Next Article in Journal
Multi-Polarization ASAR Backscattering from Herbaceous Wetlands in Poyang Lake Region, China
Previous Article in Journal
Improving Classification of Airborne Laser Scanning Echoes in the Forest-Tundra Ecotone Using Geostatistical and Statistical Measures
Remote Sens. 2014, 6(5), 4600-4620; doi:10.3390/rs6054600
Article

External Validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI- SRTM v4.1 Free Access Digital Elevation Models (DEMs) in Tunisia and Algeria

1,*  and 2,*
Received: 24 February 2014 / Revised: 24 April 2014 / Accepted: 13 May 2014 / Published: 21 May 2014
View Full-Text   |   Download PDF [2147 KB, uploaded 19 June 2014]   |   Browse Figures

Abstract

Digital Elevation Models (DEMs) including Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER GDEM), Shuttle Radar Topography Mission (SRTM), and Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) are freely available for nearly the entire earth’s surface. DEMs that are usually subject to errors need to be evaluated using reference elevation data of higher accuracy. This work was performed to assess the vertical accuracy of the ASTER GDEM version 2, (ASTER GDEM2), the Consultative Group on International Agriculture Research-Consortium for Spatial Information (CGIAR-CSI) SRTM version 4.1 (SRTM v4.1) and the systematic subsample GMTED2010, at their original spatial resolution, using Global Navigation Satellite Systems (GNSS) validation points. Two test sites, the Anaguid Saharan platform in southern Tunisia and the Tebessa basin in north eastern Algeria, were chosen for accuracy assessment of the above mentioned DEMs, based on geostatistical and statistical measurements. Within the geostatistical approach, empirical variograms of each DEM were compared with those of the GPS validation points. Statistical measures were computed from the elevation differences between the DEM pixel value and the corresponding GPS point. For each DEM, a Root Mean Square Error (RMSE) was determined for model validation. In addition, statistical tools such as frequency histograms and Q-Q plots were used to evaluate error distributions in each DEM. The results indicate that the vertical accuracy of SRTM model is much higher than ASTER GDEM2 and GMTED2010 for both sites. In Anaguid test site, the vertical accuracy of SRTM is estimated 3.6 m (in terms of RMSE) 5.3 m and 4.5 m for the ASTERGDEM2 and GMTED2010 DEMs, respectively. In Tebessa test site, the overall vertical accuracy shows a RMSE of 9.8 m, 8.3 m and 9.6 m for ASTER GDEM 2, SRTM and GMTED2010 DEM, respectively. This work is the first study to report the lower accuracy of ASTER GDEM2 compared to the GMTED2010 data.
Keywords: ASTER GDEM2; SRTM v4.1; GMTED2010; accuracy assessment; Tunisia; Algeria ASTER GDEM2; SRTM v4.1; GMTED2010; accuracy assessment; Tunisia; Algeria
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote
MDPI and ACS Style

Athmania, D.; Achour, H. External Validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI- SRTM v4.1 Free Access Digital Elevation Models (DEMs) in Tunisia and Algeria. Remote Sens. 2014, 6, 4600-4620.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here

Comments

Cited By

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert