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Abstract: China’s rapid urbanization has led to increasing steel consumption for buildings 

and civil engineering infrastructure. The in-use steel stock in the same is considered to be 

closely related to social welfare and urban metabolism. Traditional approaches for 

determining the in-use steel stock are labor-intensive and time-consuming processes and 

always hindered by the availability of statistical data. To address this issue, this study 

proposed the use of long-term nighttime lights as a proxy to effectively estimate in-use 

steel stock for buildings (IUSSB) and civil engineering infrastructure (IUSSCE) at the 

provincial level in China. Significant relationships between nighttime lights versus IUSSB 

and IUSSCE were observed for provincial variables in a single year, as well as for time 

series variables of a single province. However, these relationships were found to differ 

among provinces (referred to as ―inter-individual differences‖) and with time (referred to 

as ―temporal differences‖). Panel regression models were therefore proposed to estimate 

IUSSB and IUSSCE in consideration of the temporal and inter-individual differences based 

on a dataset covering 1992–2007. These models were validated using data for 2008, and 

the results showed good estimation for both IUSSB and IUSSCE. The proposed approach 
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can be used to easily monitor the dynamic of IUSSB and IUSSCE in China. This should be 

critical in providing valuable information for policy making regarding regional 

development of buildings and infrastructure, sustainable urban resource management, and 

cross-boundary material recycling.  

Keywords: in-use steel stock; DMSP/OLS nighttime lights; long-term; China; panel 

regression analysis  

 

1. Introduction 

Currently, China is undoubtedly experiencing a phase of rapid urbanization and civil infrastructure 

construction. Local and central governments are investing heavily in buildings and civil engineering 

infrastructure, such as highways and railways [1,2]. In this regard, the consumption of steel, the most 

widely used construction material, is rapidly increasing [3,4]. In 2012, China’s crude steel production 

(Figure 1) and apparent steel consumption accounted for 46.3% and 45.7% of the world’s total, 

respectively [5,6]. In particular, in 2013, steel consumption in the Chinese construction sector was 

projected to reach 56.6% of the total consumption [7]. It is also important to note that as one of the 

main emitters of CO2, the iron/steel industry in China emitted 1.17 billion tons of CO2 in 2009, which 

accounted for 50% of the total emission amount of the steel industry worldwide [8]. In this light, it is 

essential to realize sustainable resource management for steel from the viewpoint of achieving 

environmental protection and a low-carbon society in rapidly urbanizing China. 

Figure 1. Crude steel production in China and the world. (Source: revised from [5] by 

the author). 

 

Toward this end, an urgent issue requiring attention is the effective and efficient investigation of the 

steel stock in the society. A large amount (by weight) of steel is stocked in steel-containing products 

(e.g., buildings and civil engineering infrastructure) until their lifetime expires; this is usually referred 
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to as in-use steel stock [9,10]. Such stock is invaluable in terms of people’s lives, social production, 

and economic development [11]. Furthermore, as an important component of urban metabolism, the 

size of in-use steel stock serves as an important measure of old scrap supply and recyclable steel [10]. 

Therefore, the reliable and real-time estimation of in-use steel stock could promote sustainable resource 

management and development of buildings and infrastructure in a transitional economy like China. 

One of the traditional methods for the estimation of in-use steel stock is the top-down approach, in 

which the magnitude of in-use steel stock is calculated by contrasting the difference between steel 

inflow and outflow within a defined boundary [12]. The steel inflow (also referred to as ―steel 

consumption‖) is calculated from time-series statistical data describing steel production and trade 

between nations or regions, whereas the steel outflow is determined by the lifetime of steel-containing 

products. Another method is the bottom-up approach, in which the in-use steel stock is calculated as 

the sum of the quantity of different steel-containing products multiplied by their average steel 

concentration [12]. Although both approaches provide a reasonable estimation of in-use steel stock, 

their applicability is always hindered by data availability. For the top-down approach, it is difficult to 

acquire in-use steel stock at a sub-national level owing to the lack of statistical data, whereas for the 

bottom-up approach, considerable labor costs are incurred to investigate the quantity and average steel 

concentration of steel-containing products. 

Compared with the traditional approach, satellite estimation offers several advantages such as low 

cost, high spatial resolution and strong capacity for worldwide observations. Since 1992, global 

nighttime lights have been monitored by the Defense Meteorological Satellite Program’s Operational 

Linescan System (DMSP/OLS). Thus far, the DMSP/OLS sensor has produced two types of nighttime 

light images with a spatial resolution of 30 arc-seconds: (1) Global Radiance Calibrated Nighttime 

Lights which consists of light intensity with radiance-calibrated values that is publicly available only 

for several discontinuous years, and (2) DMSP-OLS Nighttime Lights Time Series (Version 4), which 

provides long-term (1992–2012) non-radiance-calibrated light intensity with digital number (DN) 

values between 0 and 63. Nighttime lights products have been proven to serve as a good proxy of several 

socioeconomic indicators such as human population [13], gross domestic product (GDP) and CO2 

emission [14], marketed economic activity [15] and electricity consumption [16]. Meanwhile, Rauch [17] 

proved that it is also possible to map in-use metals (aluminium, copper, iron, and zinc) stocks from 

nighttime lights based on the linear regression between GDP and both in-use stocks and nighttime lights. 

