). Besides import and export functions that support the raster and vectors in standard file
formats, TecLines provides functions for image filtering in the frequemy spatial domainsot
produce primary binary edge ngjf-inal binary edge mapn TecLinesare produced by perforing
the computation of the Tensor voting framewdrk.addition TecLinesextract line segments from
final binary edge mapby employingstandard Houghransform&on functions. A set of functions
serves the grouping and merging line segments, whitlhbe resulted infinal lineaments map
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Comparing results with published/npablished lineament mapand lineament analysis awdso
possible in TecLines. An oveeiv of TecLines divisions can be found in Fig@re

Figure 3. Overview of the essential componentdiméament mapping usinbecLines
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3.1. Frequency Domain Filtering

Image enhancement methods can contrilmigmificantly to the automated extraction aheéar
features by usingoisereduction and edges enhancement in the input images. There are two main
categories for image enhancement methods: (1) spatial domain methcdsas Mean, Mediaand
Mode filters, and (2) frequency domain methosisch as Gassian and Butterworth high, lownd
band pass frequency filters. The main difference between both categories is that the spatial domair
methods are usually applied locally, while the frequency domain methods are usually done in the
global context. Unfortnately, there is no common principle for determimmigat is figood image
enhancement. However, when image enhancement methods are used -psoaegeeng phase for
other image processing methods, then quantitative measures can determine which methods ar
most appropriate.

In this study, we used Butterworth bapass filter inthe frequency domaittquation(1) in order to
enhance edges by suppressing low frequencies and filter noise by attenuating high frefR@ncies
The Butterworth bangiass methodhas several advantages with respect to other methods such as the
smooth transfer function without any discontinuity or clearaftitfrequency to reduce the sharp
truncationeffect and the easy control of the range of frequencies passes (bandwidth) diépemde
the order of the filterln addition the Butterworth banegpass method can improve the performance of
theldeal banepass methodhile reducing the ring and blurring effect.
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Q Q= 77 o O3 QR (1)
where'@and "Q are the low and high cut frequencies respectiie/the distance from the origin, and
n is the order of the filterThe Butterworth filter is available in MATLAB but it shows some
limitations Accordingto MATLAB documentationnumerical problems can happen for frequency
filter orders as low as 6 when the transfer function coefficient f(ima] form) is used. These
problems are due to rowudf errors. The reason is that higher order filtery meed extremely precise
tap coefficients to get the desired performance. Therefore, numerical error in the calculation of the tap
coefficients can destroy the performance. In fact, the computed filter is unstable. Accordingly, we
implemented anew MATLAB based code to apply the bapdssfilter on the satellite images.
This code allowsedge enhancemerity frequency domain filtering at the specified bgrags
parameters such as the order of the filter and the upper and lower frequency cutoffs of the filter
for a given bandwidth that satisfi¢se rate of transmission at the cutoffs while ntaining the
desired performance.

3.2. Spatial Domain Filtering

The principal physical edges correspond to significant variation in the reflectance, illumination,
orientation and depth of scene surfa@®]. Conceptually, ége detection refers to the process
of identifying and locating sharp discontinuities in an image in three: stéfggentiation, smoothing
and labeling[36,60 62]. Several types of methods are éafalle for edge detection in the spatial
domain These methods are classified gradient based methodirét order derivativg laplacian
based methods (second order derivative) and opedge detection methofs9,63]. We successfully
tested and impleemted in TecLines three common methods: Sobel and P[8d3] (gradient based),

LOG [36,64,65] (Laplacian based)and Canny[60] (optimum) edge detection methods. In the
gradientbasededge detection methodset magnitude of the gradient vecteflects the strength of the

edge, or edge response, at any given point. The effect of the noise in the signal will appear on the smal
local maxima in magnitude (edge strengthus the resulting map of local maxima is thresholding to
distinguish convincing gges[66i 68].

In the Laplacianbased methodsuchas LOG method the gaussian smoothing filter is used for
decreasing the sensitivity to noise in the input imagether words talightly blur the imageThen
Laplacian is applied to detect regions apid intensity changeThe disadvantages of these edge
detectors are their sensitivity to noise also producingpiwel thick edge$69].

