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Abstract: Interests in synthetic aperture radar (SAR) data analysis is driven by the 

constantly increased spatial resolutions of the acquired images, where the geometries of 

scene objects can be better defined than in lower resolution data. This paper addresses the 

problem of the built-up areas extraction in high-resolution (HR) SAR images, which can 

provide a wealth of information to characterize urban environments. Strong backscattering 

behavior is one of the distinct characteristics of built-up areas in a SAR image. However, 

in practical applications, only a small portion of pixels characterizing the built-up areas 

appears bright. Thus, specific texture measures should be considered for identifying these 

areas. This paper presents a novel texture measure by combining the proposed labeled  

co-occurrence matrix technique with the specific spatial variability structure of the 

considered land-cover type in the fuzzy set theory. The spatial variability is analyzed by 

means of variogram, which reflects the spatial correlation or non-similarity associated with 

a particular terrain surface. The derived parameters from the variograms are used to 

establish fuzzy functions to characterize the built-up class and non built-up class, 

separately. The proposed technique was tested on TerraSAR-X images acquired of Nanjing 

(China) and Barcelona (Spain), and on a COSMO-SkyMed image acquired of Hangzhou 

(China). The obtained classification accuracies point out the effectiveness of the proposed 

technique in identifying and detecting built-up areas. 
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1. Introduction 

Synthetic aperture radar (SAR) systems can acquire images in all-weather conditions and  

day-and-night. This is particularly attractive in applications such as disaster management, land cover 

mapping, and environmental monitoring. The detection of built-up areas and settlements in SAR 

images has great significance in studying the impacts of urbanization on environments and urban 

management and planning [1]. The space-borne SAR sensors, such as German TerraSAR-X systems [2] 

and the Italian Cosmo-Skymed [3] constellations, can deliver SAR data with a spatial resolution of up 

to 1 m in very high-resolution (VHR) Spotlight mode and with around 3 m in high-resolution (HR) 

Stripmap mode. They greatly improve the potential for monitoring and up-to-date mapping of urban 

areas [4]. However, the interpretation of SAR images, since the data is severely affected by the speckle 

noise and the side-looking geometry, is quite a difficult task. With the increased spatial resolutions, a 

series of phenomena being specific to SAR urban scenes, such as the layover, multi-bounce, and 

shadowing effects of the buildings, is more prominent. Thus, an automatic technique for the extraction 

of built-up areas in HR SAR images should be studied.  

In VHR SAR images (e.g., 1 m resolution), the detection can be done at the single building level.  

This implies the need to characterize the backscattering effects at the building scale and then to design 

the building detection algorithms accordingly (see, for example, [5–8]). In this paper, we consider  

HR SAR images with a resolution of about 3 m, and, thus, we focus on the built-up areas rather than a 

single building.  

The urban landscapes in SAR images are very complicated and consist of diverse land cover (LC) 

classes, such as distinct buildings and infrastructure, streets, trees, lawns, parking lots, and possible water 

areas. Compared with other LC classes, built-up areas can be characterized by agglomerates of hot spots 

since buildings usually produce very bright responses because of multiple reflections and double-bounce 

effects [4]. Though the majority of buildings can be characterized as pixels appearing brightly, some 

settlements found in SAR scenes have relatively low backscattering. The variation of the backscattering 

coefficients of the built-up regions is related with several factors: the construction materials of buildings, 

the size of the built-up areas, the surrounding land covers, and the radar system parameters like the 

wavelength, polarization mode, look direction, and incident angle [9]. Therefore, the built-up areas might 

be easily confused with a vegetation class when they appear in relatively low intensity.  

Obviously, the strong backscattering behavior is a remarkable characteristic. However, it is not the 

unique feature. Alternatively, the visual interpretation of the surface relies on spatial variation 

(i.e., texture) in images [10]. The built-up areas in SAR images usually present great grey variation, 

resulting in strong non-similarities. By comparison, vegetation or agricultural lands demonstrate strong 

similarities because of the homogeneity. Semivariogram (also called variogram) is an effective 

technique to measure the spatial variability of randomly varying phenomena. Carr [11] proves the 

suitability of the semivariogram in the application to radar images. Zhao [12] utilizes the semivariogram 
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technique to analyze urban scenes of the high-resolution air-bone SAR images, confirming the 

effectiveness of the semivariogram in identifying built-up areas.  

In this paper, we present a novel technique for detecting the built-up areas in HR SAR images. The 

main contribution of this work is combining the labeled co-occurrence matrix (LCM) technique [13] 

with the semivariogram texture measure based on the fuzzy set theory. The shape and parameters of 

the semivariogram play an important role in connecting each LC type with a specific spatial variability 

structure [10]. By analyzing the training samples from considered LC class, the parameters associated 

with a particular spatial pattern can be obtained. These parameters are then used to construct the 

membership functions for the built-up class and non built-up class, separately. It is expected that the 

proposed technique can be robust and effective in extracting the built-up areas appearing in medium 

and relatively low intensities regions, and can be successfully applied to images acquired with any 

viewing configuration of SAR sensors. 

The remainder of the paper is organized as follows. Section 2 analyzes the state of the art 

techniques in detecting the built-up areas. Section 3 briefly introduces GLCM and LCM techniques, 

and illustrates the difference between them by a simple example. Section 4 firstly introduces the theory 

of semivariogram; then describes the proposed technique and the procedure for built-up area 

extraction. Section 5 presents some experimental results and discussions. Section 6 finalizes the paper 

with conclusions. 

2. Analysis of the State of the Art 

Many papers have addressed the delineation of urban areas in the literatures. Gouinaud and  

Tupin [14] employ the distribution to describe local statistical characteristics of the urban zone in  

ERS-1 images and propose the ffmax-filter algorithm. Based on the work of [14], He et al. propose an 

adaptive and iterative version of the ffmax algorithm, which improves the precision of the extraction 

results [15]. Borghys et al. [16] extract the built-up areas in fully polarimetric SAR images by fusing 

several local statistics. Tison et al. [17] characterize the urban areas in high-resolution SAR images 

with a Fisher distribution. The obtained statistics are then incorporated into a Markovian field 

segmentation technique. Dekker [18] investigates several texture measures, such as histogram 

measures, wavelet energy measures, fractal dimension, and lacunarity, to update built-up maps of 

regions in the Netherlands. Gamba et al. [19] propose a procedure for the extraction of urban areas 

from HR SAR images based on the combination of Local Indicators of Spatial Association (LISA) [20] 

and textural features derived from grey level co-occurrence matrices (GLCM) [21]. This technique 

succeeds in detecting the sparse and large settlements; however, it fails to detect the settlements 

patterns with low backscattering. Aiazzi et al. [22] propose to take the conditional and joint 

information of the estimated local coefficients of variation to measure the heterogeneity of C-band 

SIR-C and X-band X-SAR data. Esch et al. [23,24] by analyzing the local speckle development from 

the backscattering characteristics of the scene, obtain a texture layer that is then used to identify the 

urban areas.  

From the above literatures, we can see that the techniques for the detection and extraction of  

built-up areas in SAR images mainly fall into two groups: one is based on the statistical 

characterization of the scene, and the other is based on the texture analysis. The methods based on 
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statistical analysis require accurate parametric modeling of the land-cover classes found in the scene. 

However, it is a tough task, since the extremely strong heterogeneity of the built-up regions and the 

increased spatial resolutions of the data make the underlying assumptions that certain theoretical 

models depending on undermined. Thus, few physical models are available to achieve this task. 

Alternatively, texture measures are effective tools, which characterize the spatial properties of the 

grey-level distributions in a local region. Several studies indicate a significant increase in the 

classification accuracy when textural information is used. GLCM [21] is a well-known and frequently 

used textural measure in remote sensing data analysis. It can be applied to SAR images with  

different resolutions. The GLCM technique was used to process the SEASAT-A SAR images over  

the Tenessee [25]. A set of texture features is extracted, and used for identifying simple geological 

formations. The potential usefulness of the GLCM technique for characterizing SAR images has been 

confirmed. Dell’Acqua et al. [26,27] introduce the GLCM to discriminate the urban areas from the 

background in SAR images with medium, as well as high, resolutions. When the GLCM is used, many 

important parameters need to be considered. However, among them, the quantization of grey levels is 

usually difficult to set in practical applications. Firstly, some statistics are very sensitive to the 

quantized degree. For example, statistics like entropy, uniformity, inverse difference moment, and 

maximum probability achieve best classification accuracy with relatively coarse quantization levels, 

whereas texture measures like contrast, dissimilarity and correlation might produce unreliable 

classification results under such situation [28]. Secondly, smaller values of may help to improve the 

computation efficiency, the reliability of certain statistics and reduce the noise. However, the loss of 

information may have an adverse effect on the separability of different classes in the feature space, 

thus causing unsatisfactory classification accuracy. In the remote sensing literatures few guidelines are 

available to indicate how many levels can successfully represent the texture information in SAR 

images. Therefore, the dilemma in selecting the quantization of grey levels may impose some troubles 

for the users and hinder the applicability of the GLCM technique. 

3. Textural Measure for Built-up Area Detection in SAR Images 

3.1. Grey Level Co-Occurrence Matrix Texture Features 

Let us consider the image domain  ( , ),1 ,1S s x y x X y Y      , where ( , )s x y  denotes the 

coordinate of a pixel.  ( ),I I s s S   represents the corresponding amplitude image, and ( )I s  is the grey 

value at the pixel ( , )s x y . 

The grey level co-occurrence matrix proposed by Haralick [21] is based on an estimation of the 

second-order joint conditional probability density function  ( ), ( ) | ,
i j

p I s I s d   in a given local 

neighborhood region. The function  ( ), ( ) | ,
i j

p I s I s d   is the frequency of two pixels separated by a 

given distance along the direction   having grey level ( )iI s  and ( )jI s , ,i js s S , respectively.   is 

usually quantized into four general directions  0 , 45 ,90 ,135
   

 . The context textural information is 

specified by the matrix  ( ), ( ) | ,
i j G G

p I s I s d 


   . Haralick [21] proposed 14 textural features derived 

from the matrix  ( ), ( ) | ,
i j G G

p I s I s d 


   , such as energy, entropy, correlation, homogeneity, sum 

average, and sum variance. However, most of the texture measures are not independent to each other. 
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Hence, a careful analysis is necessary to select the most effective subsets without redundancy 

according to the specified applications.  

3.2. Proposed Labeled Co-Occurrence Matrix Texture Features 

In [13], we propose a Labeled Co-occurrence Matrix (LCM) technique to detect and extract the 

built-up areas from HR SAR images. The LCM technique is inspired by the distinct backscattering 

behaviors associated with different LC classes. Roughly speaking, the urban scenes can be 

characterized by three main types of backscattering: (i) low intensity, which corresponds to shadows, 

roads, possible presence of water, etc.; (ii) medium intensity, which corresponds to possible presence 

of vegetation, grassland, etc.; (iii) high intensity, which is mainly due to roof, façade and corner 

reflectors associated with buildings or to human infrastructures. Therefore, the LCM technique is 

started with an unsupervised clustering procedure on the amplitude of the SAR image by using the 

spatial fuzzy c-means algorithm (SFCM) [29] technique, and three clusters are considered 

corresponding to the three main types of backscattering. The obtained classes are denoted as the high 

intensity class 
1C  with the prototype 

1v , the medium intensity class 
2C  with the prototype 

2v , and the 

low intensity class 
3C  with the prototype 

3v , where 
1v , 

2v ,
3v  are obtained cluster centers, and 

1 2 3v v v  . According to the maximum membership value, each pixel is assigned to one of the three 

backscattering classes. However, there is a considerable proportion of pixels in the class 
2C  

charactering the built-up areas. In order to identify them, the following equation is used to re-calculate 

the membership degree for each pixel 
2s C : 

 
 

 

1
2

1,3

, 1,3
r

j j

r
I s v

I s v
s r





  
  
  

  

 
 

(1) 

Equation (1) is based on the underlying assumption that the prototype 
1v  of the class 

1C  represents the 

built-up class 
BS , while the prototype 

3v  of the class 
3C  represents the non built-up class 

NS . 

According to the maximum membership value, the pixels of the class 
2C  are assigned either to the 

built-up class 
BS  or the non built-up class 

NS . Then each pixel in the amplitude of SAR image is 

attached with a label and a membership value associated with a particular class. 

Similarly to  ( ), ( ) | ,
i j

p I s I s d  , the function  ( ), ( ) | ,
i j

e l s l s d   can be defined as the joint label 

distribution for a pair of pixels in a given distance d  and direction   within a local region. 

Specifically, the function  ( ), ( ) | ,
i j

e l s l s d   is calculated by connecting the membership values of  

the pixels that one has a label ( )il s  and the other has a label ( )jl s , ,i js s S  with a conjunctive 

operator  . The textural information is specified by the matrix  ( ), ( ) | ,
i j L L

e l s l s d 


   , where L  is the 

number of labels, with diverse orientations and lag distances being involved.  

In order to illustrate the difference between the GLCM and LCM techniques, an example is shown 

in Figure 1. Figure 1a is a 5 × 5 digital image with grey levels: 0–5. The obtained grey level  

co-occurrence matrix 
| 1, 0 6 6d

p
  

 
 

 is given is Figure 1b, where the lag distance 1d  , and the 

orientation 0  . Let us suppose that the 5 × 5 digital image can be transformed into the image shown 

in Figure 1c. Note that two classes are considered. The grey levels 3,4,5G   are expected to belong to 
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the first class, labeled by 1; whereas the grey levels 0,1,2G   are expected to belong to the second 

class, labeled by 2. At this level, each pixel in Figure 1a is specified with a label and a membership 

value. The obtained labeled co-occurrence matrix 
| 1, 0 2 2d

e
  

 
 

 from Figure 1c with 1d   and 0   is 

shown in Figure 1d. The solutions for the computation of the matrix 
| 1, 0 2 2d

e
  

 
 

 are as follows: 

     
| 1, 0

1,1 0.8 1 0.8( ) 1 0.8 0.6 2.2
d

e
 

       
   (2) 

         
| 1, 0

1, 2 0.6 0.6 1 0.8 1 1 0.6 0.6 0.8 8) 1 3.(
d

e
 

           
   (3) 

         
| 1, 0

2,1 0.6 1 0.6 0.8 0.8 1 0.6 0.8 0.8 1( 3.4)
d

e
 

           
   (4) 

           

 

| 1, 0
2, 2 0.8 0.8 0.8 0.( ) 6 0.6 0.6 1 0.8 1 0.8 1 0.8

0.6 0.8 5

d
e

 
           

  

 
   (5) 

Figure 1. Examples for the computations of grey level co-occurrence matrix and labeled 

co-occurrence matrix. (a) 5 5  digital image; (b) grey level co-occurrence matrix obtained 

from (a); (c) label-membership image; (d) labeled co-occurrence matrix obtained from (c). 

  

(a) (b) 

  

(c) (d) 

One can see from Figure 1 that the grey levels are replaced by the labels of the classes, and the joint 

grey-level distributions are replaced by the joint label distributions accordingly specified by the 

membership values. Note that the dimension of 
| 1, 0 6 6d

p
  

 
 

 is even larger than the size of the given 

digital image; whereas the dimension of 
| 1, 0 2 2d

e
  

 
 

 is reduced greatly and just chosen as the number 

of the considered classes. 

 
1 1 2 2 5

3 2 4 5 1
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3 2 4 0 1

2 1 5 4 3
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levels
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2 0 1 1 0 2 1
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5 1 1 0 0 1 0
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(1,0.6) (2, 0.6) (1, 0.8) (2, 1) (2, 0.8)

(2, 0.6) (2,0.8) (1, 1) (1, 0.8) (1, 0.6)

 
Labels 1 2

1 2.2 3.8

2 3.4 5
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The disadvantage of the LCM technique is that, since only grey level information is used, it cannot 

detect built-up areas with low intensities. To be specific, the pixel 2s C  is attached to the class that it 

is closer to in the grey space. When the pixel characterizing the built-up areas have considerable 

distances to the high-backscattering prototype and the low-backscattering prototype in the grey space, 

the fuzziness of its belongingness increases, resulting in poor detection accuracy eventually. As a 

result, an improved understanding between the built-up areas and other LC classes is required. 