Lights signals recorded by DMSP/OLS are mainly obtained from lit buildings and civil engineering 

infrastructure [18]. Usually, buildings and civil engineering infrastructure are considered as the main 

steel-containing products [19]. Therefore, some studies have explored the relationship between in-use 

steel stock and nighttime lights at the national and regional levels [19–23]. Taguchi et al. [21] 

proposed an empirical relationship between in-use steel stock and light intensity on a mesh-by-mesh 

basis for selected regions in Tokyo, Japan. Nighttime lights are also a good proxy of in-use steel stock 

at the prefecture level in Japan [19,21]. In China, Hsu et al. [24] estimated in-use steel stock at the 

provincial scale from nighttime lights using the national regression model established based on 41 sample 

countries. However, it should be noted that these models were proposed using the above-described Global 

Radiance Calibrated Nighttime Lights product in 2006; therefore, they may remain applicable for only 

a limited time owing to the limited availability of these products. This limitation makes it difficult to 
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construct long-term in-use steel stock from nighttime lights using present algorithms in China and, 

further, to study the in-use steel stock dynamics.  

However, modeling the long-term variation of in-use steel stock from nighttime lights is actually 

more important for China because of its rapid urbanization and corresponding increase in steel 

consumption. In this study, we mainly focus on this issue. To model the long-term in-use steel stock 

from nighttime lights in China, potential factors influencing the relationship between in-use steel stock 

and nighttime lights need to be considered. According to Ma et al. [25], the relationships between 

nighttime lights and socioeconomic indicators (e.g., GDP, population, built-up area, electric power 

consumption) for a long-term dataset varied among regions (referred to as inter-individual differences 

in this study) owing to the vast regional disparity in socioeconomic indicators in China. Meanwhile, in 

other regions, the relationships between nighttime lights and the population, as well as GDP, were also 

reported to vary among regions [15,26,27]. For instance, to reduce the effects of regional disparity, 

Sutton and Costanza [15] classified the world’s cities into three main groups according to the countries’ 

GDP level and then estimated the cities’ population from nighttime lights for each group.  

In this study, we hypothesized that the relationship between in-use steel stock and nighttime lights 

is impacted by temporal and inter-individual differences. The objective is to provide an alternative, 

efficient approach for estimating long-term in-use steel stock of buildings (IUSSB) and civil 

engineering infrastructure (IUSSCE) in China at a provincial level from nighttime lights with 

consideration of temporal and inter-individual influences, so as to support sustainable resource 

management and circular economy strategy. Toward this end, the long-term (1992–2008) in-use steel 

stock and DMSP-OLS Nighttime Lights Time Series products were combined as a panel dataset. The 

temporal and inter-individual effects in the modeling long-term in-use steel stock from nighttime lights 

were then investigated using least squares (LS) regression analysis at cross-sectional and time-series 

dimensions. Panel regression analysis, which is widely used in studies of economy [28–30], as well as 

of urbanization and urban metabolism [31], was eventually adopted to derive the in-use steel stock 

from nighttime lights by controlling these temporal and inter-individual influences, and the 

performance of the panel regression model was validated. 

2. Data and Methodologies  

2.1. Time-Series Dataset of Provincial In-Use Steel Stock in China 

Time-series data of in-use steel stock (1978–2008) at the provincial level in China are provided by 

Han and Xiang [32] and Zheng et al. [33]. In brief, this dataset calculates steel stocked in buildings, 

roads, railways, and water pipes in mainland China from statistical data using the bottom-up approach. 

The in-use steel stock is classified as IUSSB and IUSSCE. IUSSCE includes steel stock of roads, 

railways, and water pipes. IUSSB in Han and Xiang [32] included steel stock of residential buildings 

in urban and rural areas, and it has been updated to include steel stock of both residential and 

commercial buildings by Han (personal communication). To match the nighttime lights data, we only 

adopted the data associated with 29 provinces in China from 1992 to 2008. The Tibet province is 

excluded in our following analysis owing to the lack of IUSSCE data. Moreover, as noted by Han and 

Xiang [32], Chongqing municipality is still considered as a part of Sichuan province for long-term 
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consistency (Figure 2). To preliminarily validate this dataset, we summed all the provincial IUSSB and 

compared them with those of Shi et al. [34], who calculated the in-use steel stock at the national level 

from statistics. These two datasets generally showed good consistency (see Supplementary materials). 

Figure 2. Distribution of provincial IUSSB and IUSSCE for mainland China in 2008.  

 

2.2. Multi-Temporal Nighttime Light Dataset 

Satellite images of DMSP-OLS Nighttime Lights Time Series (Version 4) covering the whole of 

China during 1992–2008 were obtained from the National Geophysical Data Center (NGDC) of 

NOAA (http://ngdc.noaa.gov/eog/). The annual composites of nighttime lights used in our study were 

derived from five individual satellites (F10, F12, F14, F15, and F16) with a DN of 0–63 and spatial 

resolution of 30 arc-seconds (~1 km) (Figure 3). Each satellite has a lifespan of 3–8 years, and 

therefore, there are instances in which two nighttime light imageries were observed by separate 

satellites in one particular year, such as in 1994 and during 1997–2007. Because there is no in-flight 

calibration for the DMSP/OLS sensor, the nighttime light imageries obtained by different satellites 

cannot be compared directly. To address this issue, we adopted Liu et al.’s [35] quadratic model to 

inter-calibrate all the annual nighttime light imageries using the imagery of F162007 for Jixi city in 

Heilongjiang Province. Furthermore, because the steel stock of gas-related infrastructure is not 

considered, Elvidge et al.’s [36] gas flare maps were used to remove the nighttime lights emitted by 

gas flares. From 1992 to 2008, a total of 29 inter-calibrated nighttime light imageries were produced 

by the abovementioned procedures. For individual imagery, DNs were aggregated according to the 

administrative boundaries of China’s provinces. Ultimately, between the two nighttime lights imageries 

obtained by separate satellites for one year, the one showing a higher correlation with the in-use steel stock 

was selected to assemble the time-series dataset (see details in Section 3.1). 

http://ngdc.noaa.gov/eog/
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Figure 3. Spatial distribution of DMSP/OLS nighttime lights in China in (a) 1992 and  

(b) 2008.  

 

2.3. Empirical Regression Model for In-Use Steel Stock at Provincial Level 

China’s provinces have different socioeconomic statuses and boundary scales. Normalization is 

widely used to reduce this type of inter-individual difference [19]. Therefore, we first normalized the 

total in-use steel stock and nighttime lights of a province by its administrative area, in order to 

investigate whether normalization can reduce the inter-individual difference. Early studies proved that 

the relationship between residential area and population can be described using a power function [37,38]. 

Based on this, the population was estimated from nighttime lights by assuming a power relationship 

between the two variables [15]. Meanwhile, the GDP was also suggested to vary with nighttime lights 

following a power function. Therefore, we assumed herein that the relationship between the 

normalized in-use steel stock and the nighttime lights also followed the power function  

 steelstock light


   (1) 

and that function can be transformed to log-linear form as: 

log( ) = log( )steelstock k light   (2) 

where steelstock and light are the normalized in-use steel stock and normalized nighttime lights, 

respectively, and α, k, and β are coefficients of the fitting model, where k equals log(α). It should be 

noted that the coefficient β represents both the empirical slope of the log-linear regression and light 

elasticity of the in-use steel stock. In other words, β can be used as a measure of the strength and 

magnitude of the correlation between the growth of nighttime lights and the in-use steel stock.  

In our study, nighttime lights and in-use steel stock (specific to IUSSB or IUSSCE) over 17 years 

(1992–2008) for 29 provinces in China were combined as one panel data, which contains two 

dimensions: time-series dimension and cross-sectional dimension. For each dimension, LS estimators 

were conducted between the nighttime lights versus IUSSB and IUSSCE based on Equation (2), and 

the log-linear correlation was evaluated by the determination coefficient (R
2
) and root mean square error 
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(RMSE). The cross-sectional regression was used to analyze the linear relationship between provincial 

in-use steel stock and nighttime lights for a specific year, whereas the time-series regression focused on the 

linear relationship between the long-term in-use steel stock and the nighttime lights for a specific province. 

To establish a uniform relationship between the long-term in-use steel stock and the nighttime lights, 

panel regression analysis was used. Normally, a panel regression model can be written as: 

, , .log( ) log( )i t i t i i tsteelstock k light u       (3) 

where steelstocki,t and lighti,t are the normalized in-use steel stock and nighttime lights for the ith 

province in the tth year, respectively. ui is the between-entity error for the ith province and εi,t 

represents the within-entity error. The regression error equals the sum of ui and εi,t. Note that ui (also 

referred to as ―inter-individual differences‖) is assumed to be independent of εi,t.  

In our study, the time-fix effect is tested under a null hypothesis of joint test, which advocates that 

the coefficients of time dummies are equal to 0. According to the returned p-value (<0.05), we rejected 

the null hypothesis. This suggested that the effect of temporal variability should be considered. 

Therefore, a time dummy variable σt was added to the model to control the temporal effect (Equation (4)). 

A first-order autoregressive error term εi,t−1, which is a component of εi,t, was advocated in the linear 

model by statistical tests involving serial correlation and heteroskedasticity [39,40] (Equation (5)). 

Meanwhile, according to the variation characteristic of σt as shown in results later, we empirically 

hypothesized that σt follows a vapor pressure function over time. The final panel regression model in 

consideration of temporal and inter-individual differences is  

, , .log( ) log( )i t i t t i i tsteelstock k light u         (4) 

1i.t i ,t i ,t  + z      (5) 

 0 1 2exp ln( )t c c t c t       , 0 1t t t   
 (6) 

where εi,t−1 and ρ are the first-order autoregressive error term and its coefficient, respectively; zi,t is 

independent and identically distributed (i.i.d.); c0, c1, and c2 are coefficients of the vapor pressure model; △t 

denotes the gap of year; and t0 indicates the start year. For instance, △t for 1992 is 1, and that for 2008 is 17.  

In the present study, panel data for 1992–2007 were included in the development of the panel 

regression model, and data for 2008 were used to validate the model performance. According to the 

Hausman specification test [41], a null hypothesis stating that the between-entity error ui is not 

correlated with the independent variables of the model was tested. According to the p-value (>0.05), 

the null hypothesis is not rejected. Hereby, we adopted the feasible generalized least squares (FGLS) 

estimator and conducted our panel regression analysis using the ―xtregar‖ command in Stata 12.0.  

3. Results 

3.1. Regression Analysis for Individual Year 

Table 1 summarizes the cross-sectional regression results for IUSSB and IUSSCE based on 

29 nighttime light imageries. In general, both R
2

building and R
2

civil were higher than 0.84 during the 

entire period, suggesting that nighttime lights had a strong correlation with IUSSB and IUSSCE. 

