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Abstract: LiDAR-derived slope models may be used to detect abandoned logging roads in 

steep forested terrain. An object-based classification approach of abandoned logging road 

detection was employed in this study. First, a slope model of the study site in Marin 

County, California was created from a LiDAR derived DEM. Multiresolution segmentation 

was applied to the slope model and road seed objects were iteratively grown into candidate 

objects. A road classification accuracy of 86% was achieved using this fully automated 

procedure and post processing increased this accuracy to 90%. In order to assess the 

sensitivity of the road classification to LiDAR ground point spacing, the LiDAR ground 

point cloud was repeatedly thinned by a fraction of 0.5 and the classification procedure was 

reapplied. The producer’s accuracy of the road classification declined from 79% with a 

ground point spacing of 0.91 to below 50% with a ground point spacing of 2, indicating the 

importance of high point density for accurate classification of abandoned logging roads.  
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1. Introduction 

In a forested environment, roads can have long-lasting and pervasive impacts on ecosystem health. 

Forest roads interrupt natural runoff processes and increase overland flow in two ways: soil 

compaction on road surfaces lowers infiltration rates directly contributing to overland flow [1] and 

roads act as hydrologic pathways that capture surface and subsurface flow [2]. Increased overland flow 

typically results in fine sediment production from both surface erosion and road-triggered mass 
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wasting events [3,4]. Furthermore, high forest road densities are associated with an increase in 

connectivity between sediment sources and streams, leading to higher sediment loads and subsequent 

water quality problems [5]. Siltation caused by forest roads can be especially damaging to anadromous 

fish populations [6]. Other impacts of roads on flora and fauna include roads acting as conduits for 

invasive species [7], decreased tree growth rates [8,9], and reduced near-road habitat suitability for 

forest-dependent species [10]. 
Abandoned logging roads, previously used for timber harvest and extraction are found throughout 

public and private forests within the Pacific Northwest of the United States [11] and in many major 

forests around the world. These roads may be left unmanaged for years or decades, compounding 

many typical problems associated with forest roads. Soil disturbance and erosion caused by logging 

roads is heavily dependent on the method of road construction [12] and many abandoned logging roads 

were built using poorly considered road building practices [13]. Although the impacts of a new logging 

road can persist for decades [14,15], road removal treatments have been effective in reducing sediment 

production from abandoned logging roads [11]. In order to prescribe treatment, forest managers need 

logging road inventory data to evaluate road impacts. However, maps of logging roads are often 

unavailable. Remote sensing methods can provide an efficient and reliable way for forest managers to 

determine if and where abandoned logging roads exist.  

While tree cover in forested terrain renders ineffective most traditional remote sensing road 

detection techniques that rely on aerial photography or satellite imagery, a more recent remote sensing 

technology, LiDAR (Light Detection and Ranging), is well suited for forest road detection. The distinct 

advantage of LiDAR is in its capability to poke through small vegetation gaps and collect terrain surface 

information. Previous authors have used both LiDAR point cloud data and LiDAR-derived raster 

products to detect and extract forest roads [16,17]. In steep forested terrain, a slope model created from a 

LiDAR-derived Digital Elevation Model (DEM) has proven especially useful for road detection [17–19]. 

Since road slopes are generally low, roads in a slope model stand out against the steep grade of the 

background terrain. The high accuracy of hand-delineated forest roads achieved by White et al. [17] 

demonstrates the feasibility of using LiDAR derived slope models for road detection. Rieger et al. [18] 

present a first attempt at automated road extraction under canopy using LiDAR. An edge-enhanced 

slope model was created from LiDAR data and line features were extracted from the image using an 

automated “twin snakes” approach. The “snakes” method relies on an energy minimizing function that 

locks onto nearby edges and can be used to bridge gaps between line segments [20]. This approach has 

also been applied successfully to registering 2D road vector data to a LiDAR derived DTM [21]. Edge 

detection methods, such as the “twin snakes” approach are more suited for continuous and intact roads. 

Since abandoned logging roads tend to be more fractured than maintained forest roads either because 

of the original road construction method or due to road collapse and erosion that occurred after the 

road was abandoned, edge detection methods may be less useful when applied to abandoned logging 

road extraction.  

A maximum likelihood classification of LiDAR-derived DEM products in combination with 

erosion and dilation filters was used by Harmon [22] to successfully classify forest roads under 

canopy. However, false-positive classifications of road-like features such as streams and gullies, albeit 

reduced using erosion and dilation filters, were still a significant source of classification error. Also, 
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this pixel-based classification technique had difficulty limiting the classification correctly to road 

surfaces in low slope areas.  

Other authors have attempted to use a combination of LiDAR-derived products and information 

extracted directly from the LiDAR point cloud for forest road detection. A pixel-based region growing 

method was used by David et al. [16] to build road pathways from automatically and semi-automatically 

defined road seeds. Altimetric cross-section profiles were then generated from the LiDAR point cloud 

to more accurately detect road borders.  

A loss of road connectivity caused by road debris and erosion on abandoned logging roads may 

reduce the effectiveness of pixel-based region growing methods for abandoned logging roads 

detection. High levels of debris and tree re-growth typically found on abandoned logging roads may 

also reduce the usefulness of methods that rely on extracting information directly from the LiDAR 

point cloud. Typically forest road pathways entail an empty volume above the trail surface where 

vegetation would otherwise be present. Lee et al. [23] present a road detection method that exploits 

this fact by calculating visibility vectors between road seeds in order to extract forest road pathways. 

However, using vegetation gaps to infer road locations is less promising for abandoned logging roads 

where expected gaps are often filled with debris.  

Implementing an object-based road classification approach may prove helpful in overcoming some 

of the previous mentioned challenges to abandoned logging road detection. Object-based classification 

procedures are typically divided into two stages. Initially, a pixel image is segmented into image 

objects using a segmentation algorithm. The multiresolution segmentation algorithm, a commonly used 

segmentation algorithm in object-based image analysis, is a region growing algorithm that combines 

objects from the pixel-level up, based on a balance of shape and spectral parameters [24]. Objects are 

grown into adjacent objects if the resulting object minimizes internal heterogeneity. This criterion can 

be expressed by user-defined weights of spectral reflectance versus shape and the shape weight is 

further expressed by values of smoothness versus compactness. A scale parameter value constrains 

resulting object size [25]. Objects may then be classified by taking advantage of both the spectral and 

spatial qualities of the image objects. For classes that have distinct spatial qualities such as roads and 

buildings, an object-based approach can be especially useful [26]. Object-based road classification has 

been successful in classifications using multispectral imagery [27] and, more recently, with the 

addition of LiDAR derived elevation information [16]. Applications of LiDAR in combination with 

object-based classification for investigating forest structure and collecting forest inventory data have 

been especially successful [28]. An object-oriented rule-based classification approach has also been 

shown to be well-suited for the classification of LiDAR derived surfaces [29].  

This paper examines an object-based approach to semi-automatic classification of abandoned 

logging roads. A LiDAR derived slope model and its edge-enhanced derivative were used as inputs 

into an initial multiresolution segmentation of road objects. Road seeds and road candidate objects 

were classified with a rule-based classification and road seeds were grown iteratively into candidate 

objects. Several post-processing techniques were explored to remove misclassified road-like objects 

and a pixel-based classification was performed on the slope model for comparison purposes. LiDAR 

point spacing, or the average ground spacing (in meters) between LiDAR postings, has a strong effect 

on the vertical error of a LiDAR derived DEM [30]. Furthermore, the usefulness of LiDAR- derived 

DEMs and their derivatives in capturing forest road information is highly dependent on LiDAR point 
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spacing [17,19,31]. In forested environments, the proportion of LiDAR points that are able to penetrate 

the canopy and reach the ground surface can be very low. Therefore an examination of the importance 

of LiDAR point spacing on the effectiveness of road classification was also done by systematically 

reducing the LiDAR point density (and thus increasing the point spacing) and iteratively running the 

object-based classification model. An understanding of point density requirements is especially 

important to forest managers and decision makers who must choose data requirements for flying new 

LiDAR data in order to detect roads.  

2. Study Area and Logging Road Background 

2.1. Study Area 

The study area is located on the eastern slope of the Bolinas Ridge above Kent Lake Reservoir in 

Marin County, California (Figure 1). The site is approximately 3 square kilometers of heavily forested 

steep terrain, with an average slope of 29° and elevations ranging between 109 and 470 meters above 

mean sea level. The forest canopy in the study area is primarily characterized by second growth coast 

redwood and Douglas-fir. Canopy cover is dense and consistent throughout the study site and logging roads 

within the study site are completely occluded by vegetation (Figure 1).  

Figure 1. Bolinas ridge study site shown within the context of California and Marin County. 
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2.2. Logging Road Background 

The Marin Municipal Water District purchased the lands and logging rights for the area containing 

the study site in 1949 [32]. The extensive network of logging roads found within the study site was 

likely built shortly after. Between 1949 and 1952 an estimated 3 million board feet of timber was 

processed at the Ruoff mill, the destination of timber from the study site [32].  

Since logging ended in 1952, logging roads within the study site have remained unmanaged and 

undisturbed. Bank erosion is evident throughout the road network and fallen trees and forest litter are 

present on most roads (Figure 2). However, roads are still clearly distinguishable on the ground and 

little tree growth has occurred on road surfaces. Roads are mostly located perpendicular to the hillslope 

and following ridgelines. Measured road surface slopes within the study site were found between 0° 

and 24.5° degrees with an average of 10°. The average road width within the study site was 4.1 meters. 

Figure 2. A typical abandoned logging road within the study site. 

 

3. Data 

LiDAR data acquisition and processing were completed by the National Center for Airborne Laser 

Mapping (NCALM) as part of the Point Reyes, CA: Landscape Response to Tectonics project. The 

LiDAR survey was performed with an Optech GEMINI Airborne Laser Terrain Mapper (ALTM) on 

8–9 September 2009. The sensor operated at an altitude of 850 meters above ground level, with a pulse 

rate frequency of 100 kHz, a scan frequency of 40 Hz, and a sampling density of 6 pulses/m2. LiDAR 

points were classified into ground and non-ground points using TerraSolid’s Terrascan software and 

point cloud files were tiled into 1 square kilometer blocks.  

LiDAR ground point data was clipped to the study site boundary and a 1 meter resolution DEM was 

created in ArcGIS 10.1 using the LAS Dataset to Raster tool. This tool uses a TIN based natural 

neighbor classification to build a DEM from LiDAR ground points [33]. A slope raster was then 

created from the DEM using the slope tool in the ArcGIS Spatial Analyst toolset [33]. An examination 

of the resulting slope model showed a small area with a high concentration of LiDAR artifacts, 

(distortions in the LiDAR dataset, likely caused by misclassified LiDAR points). The study site 

dimensions were modified to exclude this area. The slope model shown in Figure 3 represents the 

slope calculated at a resolution of 1 meter.  
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Figure 3. A 1 m × 1 m slope model of the study site is shown on the left with sample 
points and transects overlaid. On the right the results of applying an Edge Extraction Lee 
Sigma filter on the slope model. White areas on the left are LiDAR artifacts.  

 

4. Methods 

4.1. Field Survey 

Since logging road maps of the study site were unavailable, a line-intercept field sample was used 

to gather classification validation points and road characteristics. The field survey was completed over 

five days between 17 November 2012 and 24 August 2013. Road and non-road points were collected 

along six transects running from the Bolinas Ridgeline on the western edge of the study site to the 

eastern edge of the study site. Transect starting points were chosen on the Bolinas Ridgeline in order to 

cover the entire study site. Originally 200 meter intervals between transects were chosen, but in order 

to adequately cover the entire study site, it was determined that larger intervals were needed. The exact 

starting point of each transect was chosen randomly within 100 meter zones. Each transect was then 

run on a 45 degree angle from the Bolinas ridge trail to the eastern edge of the study site. At each 

logging road found along a transect, the following road characteristics were collected: width, aspect, 

slope along road, slope across road, and road position, e.g., within gully, along ridgeline, or following 

contour. A GPS point was also collected at the center of the road. Non-road GPS points were collected 

on transects at approximately 100-m intervals to provide non-road validation points. A total of 43  

non-road points and 57 road points were collected with a handheld Trimble Juno SB GPS receiver. All 

GPS points were post-processed with differential correction using reference data from the base provider 

UNAVCO, Inverness, CA. Despite the stated post-processing accuracy of L1 code of 1–3 m [34], large 

GPS positional errors can occur in steep forested terrain due to high position dilution of precision 

(PDOP) and multipath LiDAR returns [35]. A high PDOP indicates that the geometry of the available 

satellites may lead to positional errors in the resulting GPS points. After a visual inspection of the GPS 

road points, it became clear that many points were located up to several meters away from their true 

position. When necessary, GPS road points were moved to the intersection of the corresponding transect 

and the correct road visually identified on the slope model. 
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4.2. Object Based Classification 

Logging road classification was performed in eCognition® Developer 8.7.2, an Integrated 

Development Environment (IDE) for image segmentation and the creation of object-oriented 

classification rule-sets [25]. Within eCognition, an Edge Extraction Lee Sigma filter was first applied 

to the previously created slope model. This edge extraction algorithm uses an edge filter to create 

bright and dark edge layers from the original image [25]. In this case dark edges were extracted. A 

sigma value of 5, determining the strength of the edge detection, was chosen resulting in the image 

shown in Figure 3. The inclusion of an edge-enhancement filter was precipitated by similar 

applications by Reiger et al. [18] and Harmon [22]. A sigma value of 5 creates a lee sigma image with 

strong edge detection.  

An initial multiresolution segmentation was performed with the slope image and the edge-enhanced 

filtered slope image as inputs with equal layer weights. As is often the case with image segmentation 

in the Ecognition environment, a trial-and-error approach to parameter refinement was needed [36]. In 

this case the segmentation method, input weights, and shape and compactness parameters were 

empirically chosen with the goal of creating homogeneous road objects. For this project a scale value 

of 6 was chosen along with values of 0.1 for shape weight and 0.5 for compactness weight. The shape 

value of 0.1 gives strong favor to spectral signature over shape during segmentation, while the 

compactness value of 0.5 indicates equal value was given to maintaining heterogeneity of the 

“smoothness” and “compactness” of image objects [25]. These parameters were empirically chosen to 

create the largest possible objects that fall entirely within either a road class or a non-road class.  

A rule-based classification approach, whereby classification was performed on the image objects 

based on thresholds for two object parameters, was used to create a road seed class and a road 

candidate class. The two object parameters selected were the “mean slope value” of an image object 

and the “mean difference of an object’s slope to its brighter neighbors”. The “mean slope value” 

parameter is the average slope of each object within the image. The “mean difference of an object’s 

slope to its brighter neighbors” refers to the mean difference between the mean slope value of each 

image object and the mean slope value of each adjacent object with a higher mean slope value [25]. 

More conservative thresholds, meaning a lower “mean value” threshold and higher “mean diffierence 

to brigher neighbor” threshold, were chosen for the road seed class ensuring a high likelihood that road 

seed objects were correctly classified (Figure 4a). Remaining unclassified objects were classified into a 

road candidate class using less conservative parameter thresholds, meaning a higher “mean value” 

threshold and lower “mean diffierence to brigher neighbor” threshold, in order to ensure most 

remaining road objects were captured within this class (Figure 4c). Classification parameter thresholds 

are shown in Table 1.  

Road seed objects were merged and small objects below 10 pixels in size were removed from the 

road seed class. A straightening process was then applied to the road seed class to create straightened 

elongated road objects more suitable for the road growing. Object straightening was achieved by 

running multiresolution segmentation iteratively over a reducing scale parameter with a shape criterion 

of 0.9 and a compactness criterion of 0.9. A comparison of objects before and after straightening is 

shown in Figure 4a–b.  
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Table 1. Road seed and road candidate slope parameter thresholds. 

 Mean Value Mean Difference to Brighter Neighbor 

Road Seed ≤34 ≥9 
Road Candidate ≤35 ≥5 

Figure 4. (a) Road seed objects, (b) Straightened road seed objects, (c) Candidate road 

objects, (d) Road objects after road seed objects grown into candidate objects. 