4. Proposed Method 

4.1. Semivariogram (or Variogram)  

Matheron introduced spatial statistics into the theory of regionalized variables [30]. The theory of 

the regionalized variable provides a concise and coherent methodology for describing and analyzing 

spatially distributed data [31]. The gray-level value of a pixel in remote sensing images can be 

considered as a regionalized variable, satisfying the following conditions: 

     0I s I sE   h  (6) 

      2I s I sVar   h h  (7) 

where ( )E   is the expectation function, ( )Var   is the variance function, h  is a vector including the lag 

h  and the orientation  , ( ) h  is the semivariance at lag h . Equation (6) implies that the expectation 

of the regionalized variable does not vary spatially. In Equation (7), the variance of two regionalized 

variables, being independent of concrete spatial locations, only depends on the distance between them. 

The above two equations constitute the Matheron’s intrinsic hypothesis. Based on the intrinsic 

hypothesis, the semivariance for a given lag h  is estimated by the following equation: 

 
 

    
 

2

1

1

2

N

i

I s I s
N




  
h

hh
h

 (8) 

where ( )N h  is the number of the pairs of observations separated by the lag h . In fact, for a remote 

sensing image with a very large scene, the mean values of the variables usually vary from one part to 

another. In that case, the Matheron’s intrinsic hypothesis cannot be satisfied. Therefore, the variable is 

usually supposed to be locally stationary. At this level, the variable is assumed to satisfy the  

quasi-intrinsic hypothesis. 

A further simplification of Equation (8) uses the absolute value [11], which may provide a good 

computational efficiency and robust performance, given by: 

 
 

   
 

1

1

2

N

i

I s I s
N




  
h

h h
h

 (9) 

The semivariance has distinct directivities. In this paper, the omni-directional semivariance 

 * ;s h  calculated in a local neighborhood is used, given by:  

 0 45 90 135

1
( ; )= ( ; )+ ( ; )+ ( ; )+ ( ; )

4
s h s h s h s h s h      

(10) 
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where 
0

( ; )s h  , 
45

( );s h  , 
90

( );s h   and 
135

( );s h   are the semivariace calculated in a particular 

direction by using Equation (9). Since *( );s h  takes four directions into account, it may reduce the 

influence caused by the orientations. 

Semivariogram (or variogram) characterizes the distribution of the regionalized variable. It is 

obtained by connecting 
*( )h  with each discrete lag h , increasing from 0h   to maxh  (e.g., 30maxh  ). 

In dealing with SAR images, a common way is to divide the data into a few groups that each one is 

associated with a particular physical surface (e.g., water, vegetation, built-up class). Then semi-variogram 

is constructed on each group, and the parameters are derived accordingly. Figure 2 presents an 

example on a SAR image of an urban scene, where dense buildings can be found. Two built-up regions 

in different backscattering values, marked by A and B, and a vegetation region marked by C are 

selected. The experimental variograms  *h h  on the three regions are plotted in the Figure 2b. 

There are two important parameters in the variogram: the range of influence a  and the sill c . The 

range of influence stands for the lag at which the data samples become independent. The sill c  

represents the maximum of the non-similarity of the data. In order to derive the parameters 

automatically, Ramstein et al. [32] proposes a method to approximately compute the range and  

the sill: 

      
-1

2
log 1 1a E I s    (11) 

           
2 21

= lim lim =
2h h

c h E I s h I s E I s
 

    
(12) 

Equations (11) and (12) actually are derived from an exponential variogram: 

 ( ) 1 ( )h c exp h a    . The empirical models (e.g., spherical, exponential, and linear) can only 

describe simple and homogeneous scenes. It cannot characterize the regions featuring extreme 

heterogeneity. In remote sensing images, the man-modified surfaces (e.g., urban scenes) usually 

present repetitive or multi-frequency spatial patterns (e.g., the variogram for Region A in Figure 2b). 

With regard to the computation of the parameters ˆ
ba  and ˆ

bc  on the built-up class, a simple procedure is 

proposed in [12]. The steps are as follows: 

Step 1: Take the Gauss filter to smooth the experimental *( )h h  curve, and then compute the 

forward and backward difference of *( )h  by the following equation: 

     

     

1

1

i i i

i i i

h h h

h h h

  

  

  

  






   

   
 

(13) 

where 2, , 1i maxh h  .  