Furthermore, nighttime lights were a slightly better fit to IUSSCE than to IUSSB, showing higher 
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R
2

civil than R
2
building for the same year. This is consistent with previous studies conducted in other 

regions [19,21,22]. In this study, we conducted regression between the nighttime lights and the in-use 

steel stock for the whole province. Thus, as suggested by Hsu et al. [21], one possible reason for 

higher R
2

civil than R
2
building is the different distribution pattern between IUSSCE and IUSSB within a 

province in that IUSSB is distributed mainly in urban areas whereas IUSSCE is spread throughout the 

study area. To form a time-series dataset from 1992 to 2008, we selected the nighttime light imageries 

with a higher R
2

ave (see the last column of Table 1), which was given by the average of R
2

civil and 

R
2

building. For example, R
2

ave of F101994 nighttime lights (0.904) was higher than that of F121994 

(0.897); therefore, F101994 nighttime light imagery was chosen for further analysis.  

Table 1. Cross-sectional regression results for in-use steel stock for buildings (IUSSB) and 

civil engineering infrastructure (IUSSCE) based on five individual satellites. The years and 

averages (R
2

avg) of R
2
building and R

2
civil with underlines indicate 17 imageries (out of 29) that 

were selected to form the time-series data. 

Satellite Year 
IUSSB IUSSCE 

R
2
avg 

βbuilding kbuilding R
2

building RMSE βcivil kcivil R
2

civil RMSE 

F10 1992 1.052 1.719  0.846  0.713 0.841 1.984  0.937  0.347 0.892  

F10 1993 1.024 2.265  0.884  0.575 0.801 2.146  0.927  0.349 0.906  

F10 1994 1.003 2.687  0.891  0.541 0.768 2.331  0.916  0.359 0.904  

F12 1994 0.988 2.728  0.893  0.538 0.749 2.365  0.901  0.389 0.897  

F12 1995 0.988 2.950  0.891  0.536 0.745 2.469  0.911  0.360 0.901  

F12 1996 0.997 3.166  0.888  0.541 0.741 2.610  0.907  0.362 0.898  

F12 1997 1.003 3.317  0.885  0.547 0.742 2.721  0.906  0.362 0.896  

F12 1998 1.038 3.502  0.898  0.525 0.77 2.817  0.910  0.355 0.904  

F12 1999 1.020 3.825  0.908  0.512 0.746 3.042  0.898  0.365 0.903  

F14 1997 1.009 3.362  0.884  0.549 0.739 2.758  0.888  0.396 0.886  

F14 1998 1.010 3.480  0.903  0.518 0.75 2.800  0.908  0.352 0.906  

F14 1999 1.014 3.658  0.904  0.520 0.755 2.911  0.909  0.358 0.907  

F14 2000 1.051 3.758  0.879  0.595 0.788 2.969  0.909  0.356 0.894  

F14 2001 1.041 3.949  0.890  0.537 0.802 3.107  0.931  0.323 0.911  

F14 2002 1.058 4.009  0.915  0.451 0.801 3.172  0.923  0.324 0.919  

F14 2003 1.064 4.040  0.924  0.425 0.817 3.201  0.927  0.319 0.926  

F15 2000 1.018 3.783  0.886  0.530 0.764 2.988  0.916  0.336 0.901  

F15 2001 1.016 3.914  0.895  0.523 0.78 3.082  0.927  0.306 0.911  

F15 2002 1.031 3.982  0.913  0.446 0.791 3.143  0.930  0.302 0.922  

F15 2003 1.046 4.019  0.925  0.421 0.813 3.176  0.931  0.307 0.928  

F15 2004 1.061 4.064  0.907  0.513 0.825 3.206  0.939  0.291 0.923  

F15 2005 1.091 4.167  0.905  0.517 0.856 3.297  0.952  0.274 0.929  

F15 2006 1.101 4.181  0.915  0.458 0.866 3.331  0.943  0.286 0.929  

F15 2007 1.117 4.182  0.928  0.453 0.871 3.358  0.952  0.278 0.940  

F16 2004 1.098 3.963  0.911  0.476 0.854 3.128  0.943  0.283 0.927  

F16 2005 1.071 4.111  0.911  0.477 0.835 3.259  0.951  0.259 0.931  

F16 2006 1.078 4.147  0.917  0.442 0.849 3.303  0.945  0.279 0.931  

F16 2007 1.095 4.157  0.932  0.413 0.857 3.335  0.950  0.269 0.941  

F16 2008 1.107 4.158  0.908  0.462 0.871 3.341  0.943  0.280 0.926  
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During the entire period, the slopes (βbuilding and βcivil) of the linear functions between nighttime 

lights versus IUSSB and IUSSCE showed relatively narrow ranges whereas the intercepts (kbuilding and 

kcivil) showed a large difference. Figure 4 shows clearer evidence of the same. Taking IUSSB as an 

example, Figure 4a shows a plot of the entire provincial IUSSB against the corresponding nighttime 

lights from 1992 to 2008. Figure 4c shows a plot of a simplified scatter diagram with special emphasis 

on samples at the start (1992) and end (2008) years. These two figures show that the amount of steel 

stock follows a similar increasing trend with nighttime lights in 1992 and 2008, whereas there was an 

obvious gap between the intercepts of 1992 and 2008. IUSSCE exhibited similar trends, as shown in 

Figure 4b,d. As expected, these findings indicate that it is necessary to consider the temporal effect in 

the modeling of long-term IUSSB and IUSSCE from nighttime lights.  

Figure 4. Scatter plots for provincial variables over the entire period: (a) nighttime lights 

versus IUSSB; (b) nighttime lights versus IUSSCE. Scatter plots with linear regression 

lines for variables in 1992 and 2008: (c) nighttime lights versus IUSSB; (d) nighttime 

lights versus IUSSCE. Solid lines in black, orange, and red are linear regression lines. 

 

3.2. Regression Analysis for Individual Province 

For each province, time-series regressions between nighttime lights versus IUSSB and IUSSCE 

were performed and the results are summarized in Table 2. In general, both R
2
building and R

2
civil were 

larger than 0.87, and their average, R
2

avg, was 0.899–0.984. These results indicated that nighttime 

lights were also a good proxy of IUSSB and IUSSCE for all provinces over a long time scale. 

Nighttime lights in Beijing municipality showed the highest correlation with in-use steel stock and 

those in Jiangxi province, the lowest. More importantly, it is observed that both the slopes (βbuilding and 

βcivil) and the intercepts (kbuilding and kcivil) showed wide variations across provinces. These findings indicated 



Remote Sens. 2014, 6 4789 

 

 

that the simple normalization of the provincial in-use steel stock and nighttime lights by the administrative 

area cannot reduce the inter-provincial effects effectively, and the other method is necessarily required.  

Figure 5 shows a graphical representation of the relationships between long-term nighttime lights 

versus IUSSB and IUSSCE in exemplar provinces—Beijing, Henan, and Yunnan that belong to the 

eastern, middle, and western regions of China, respectively. Figure 5a,b shows that the regression 

functions for these three provinces differed considerably from each other. The regression lines for 

Beijing were excessively steep, whereas those for Henan and Yunnan were gentler. One possible factor 

causing these differences was the growth rate of in-use steel stock with the increase in nighttime lights, and 

another factor may be related to the saturated lighting signals in the urban core [42], as discussed later. 

These findings imply that the time-series regressions established for one province by LS regression are not 

applicable to other provinces owing to the existence of the inter-individual effect.  

Table 2. Time-series regression results for IUSSB and IUSSCE. R
2
avg represents the 

average of R
2

building and R
2

civil. 

Province  
IUSSB IUSSCE 

R
2
avg 

βbuilding kbuilding R
2

building RMSE βcivil kcivil R
2
civil RMSE 

Anhui 2.345 2.720  0.972 0.165 1.784  1.790  0.989 0.079 0.981  

Beijing 7.637 −14.71  0.987 0.143 3.929  −5.272  0.981 0.088 0.984  

Fujian 2.872 1.961  0.966 0.192 2.091  1.108  0.976 0.115 0.971  

Gansu 3.035 4.662  0.914 0.349 1.913  3.954  0.947 0.169 0.931  

Guangdong 4.061 −2.574  0.956 0.201 3.467  −2.456  0.958 0.169 0.957  

Guangxi 2.737 4.033  0.964 0.219 1.945  2.769  0.981 0.111 0.973  

Guizhou 2.646 4.349  0.979 0.190 1.502  3.380  0.972 0.125 0.976  

Hainan 1.917 2.382  0.978 0.128 1.499  1.875  0.951 0.150 0.965  

Hebei 4.323 −2.519  0.955 0.206 3.409  −1.771  0.963 0.148 0.959  

Heilongjiang 3.184 2.380  0.928 0.291 2.128  2.597  0.924 0.199 0.926  

Henan 3.514 −0.695  0.977 0.172 2.238  0.331  0.990 0.071 0.984  

Hubei 3.662 1.925  0.950 0.280 1.966  2.320  0.990 0.066 0.970  

Hunan 2.625 4.198  0.931 0.318 1.606  3.090  0.970 0.125 0.951  

Inner Mongolia 3.181 5.592  0.903 0.427 1.900  4.510  0.900 0.259 0.902  

Jiangsu 3.489 −2.248  0.952 0.241 2.706  −1.813  0.965 0.159 0.959  

Jiangxi 2.191 4.528  0.873 0.396 1.687  3.124  0.925 0.228 0.899  

Jilin 3.369 2.146  0.892 0.338 2.620  2.108  0.946 0.180 0.919  

Liaoning 5.083 −2.695  0.969 0.183 2.973  −0.141  0.971 0.104 0.970  

Ningxia 3.034 2.116  0.969 0.187 2.407  2.028  0.960 0.168 0.965  

Qinghai 2.494 7.396  0.871 0.463 1.611  5.464  0.934 0.206 0.903  

Shaanxi 3.133 2.063  0.888 0.413 2.046  1.814  0.976 0.118 0.932  

Shandong 3.142 −0.701  0.932 0.225 2.935  −1.842  0.967 0.143 0.950  

Shanghai 5.705 −12.520  0.953 0.234 3.179  −5.081  0.957 0.125 0.955  

Shanxi 5.015 −3.662  0.988 0.124 3.412  −1.624  0.979 0.112 0.984  

Sichuan 2.756 4.390  0.955 0.306 1.422  3.264  0.992 0.064 0.974  

Tianjin 6.806 −13.840  0.975 0.192 3.262  −3.968  0.973 0.095 0.974  

Xinjiang 2.836 6.744  0.970 0.234 1.743  4.054  0.984 0.103 0.977  

Yunnan 1.957 3.782  0.945 0.232 1.542  2.756  0.996 0.047 0.971  

Zhejiang 2.476 1.464  0.942 0.256 1.867  0.698  0.968 0.141 0.955  
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Figure 5. Scatter plots for time-series variables in Beijing, Henan, and Yunnan:  

(a) nighttime lights versus IUSSB; (b) nighttime lights versus IUSSCE. Solid lines in blue, 

orange, and red are regression lines. 