 

An iterative road growing and road straightening process was used to grow road seed objects into 

adjacent road candidate objects. Road seed objects were merged with adjacent road candidate objects 

based on a decreasing density requirement. Density is a measurement of the distribution of pixels 

within an object. Denser objects have a structure approaching a square while less dense objects have a 

shape more similar to a filament [25]. It is expected that as a road increases in length, its density will 

decrease. Therefore road seed objects were only merged with adjacent road candidate objects if the 

density of the combined object was less than the density of the road seed object. This process was run 

iteratively to grow the road into adjacent candidate objects (Figure 4d). Finally, non-road objects fully 

enclosed by road class objects were classified as roads. The resulting road classification was exported 

as a shapefile into ArcGIS.  

4.3. Road Post Processing 

Two levels of post-processing were performed on the results of the object based road classification 

within ArcGIS 10.1. First, misclassified gullies and streams were removed. A streams layer was 
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created in ArcGIS using the following workflow: LiDAR derived DEM > Flow direction raster > Flow 

accumulation raster > Streams layer. The resulting stream layer was buffered to 4 meters and used to 

erase roads falling within natural drainages. 

The second post processing level involved hand digitizing ridge roads that were missed by the 

original object based classification. A plan curvature raster was created from the LiDAR derived DEM 

using the curvature tool in the Spatial Analyst toolbox [33]. Plan curvature is the rate of change in the 

flow direction of the surface, following the contour direction. The plan curvature image is helpful in 

distinguishing ridgelines [37] and ridge roads (Figure 5). Ridge roads visible on the plan curvature 

image were hand digitized in ArcGIS and joined to the existing classified road layer. Six ridge roads 

with a total length of 3.9 km were added.  

4.4. Unsupervised Pixel-Based Classification  

An unsupervised k-means classification of the LiDAR derived slope image was performed to 

compare with the object-based classification results. Following this approach pixels are separated into 

a user defined number of clusters based on a minimum distance method [38]. The classification was 

performed with ERDAS Imagine 2010 with two classes: a road and non-road class.  

Figure 5. A ridge road seen on the plan curvature raster (scaling factor of 100 applied to 

curvature values for display purposes). 
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4.5. LiDAR Point Density Reduction 

In order to examine the sensitivity of the road classification to LiDAR point spacing, the original 

LiDAR point cloud filtered for ground points was thinned at several levels and the previously 

described slope model creation and object-oriented classification procedures were re-applied. The 

original LiDAR ground point cloud with a point spacing of 0.91 points per m2 was randomly thinned by 

a fraction of 0.5. Iterative point thinning resulted in 6 levels of LiDAR ground point spacing (Table 2). 

Table 2. LiDAR ground point spacing and object based classification accuracy results. The 

original data is included as the first row, with a point spacing of 0.91 m. 

LiDAR Point Spacing User’s Accuracy Producer’s Accuracy Total Accuracy 

0.91 0.96 0.79 0.86 

1.31 1 0.66 0.78 

1.89 1 0.42 0.67 

2.73 0.96 0.39 0.64 

3.93 1 0.105 0.49 

5.66 0.8 0.07 0.46 

4.6. Classification Accuracy Assessment 

Logging road classification accuracy was assessed using GPS ground reference data acquired 

during the field investigation. Accuracy statistics are summarized in the form of a confusion matrix for 

each classification result. Classification accuracy assessment was performed for the initial object 

oriented classification as well as for each post-processing step. Results for the unsupervised 

classification and for each point spacing level were also calculated.  

5. Results  

5.1. Object-Based and Pixel-Based Classification Results 

The results for the object-based classification of logging roads summarized in Table 3 show a total 

accuracy of 86% was obtained from the initial object oriented classification of the LiDAR derived 

slope image. This accuracy increased to 88% and 90% respectively after extracting misclassified 

gullies and adding manually digitized ridge roads (Table 3). For the object-oriented classification with 

gully roads extracted and with ridge roads added, the user’s accuracy was 98% while the producer’s 

accuracy was only 84%, indicating that a majority of classification errors were errors of omission or 

roads missed by the classification. Full error matrices are shown in Table 4. A total of 0.275 km2 of 

area were classified as roads within the study site (Figure 6). 

The pixel-based classification results show that the unsupervised classification of logging roads had 

a total accuracy of 78% (Table 3). A lower user’s accuracy was found in the pixel-based classification 

than in the object-based classification. Unlike the object-based classification, errors of commission 

were of significant concern. Errors of commission occurred largely on ridgelines where large areas of 

low slope were present (Figure 7). The object-based region growing approach was better able to 

constrain road classification correctly to roads in these areas. Within road areas, the pixel-based 
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classification was less successful in classifying continuous road surfaces. Large and frequent 

classification gaps are found on the roads in the pixel-based classification results (Figure 7.) 

Table 3. Object-based and pixel based road classification accuracy statistics. 

 User’s Accuracy Producer’s Accuracy Total Accuracy 

Initial classification 0.96 0.79 0.86 

Drainages excluded 1 0.79 0.88 

Drainages excluded/ridge roads added 0.98 0.84 0.9 

Pixel-based classification 0.8 0.79 0.78 

Figure 6. Classified roads from the object-based classification with post processing. 

 

Figure 7. Classified roads from the pixel-based classification without post-processing. 
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5.2. Point Reduction Classification Results 

Thinning the LiDAR ground point cloud had a strong impact on the resulting classification 

accuracy (Table 2). Total accuracy ranged from a high of 86% with a ground point spacing of 0.91 

points per m2 to 46% with a ground point spacing of 5.66 (Table 2) when the object-based 

classification was applied without post-processing. The decline in producer’s accuracy indicates that 

errors of omission are the cause of reducing classification accuracy. This effect is evident in the 

classification results shown in Figure 8.  

Figure 8. Slope model and classification results without post-processing created from the 
LiDAR point cloud with ground point spacings of (A) 0.91, (B) 1.3, (C) 1.89, (D) 2.73, 
(E) 3.93, and (F) 5.7 m. 
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Table 4. (A). Initial object-based classification error matrix. (B). Object-based 

classification drainages excluded error matrix. (C). Object-based classification drainages 

excluded/ridge roads added error matrix. (D). Pixel-based classification error matrix. 

(B) 
Ground Truth 

Total Classified  
Road NonRoad 

Classification 
Road 45 0 45 

NonRoad 12 43 55 

Total Ground Truth 57 43 100 

    

(C) 
Ground Truth 

Total Classified  
Road NonRoad 

Classification 
Road 48 1 49 

NonRoad 9 42 51 

Total Ground Truth 57 43 100 

    

(D) 
Ground Truth 

Total Classified  
Road NonRoad 

Classification 
Road 45 11 56 

NonRoad 12 35 47 

Total Ground Truth 57 46 103 

6. Discussion  

6.1. Object-Based Classification 

The fully automated object-based classification performed well with a total accuracy of 86%. This 

fully automated object-based approach was an improvement over pixel-based unsupervised 

classification which resulted in a road classification accuracy of 77%. The object-based approach also 

outperformed a supervised classification approach to forest road detection attempted by Harmon [22], 

which yielded a classification accuracy of 73% before post processing. Applying shape conditions to 

road classification allowed the object based classification to minimize errors of commission in low 

slope areas. The object-based classification was comparable to total classification accuracies of 85%, 

76%, and 74% found by Espinoza et al. [19] for a manual road classification based on visualizing the 

LiDAR point cloud. Distinguishing natural terraces and drainages from roads was a difficulty shared 

by several authors [16,19]. This problem derives from the fact that some natural features, like ridgelines, 

can have similar slope characteristics to manmade road objects. While, in most cases, ridge roads were 

over-classified [16,19], in our case, a majority of the total error was caused by an under-classification of 

roads on ridgelines. The road detection parameter “mean difference to brighter neighbors” was largely 

(A) 
Ground Truth 

Total Classified  
Road NonRoad 

Classification 
Road 45 2 47 

NonRoad 12 41 53 

Total Ground Truth 57 43 100 
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responsible for reducing the effectiveness of road classification on larger ridgelines. Since slope is 

fairly uniform surrounding a ridge road, the “mean difference to brighter neighbor” threshold 

eliminates some ridge roads from the classification. This effect was visible when the “mean difference 

to brighter neighbor” parameter value was refined using a trial-and-error approach. While adding 

hand-digitized ridge roads from the plan curvature model requires manual interpretation, it does help to 

reduce missed ridgeline roads in the classification. A two percent increase in total accuracy after 

adding hand-digitized roads to the initial object-based classification demonstrates that the plan 

curvature model is a useful tool in distinguishing ridgeline. However, several ridge roads were still 

missed, because of difficulties in distinguishing ridge roads from the background terrain. Higher 

LiDAR point density, allowing for increased slope resolution may help in road detection on ridgelines. 