The Cannyedge detection methad an optimum methodand provides a multstage algorithm to
detecta wide-range of edges in images. Those should be at a minimum distance to the actual edge in
the real imageln addition the detected edges should have minimal response. In other words, the
discovered edges should have only one response to a single edge and compheiedyeethe
possibility of multiple responses to an ediyeusingadapive thresholds with hysteresis.
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3.3. Morphological Image Processing

Binary edge maps produced by Sobel, LO&hd Canny edge detection methods can have
smallscale edges and isolatéat island edge pixelsA commonapproachor improving these results
is to use mathematical morphology methods to elimieatea edge pixelsin this study, we used
opening morphological filteusing bwareaopercommandin MATLAB . Morphological opening is
an erosion followed bw dilation. Erosion eliminates smaitale details by removing outlying pixels
and isolated pixels. Dilation restores all remained edges to their originalTeie@peningmethod
preserd many advantagdsecauset reliesonly onthe relative ordering of the pixel value, not on their
numerical valuesThe openings antiextensiveln addition opening is idempotent operation because
it can be applied multiple times without changing the result beyond the initial application.

3.4. TensorVoting Framework

Tensor voting is a neiterative methodologyo the inference of statistically salient features from
possibly sparse and noisy data. In the tensor voting frame6ik the input data is encoded as
elementarysecond order, symmetrinonnegative definitetensors(position/orientation pairsthen
support information (including proximity and smoothness of continuity) is propagated by vote casting
According to these principles for each possible dimension, each input tekere thenput tokenis
an unstructured point cloudith no priori orientation,encodes a local potential orientatipril].
Therefore, every token is a location where an orientation is deflitedrepresentation is in the form
of asecond order, symmetric, noegdive definite tensowhich essentially indicatethe saliency of
each type ofperceptual structurécurve, junction or region in-P) the token may belong to its
preferred normal and tangent orientatipris, 72}

T= 11 1, ee]+ ly(eef + ey€)) 2

The tensor can specify its preferred tangent, normal orientasomell as saliency corresponding to
its perceptual structures. In Figure 4, the major exis the preferred normal orientatiofia potential
curve segment. The magnitude of the stick comporent &, indicates curve saliency.

Figure 4. Tensor decomposition.
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Tensor voting was implemented using tensor fields tecpreputeand store the votes from both
stick and ball voters in receivers at various distances and angles (5)duf® 72]. Vote orientation
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corresponds to the smoothest local curve continuation from voter to the recipient, while vote strength
decays exponentially with distance and curvature. The second order vote also is a stick tensor and ha
a normal lying along the circularafrom voter O to recipient P (FiguEg. According to the Gestalt
principles, vote orientation corresponds to the smoothest local curve continuation between two points,
O as a voter and P as a recipient, while vote strength decays exponentially withedestd curvature.
The magnitude of the vote is described by a function of confidence in spherical coordinates that the
voter O and the receiver P indeed belong to the same perceptual structure. This magnitude can b
calculated according {@0]:
2 2

DFSKA = T2 ©)
whae Sisthedi st ance between voter (O) and receiver
which determines the effective neighborhood size and C as a function of the sitedés ¢tbe degree
of decay with curvature (Figur®. In the feature extraction process, a saliency map is produced for
each feature type, which is assigning a second order symmetric tensor that estimates the structure c
the feature type and the assodilasaliency.The characteristics of thelementary tensors in2 are
shown in Table 1.

Figure 5. Second order vote casy by a stick tensor located at thagin [71]. Where S is

di stance between voter (0O) and aeettvetingger ( P)
which determines the effective neighborhood size and C as a function of the scale controls

the degree of decay with curvature.
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Table 1.Elementary tensors inR2, where n and t represent the normal and tangent vector
respectively and theepmetric features extracted afteDZensor voting71,72]

Feature oo €6 Tensor Saliency Normal Tangent Normal Tensor
Point 1 1 Anyorthonormal basis Ball aall,>1 None  Any orthonormal basis None
Curve 1 0 nt Stick Nl v>0y e & e

In TecLines, wewrote and implemented set of MATLAB based functions fdensor voting to
compute the gradient vector and the tensor matrix at the edge pixels of the binary image, which were
extracted by edge detection methods. Then, voting tensor field gghéna casting votes on all the
edge pixels of the image were used to construct the stick saliency map. Finally, we extracted the
distinguished edge pixels based on the stick saliency map.
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3.5. AccuracyMeasurements

There are specific statistical measutleat we can use to assess erroneous meapl8gs3,74]
The difference between edge pixels obtained by edge detection methods and a reference map (ground trut
can be inferred75,76] True positive is the number of correctly detected edge pixels,datstve is
the number of pixels erroneously classified as edge pixels, and false negative is the amount of pixels
that were not classified as edge pix&Il8,78]

" (@)
g = 300,7 o S @
DS
. Ogay,
"G = Dy | _ o S 5
DS
s 0. Ooy
@ = S Oy _ 0% S ©)
DS

where TP is the total number of ¢rypositive edgel-N andFP are total number of false negative and
false positive edges, respectivel ' QQgy are the total number of edge pixels in the image and
reference dataset, respectivéhyis the subset of positions in the igeaat which edges occur.

Accuracy requires that edges should be detected as close as possible to their correct positions. In
given image, the edge positions and numbers camtyeaccording to resolution and procedyr&s).
In this study, by comparintpe edges detected using TecLines with a reference map, the accuracy was
computed as follows.

D, 0
5= Y + @ +2 @  Ogy % 100 (7)

whereAc stands for accuracy. The valueAd for accurate edge detection methods should be close to
100%. In order to evaluate thperformance of the proposed eddetection procedure a reference
dataset is required. The references dataset for both synthetic and QuickBird 2 images are determine
based on manual extraction (Figure 6), because it is easy to distinguish geological-gedlagital
lineaments by visuahterpretation35,41,51,79,8Q]

4. Testing and Evaluating TecLines
4.1. Performance Evaluation of the Edge Detection Methods on a Synthetic DEM

Accuracy assessment is based on 21 known lineamehish have been shown by 1180 edge
pixels in the synthet DEM (Figure 6b). The range of parameters to be used in edge detection
procedure should be large enough to cover a wide range of detection results. We implemented 27 set
of parameter combinations of sigma, low and high thresholds for Canny edge detesttimd, where
sigmar (300, 500, 70p lowr (0.01, 0.05, 0.5 andhighr (1, 3, 5 In the opening morphological
filter, minimum number of connected neighboring for each pixel was 4, 8, and 24 pixels. In the first
step, we extract edges from original datagétout anteriorButterworth bangpass filtering(Figure 7a).

The accuracy assessment shows that 30% of the known lineaments are detected as true positive ed
pixels and 70% are detected as false negative edge pixels. The percentage of pixels that are fals
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positives isabout 45%. The tensor voting framework is applied to improve the result by considering
the adjustment between increasing the information and decreasing the noise in the detection procedure
As seen in Figure 7b, the results after tensor voting framewarlomErate an increase in accuracy.

40% of the known lineaments are correctly detected. The percentage of pixels that are detected as fals
negative edge pixels is around 60%.

Figure 6. (a) The reference lineament map for real dataset that is based oralmanu
extraction from panchromatic band @tiickBird-2; (b) The reference map of the synthetic
DEM consists in the digitized traces of the modeled fgbleck line).
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In the next step, we used a synthetic DEM preprocessed using a Butterwakpaba filterin
frequency domainDue to local intensity changes in the image, edges are better detected in the west
of the image (Figure ¢J. The accuracy assessment of the Canny method shows that 78% of the
known lineaments are detected as true pesiedge pixels and 22% are detected as false negative
edge pixel.Drainage patternsvitness thecritical relationship between streams, tectpmicd erosion
change$26,81,82] Tectonic activity disrupts drainage networks. Studying the nature of thigotien
can give clues about the magnitude and orientation of the original tectonic d8®vi®p]. Thus, they
are potential instruments for tectosgeomorphology analys[26,86] The result of the visual analysis
shows that nearly 60% of the streams also detected as edge pixels. Due to noise, the results also
include many fragmented edge pixels that lead to the extremely low accuracy.

As seen in Figured 93% of the known lineaments are correctly detected after performing tensor
voting framework.The percentage of false negatives is less than 7%. However, these results consist of
manydiscontinuougdges, instead of edge contodssults show that employing a Butterworth baads
filtering prior to Canny edge detector improves the its performaAdditionally, using the
tensorvoting framework both improved binary edge extraction and merged neighboring edges with
similar direction.The overall accuracy with the proposed approach is about 52% and is higher than the
overall accuracy achieved byet other methods (Table 2). In particular, a comparison with true positive
edge pixels directly validates the superiority of the implemented edge detection procedure based or
frequency bangbass filtering, edge detecticandtensorvoting framework impleranted in TecLines.
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Figure 7. (a) and (b) preliminary binary edge map produced by Canny edge detection
method and binary edge map obtained by tensor voting framg(ereliminary binary
edge map produced by Canny edge detection method with prior Barlerbandpass
filter; (d) Final resulting binary edge map was obtained by tensor voting framework.
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4.2. Performance Evaluation of the Edge Detection Methods on a Satellite Image