 

3.3. Development of In-Use Steel Stock Estimation Model  

The results in Sections 3.1 and 3.2 confirmed our expectation that only one simple LS regression 

model was not suitable to model in-use steel stock over the whole of China from nighttime lights for a 

long-term scale owing to the influences of temporal and inter-provincial differences. Here, we used 

panel regression analysis to reduce the temporal and inter-provincial effects and to improve the 

performance of estimating in-use steel stock from nighttime lights. We first present the simple LS 

models based on the whole dataset (1992–2007) of nighttime lights and in-use steel stock for the 

purpose of comparison.  

For IUSSB, the LS model was: 

log( ) 3.396 1.133 log( )IUSSB light    (R
2
 = 0.778, RMSE = 0.877) (7) 

For IUSSCE, the LS model was: 

log( ) 2.803 0.852 log( )IUSSB light    (R
2
 = 0.843, RMSE = 0.534) (8) 

The panel regression models showed good fitting results (Table 3) with adjusted R
2
 of 0.900 and 

0.914 and corresponding RMSE of 0.558 and 0.374 for IUSSB and IUSSCE, respectively. The detailed 

panel regression models for IUSSB and IUSSCE were: 

, ,log( ) 1.737 0.868 log( ) building building

i t i t t iIUSSB light u      (R
2
 = 0.900, RMSE = 0.558) (9) 

, ,log( ) 2.001 0.656 log( ) civil civil

i t i t t iIUSSCE light u      (R
2
 = 0.914, RMSE = 0.374)

 (10) 

As shown in Table 3, nighttime lights showed significant positive correlations (p < 0.001) with 

IUSSB and IUSSCE. For every 1% increase in nighttime lights, the model predicted a 0.868% and 

0.656% increase in IUSSB and IUSSCE, respectively. Details about σt
building

, ui
building

, σt
civil

, and ui
civil

, 

which are important components in the panel regression model, are described below. 
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Table 3. Statistics of the panel regression analysis for IUSSB and IUSSCE from 1992 to 

2007. N(obs.) and N(group) denote the number of observations and groups, respectively; 

ρ(ar) is the coefficient of the first-order autoregressive error term εi,t−1 ; σ(e) and σ(u) are 

the standard deviation of zi,t and ui , respectively; and ρ(fov) denotes the ui fraction of the 

total variance. The asterisks (
***

) indicate the significance level (p) of 0.001.  

 β k 
N 

(obs.) 

N 

(group) 

R
2 

(adjusted) 
RMSE ρ(ar) σ(e) σ(u) ρ(fov) 

IUSSB 0.868 
***

 1.737 
***

 464 29 0.900 0.558 0.856 0.098 0.473 0.959 

IUSSCE 0.656 
***

 2.001 
***

 464 29 0.914 0.374 0.880 0.053 0.279 0.959 

The coefficients σt
building

 and σt
civil

 represent the time-fixed effects in the panel regressions, which 

are independent of the inter-provincial differences. Figure 6 shows that σt
building

 and σt
civil

 increase with 

a prolonged timeline following vapor pressure functions. Here, we selected vapor pressure functions 

because the increase rate of σt
building

 and σt
civil

 both decreased with time. To describe this type of 

relationship, the vapor pressure function or logarithmic function is a good choice. Compared with the 

logarithmic function, the vapor pressure function showed better fitting results in our dataset. Table 4 

lists the coefficients of the vapor pressure fitting models for σt
building

 and σt
civil

. These coefficients 

(i.e., c0, c1, and c2) were statistically significant (p < 0.001), and both models showed a strong 

prediction ability with R
2
 of 1.000 and 1.000 and RMSE of 0.044 and 0.014 for σt

building
 and σt

civil
, 

respectively. The vapor pressure fit models for σt
building

 and σt
civil

 are:  

 exp 0.767 2.976 0.15 ln( )building

t t t        (11) 

 exp 5.06 2.949 0.414 ln( )civil

t t t         (12) 

Figure 6. The time dummy variables σt are plotted against timeline ∆t for (a) IUSSB and 

(b) IUSSCE. Solid lines in red are regression lines of the vapor pressure fitting models. 

 

Figure 7 shows the components ui
building

 and ui
civil

 for each province, and the detailed values are 

listed in the Appendix. ui
building

 and ui
civil

 are used to reduce the inter-provincial differences in the panel 

regression. For instance, ui is higher in Beijing and Shanghai than in the other provinces, suggesting 
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that if a uniform LS model is used without consideration of their inter-provincial differences, the in-use 

steel stocks in Beijing and Shanghai will be underestimated. Conversely, the relatively low ui in 

Xinjiang, Hainan, and Yunnan indicated that the in-use steel stock will be overestimated using a 

uniform LS model. By adding ui for each province in the panel regression model, the overestimation 

and underestimation of the LS model can be effectively compensated. 