Several authors found that incorporating an intensity image in forest road classification methods was 

helpful [16,23]. However, the high level of debris found on abandoned logging roads would reduce its 

usefulness for abandoned logging road classification.  

Misidentification of natural drainage features as roads was another source of classification error. 

Because of the lack of field points directly within gullies or streams, the extent of this error was not 

captured in the error results. However, the simple post-processing step of removing drainages from the road 

classification seems to largely take care of this problem. Espinoza et al. [19] suggest examining the height 

profile across a potential road object to determine whether it is a road or a natural drainage. Natural 

drainages tend to have height profiles with a “V” shape while roads will have a partially flat profile. 

Figure 9. The relationship between LiDAR point cloud spacing and object-based 

classification accuracy. 

 

6.2. LiDAR Point Reduction 

Several authors note that LiDAR ground point densities were greatly reduced under canopy [17,23]. 

Over 94% of initial LiDAR returns in a study by White et al. [17] were classified as vegetation or 

other non-ground point returns. By examining the accuracies of manual road classification across 

several study sites, Espinoza et al. [19] found that point spacing was a large factor in determining 

classification quality. Our examination of the effects of LiDAR point thinning on the road 
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classification results confirm that finding and reflect a first attempt at isolating the effects of LiDAR 

point spacing in order to quantify LiDAR point spacing requirements for road detection under canopy. 

As shown in Figure 8, the usefulness of LiDAR for road detection is drastically reduced as point 

spacing increases. Between an average ground point spacing of 1 point per m2 and 2 points per m2, 

producer’s accuracy falls from close to 70 percent to below 50 percent (Figure 9). Within this range, 

errors of omission reach a level where the usefulness of the resulting classification would be 

questionable. A similar LiDAR point decimation strategy was performed by [39] to examine the 

impact of LiDAR post spacing on flood zone delineation. Raber et al. [39] suggest a 4 meter post 

spacing requirement for flood plain delineation. Our result suggests a much higher LiDAR post 

spacing is needed for forest road detection. 

7. Conclusions  

While previous work has looked at the classification of forest roads under canopy, this study is a 

first attempt at developing methods specifically for the detection and classification of abandoned 

logging roads. Performing object-based classification on a LiDAR derived slope model of the study 

site resulted in an initial classification accuracy of 86%, demonstrating the feasibility of a fully automated 

classification approach. After extracting misclassified drainages and incorporating hand-digitized ridge 

roads, classification accuracy increased to 90%. Object-based classification proved successful for 

classifying abandoned logging roads showing considerable road bank erosion and road surface debris 

and outperformed pixel-based classification attempts in reducing errors of commission.  

An assessment of the classification sensitivity to the ground point spacing of the input LiDAR data 

showed that reasonable classification results were only achievable within a narrow range of LiDAR 

ground point spacing. This data can be used by forest managers or researchers as a starting point for 

determining LiDAR point spacing requirements when collecting LiDAR data for the detection of forest 

roads. Further research looking at the influence of vegetation type and landscape slope characteristics 

on LiDAR point spacing requirements would also be useful.  

Higher LiDAR point densities may further improve the classification accuracies achieved in this 

study, especially for ridgeline roads. Incorporating other LiDAR products, as inputs for the object-based 

classification, such as the plan curvature model, could lead to a high accuracy fully automated road 

classification procedure. Although road debris and forest regrowth pose difficulties when using LiDAR 

point cloud data for abandoned logging road detection, incorporating the LiDAR point cloud may still 

prove helpful. With high point densities, forest road debris could be visualized and used as an attribute 

for logging road detection.  
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