In the first step, we applied a Butterworth barass filter in the frequency domain. We used 0.2 as
an uppetlower cutoffsfrequencyand 6 for order numbers of filter such that these preserved as many
significant edges (tectonic linear features) present in the truth as possible (Figure 8). Frequencies
above and below these cutoffs are in the diapd. Therefore, TecLines cannot find it in the edge
detection step. Clearly, using a wide bandwidth and high order number of filter can decrease this
assumption and preserve small edges but also increasentfbemaf the wrong edges resulting from
noises. After filtering in frequency domain, we used Sobel, LOG and Canny methods to detect linear
features (edges). We used a3 pixel masking window size in order to ensure the detection of
sufficiently small feture and preserve image details. We classified image pixels in two groups: edge
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points (marked as 0) and nedge points (marked as 255). We used a fixed threshold of 60 for Sobel
filter. We selected a sigma (standard deviation of the noise) of 1.2 areshdld of 20 for LOG filter.

We set the hysteresis thresholding to 0.25 and sigma to 0.08 for Canny filter. The number of edge
points produced in thresholding procedure can be modified on égasese basis. The preliminary
binary edge maps produced $gbel, LOG and Canny filters are shown in Figure 9.

Table 2. Quantitative measures and overall accuracy obtained by TecLines for synthetic
digital elevation model¢DEM). True positive (TP) is the number of correctly detected
edge pixels. False positivéR) is the number of pixels erroneously classified as edge
pixels. False negative (FN) is the amount of pixels that were not classified as edge pixels

Method nN'E ¢"E FN  Overall Accuracy (%)
Without Butterworth Canny 360 26370 820 15.9
bandpass filtering Canny + TVF 480 17,380 700 21.6
With Butterworth Canny 920 12240 260 42.4
bandpass filtering Canny + TVF 1098 8339 82 52.3

We used opening morplugical operation in order to thin the edges. This operation removes
all pixels that are below a threshold of connected pixels. The minimum number of connected neighbors for
each pixel was set to 4 pixels. The final binary edge maps are produced afténgeati residual pixels.

Figure 8. (a) Quickbird2 (1 m spatial resolution) foR March 2006 of the study area
shown in pseudo colpr(b) Filtered image after Butterworth bapass filter. Colors
represent themage brightness digital number (DN) values
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We used the tensooting framework to improve edge detected map accuracy and merge
neighboring edges with similar directiorhis provides better results than other methods for detecting
common edges. It should be noted that usgmgorvoting framework could lead to loss of small edges
surrounded by bigger ones. After the voting process, a saliency map is produced by assigning a secon
order symmetric tensor that estimates the structure of the feature type and the associated salienc
(Figure 10).Then, edges arextracted based on that certain orientations of the features coexist at a
given location (Figure 10)f we compare the extracted edges with and without the use of tensor voting
framework it appears that the extracted edges becoore apparent and continuous after tensor
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voting. This technique allows the production of longer and smoother edge lines than the common edge
detection methods.

Figure 9. Preliminary binary edgenaps resulting from Sobedh) LOG (b) and Cannyd)
methodsand morphological filteringWe used a fixed tieshold of 60 for Sobeh sigma
(standard deviation of the noise) of 1.2 and a threshold of 20 for, e@@he hysteresis
thresholding to 0.25 and sigma to 0.08 for Canny.
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Accuracy Measrements

The accuracy was computed by comparing the edges detected using TecLines to the set of edges |
the reference dataset (ground truth), The reference dataset is based on visual image interpretation ar
manual extraction. We analyzed the results teetnd after tensor voting framework. The results are
shown in Table 3. This table shows that the temnsting framework significantly improves the true
positive percentage in all of three edge detection methods. The number of false positive pixels is als
drastically reduced. The highest overall accuracy was achieved by applying a combination of the
Canny method and tensor voting framework and reaches about 74.5%. The accuracy of sobel and LOC
methods were also improved after performing tewsding framework.
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Figure 10. (Left Panne) Saliency density magpproduced individually for(a) Sobel,
(b) Log, and (c) Cannyedge detection methods, respectivdlige saliencydensitymaps

5951

were constructed by using voting tensor fields that are gendratactastimg votes on all

of the edge pixels(Right Panne) final extractededge map by usingtensorvoting

frameworkafter(a) Sobel,(b) Log, and(c) Cannyfiltering.
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