Table 4. Coefficients of vapor pressure fitting models for time dummy variables σt. The 

number of asterisks (*
) indicate different significance levels (p): 1 = p < 0.05, 2 = p < 0.01, 

3 = p < 0.001. 

Models 

IUSSB IUSSCE 

c0 c1 c2 R
2
 RMSE c0 c1 c2 R

2
 RMSE 

0.767 
***

 −2.976 
***

 0.150 
**

 1.000 0.044 −0.506 
***

 −2.949 
***

 0.414 
***

 1.000 0.014 

Figure 7. Random-error component ui for each province in panel regression model. 

 

3.4. Model Validation  

To validate the model performance, we applied the panel regression models and LS models for 

2008 to derive IUSSB and IUSSCE from nighttime lights. Based on the vapor pressure fit models 

shown in Equations (11) and (12), the coefficients σt
building

 and σt
civil

 in 2008 were projected to be 2.768 

and 1.636, respectively. Figure 8 shows scatter plots between the estimated versus the observed IUSSB 

and IUSSCE for 29 provinces. Although the estimated values of the LS models were linearly 

correlated with statistical data for both IUSSB and IUSSCE with R
2
 of 0.908 and 0.943, respectively, 

both IUSSB and IUSSCE were clearly underestimated by the LS models with RMSE of 0.855 and 

0.624, respectively. This is probably because the temporal and inter-provincial effects on the 

relationship between in-use steel stock and nighttime lights were neglected. The panel regression 

models showed good estimations for both IUSSB and IUSSCE; all the data were around the 1:1 lines 
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with R
2
 of 0.992 and 0.987 and RMSE of 0.238 and 0.154, respectively. These results indicate that the 

panel regression models are time-robust in deriving IUSSB and IUSSCE from nighttime lights at a 

nationwide scale in China. 

Figure 8. Comparisons between estimated IUSSB (a) and IUSSCE (b) by the panel 

regression models and LS models versus observed IUSSB and IUSSCE in 2008.  

 

4. Discussion  

The steel stock in existing buildings and infrastructure is closely related to social production, urban 

metabolism, and resource conservation [10,11,43]. As with previous studies [19–22], we confirmed 

that time-series nighttime light imageries show good performance for estimating the in-use steel stock. 

Unlike the previous studies in which the estimation models were usually developed based on data for a 

specific year, this study proposed an approach to construct long-term IUSSB and IUSSCE from 

DMSP-OLS Nighttime Lights Time Series (Version 4) at the provincial level in China. We found that 

in China, which is a fast developing country, there were obvious temporal and inter-individual 

differences in the relationship between nighttime lights and in-use steel stock (Figures 3 and 4), even 

though we performed the preliminary normalization of these variables by the corresponding 

administrative area, which is a widely used method to reduce inter-individual differences. These 

findings were generally in agreement with those of Ma et al. [25], who observed that the quantitative 

responses of nighttime lights to changes in socioeconomic indicators followed different trends for 

individual cities. These results suggested that more attention should be given when applying a sole LS 

model to derive the long-term steel stock. Figure 8 showed that without consideration of the temporal 

and inter-individual effects, the in-use steel stock was clearly underestimated by LS models in 2008. 

To compensate for the temporal and inter-individual effects, panel regression analysis has been 

suggested as a useful technique by economists [28–30,44]. In this study, we first adopted panel 

regression analysis to model the long-term in-use steel stock, and its good performance showed that 

panel analysis is also a powerful tool for modeling the long-term in-use steel stock from nighttime lights.  

The temporal effects in the relationship between nighttime lights and in-use steel stock may be 

related to the detection ability of the DMSP/OLS sensor. It is well known that this sensor can only 
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detect light signals with radiance exceeding 10
−1

 W∙cm
−2
∙sr

−1
∙μm

−1
 [42,45]. However, steel was 

stocked in unlit buildings and infrastructure as well, such as underground parts [46]. Furthermore, a 

considerable amount of steel is stocked in buildings and infrastructure in sparsely populated areas 

where the nighttime light intensity is quite weak [47–49]. Such steel should also be considered a part 

of the unlit in-use steel stock. Theoretically, nighttime lights increase with lit in-use steel following a 

linear trend in log-log space (Figure 3), and the intercept of the linear function can be attributed to the 

unlit in-use steel stock. With the rapid urbanization in China, in-use steel stocks in both lit and unlit 

buildings and infrastructure are increasing along the timeline [3,9]. The increase in unlit in-use steel 

stock may increase the intercept of the cross-sectional LS models during 1992–2008 and gradually 

result in a large shift between the intercepts in 1992 and 2008, as shown in Figure 4. Inter-individual 

differences may be attributable to disparity in development across provinces, such as economic 

growth [50], population density [51], material/energy consumption [52], urban structure [53], and 

infrastructure investment [54]. These disparities may result in different proportions of lit and unlit 

buildings and infrastructure, which eventually caused diverse relationships between nighttime lights 

and in-use steel stock across provinces. Another factor may be the saturation problem of nighttime 

lights, which is a known challenge in the applications of DMSP/OLS data [42,55,56]. For instance, in 

Beijing, the ratio of saturated pixels was larger than that in Henan and Yunnan, which was one of the 

possible factors causing the sharper regression line for Beijing (Figure 5). Here, we need to state that 

the factors mentioned above are possible factors causing temporal and individual differences in the 

relationship between in-use steel stock and nighttime lights in China, and further investigations are still 

required to re-establish this proposition.  

Although in-use steel stock can be calculated using statistical data, it is usually a labor-intensive 

and time-consuming process. Compared with statistical methods, our approach is a fast and easy 

operation process to model the long-term in-use steel stock at a provincial level from nighttime lights. 

In turn, this should help identify the discrepancies in the development of buildings and infrastructure 

across different regions of China and provide effective guidelines for investment for buildings and 

infrastructure [32]. Furthermore, real-time information about the provincial in-use steel stock should 

facilitate the analysis of the relationship between infrastructure services and economic growth [57–60]. 

Long-term modeling of the in-use steel stock could help promote efficient use of materials and provide 

reliable estimates for recyclable steel in the future [10,61–63]. Moreover, our study not only 

established panel regression models for the in-use steel stock that are suitable for all provinces in 

different years but also provided optional LS models that can be used to estimate the provincial in-use 

steel stock in a specific year or in-use steel stock dynamic for a specific province (Tables 1 and 2).  

Although our model provides a good estimation of long-term in-use steel stock from nighttime 

lights in China, it may be inappropriate to apply our model directly at the county level or to other 

countries. This is because our model aimed to consider the temporal and inter-individual differences at 

provincial level in China, whereas these differences at the county level or in other countries may have 

different characteristics. However, we believe that our approach can be adapted at the county level and 

to other countries according to the local conditions. In addition, our model is based on the empirical 

relationship between nighttime lights and statistic-based in-use steel stock, which implies that the 

model parameters may depend on the training dataset. In future studies, we suggest compiling detailed 

ground dataset (e.g., 3D GIS dataset) because it can not only validate the performance of empirical 
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models proposed based on statistical data but also help to investigate the physical relationship between 

in-use steel stock and nighttime lights.  

5. Conclusions  

In this study, modeling of provincial in-use steel stock of buildings (IUSSB) and civil engineering 

infrastructure (IUSSCE) in China using the Defense Meteorological Satellite Program’s Operational 

Linescan System (DMSP/OLS) Nighttime Light Time Series (Version 4) products was investigated 

based on a long-term dataset (1992–2008). We found that the log-linear relationship between in-use steel 

stock and nighttime lights varied with time, showing slope ranges of 0.988–1.117 and 0.739–0.831, and 

intercept ranges of 1.719–4.182 and 1.984–3.358 for IUSSB and IUSSE, respectively. Meanwhile, the  

log-linear relationship also showed provincial differences with slope ranges of 1.917–7.637 and  

1.422–3.929, and intercept ranges of −14.71–7.396 and −5.272–5.464 for IUSSB and IUSSE, 

respectively. These findings indicate that it is not appropriate to use a sole least square (LS) regression 

model for estimation of long-term in-use steel stock in China.  

To compensate for the temporal and individual differences, panel regression analysis was first used 

in this study to build estimation models of IUSSB and IUSSCE. The validation of model performance 

in 2008 showed obvious improvement of the panel regression model compared with the sole LS model, 

with decreases in root mean square error from 0.855 to 0.238 and from 0.624 to 0.154 for estimation of 

IUSSB and IUSSCE, respectively. These results suggested that the panel regression models are  

time-robust and suitable for the provincial levels of China. The fast and effective estimation of long-term 

steel accumulation from nighttime lights at a nationwide scale in China can further serve as a sound 

basis for understanding the disparity in the development of buildings and infrastructure as well as 

implementing cross-boundary material recycling in the future. The application of our approach needs 

be investigated at county level and in other countries in a future study. 
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Appendix  

Table A1 shows the detailed values of the random-error components ui
building

 and ui
civil

, which 

represent the between-entity regression errors for the ith province in the panel regression models for 

estimating in-use steel stock of buildings (IUSSB) and civil engineering infrastructure (IUSSCE), 

respectively. By adding ui
building

 and ui
civil

 for each province, the inter-provincial differences are 

effectively reduced in the panel regression models. 

Table A1. The random-error components ui
building

 and ui
civil

 for each province.  

Province ui
building

 ui
civil

 

Anhui 0.092 −0.156 

Beijing 0.561 0.712 

Fujian 0.289 −0.433 

Gansu −0.609 −0.040 

Guangdong −0.210 0.063 

Guangxi 0.678 0.029 

Guizhou 0.143 0.054 

Hainan −0.693 −0.539 

Hebei −0.421 0.091 

Heilongjiang −0.661 0.106 
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Table 1. Cont. 

Province ui
building

 ui
civil

 

Henan −0.192 −0.117 

Hubei 0.298 0.068 

Hunan 0.744 0.197 

Inner Mongolia −0.649 0.110 

Jiangsu 0.023 −0.054 

Jiangxi 0.771 0.286 

Jilin −0.027 0.459 

Liaoning 0.026 0.279 

Ningxia −0.371 0.027 

Qinghai −0.623 −0.105 

Shaanxi −0.041 −0.281 

Shandong 0.205 0.090 

Shanghai 1.067 0.698 

Shanxi −0.647 −0.154 

Sichuan 0.309 −0.149 

Tianjin 0.270 0.573 

Xinjiang −0.415 −0.973 

Yunnan −0.427 −0.543 

Zhejiang 0.508 −0.297 
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