Step 2: Find ˆih  that satisfies the following conditions: 

 

 

0

0

i

i

h

h














 

 

 
(14) 

Then, the range ˆ
ba  and the sill ˆ

bc  are defined as: 

   
1,2,

ˆˆ ˆ ˆmin ,b b bii
a h c a 


   

(15) 
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The variogram associated with the vegetation class can be taken as the spherical model (e.g., the 

variogram for Region C in Figure 2b) with the parameters ˆ
va  and ˆ

vc . In the present work, ˆ
va  is not a 

mandatory parameter since ˆ ˆ
v ba a . The sill ˆ

vc  is given as the maximum of *( )h : 

*( ( ))ˆ maxv
ih

hc   
(16) 

Figure 2. (a) A SAR image of an urban scene. Region A is a built-up area with high 

backscattering; Region B is a built-up area with medium backscattering; and Region C is 

vegetation area. (b) obtained variograms on the considered areas. 

  

(a) (b) 

4.2. Variogram Integrated Labeled Co-Occurrence Matrix Texture Features  

Figure 2 illustrates that each LC type is associated with a specific spatial variability structure. 

Particularly, Region B and Region C present similar backscattering values; however their spatial 

variability structures are distinct. Therefore, we will take the variogram into account to improve the 

LCM technique presented in the previous section. For discrimination, the enhanced version proposed 

in this paper is called V-LCM. 

In the initial step, the amplitude of a SAR image is clustered into three classes: the high intensity 

class 
1C , the medium intensity class 

2C , and the low intensity class 
3C , by using the spatial  

FCM technique.  

The built-up class 
BS  and the non built-up class 

NS  satisfy SB ∪ SN = S and SB ∩ SN = ø. Assume 

that the pixel 
1s C  belongs to the built-up class 

BS , and the pixel 
3s C  belongs to the non built-up 

class 
NS , having 

1 BC S  and 
3 NC S . The key of the approach is to assign the pixel 

2s C  to the 

classes 
BS  or 

NS . 

Different distribution patterns and backscattering coefficients of built-up regions in SAR images are 

usually associated with variograms of distinct shapes and parameters. Therefore, in a given SAR 

image, we empirically select two typical built-up regions 
1BR  and 

2BR , and a vegetation region 
vR . 

1BR  should be in strong backscattering values and of great spatial variation (e.g., Region A in Figure 1a), 

while 
2BR  should be in low backscattering values and of weak spatial variation (e.g., Region B in 
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Figure 1a). It is expected that the parameters derived from the two training samples 
1BR  and 

2BR  are 

the lower bounds of the ones derived from the regions with the similar characteristics respectively. Let 

us denote ˆh

bc  be the sill for the region 
1BR , ˆ

ba  and ˆl

bc  be the range and the sill for the region 
2BR , and 

ˆ
vc  be the sill for the region 

vR . These parameters can be estimated by using the procedures introduced 

in Section 4.1, respectively.  

Let us suppose that the class 
BS  is characterized by the membership function  : 0,1

BS BS  , 

while 
NS  is characterized by the membership function  : 0,1

NS NS  . The term ( )ˆ; bs a , 
2s C  is 

the semivariance computed in a local window by using Equation (10), where the pairs of pixels are 

separated by the distance ˆba . The size of the local window is supposed to be three to five times longer 

than the range ˆ
ba  [10]. Thus, ˆ4v bw a  is used.  

The membership function characterizing the class 
BS  is given by: 

1

2

2

1
2

ˆ1,                                         ,  or  ,

ˆ

ˆ( ; )

ˆ( ; )
ˆ,                ˆ1 ( ; ) ?

ˆ( ; )
     ,   

ˆ

B

h

b

l

b h

b

v

b

S b

b

b

s C s C s a

s a

if c

c
if s C s a

s a
c

c



 






  

  
    
 








 


  





 (17) 

The membership function characterizing the class 
NS  is given by: 

3

2

2

1
2

ˆ1,                                           ,  or  ,

ˆ

ˆ( ; )

ˆ
ˆ,                     

( ; )
ˆ1 ( ; ) ?

ˆ
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ˆ( ; )

N

v

v

vl

b

S b

b

b b

s C s C s a

s a
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c
if s C s a

s
c

ca



 






  

      
  





 

  




 (18) 

According to the maximum membership value, each pixel s S , is assigned either to the class 
BS  

with the memberships values 
BS  or to the class 

NS  with the memberships values 
NS . At this level, 

the amplitude of the SAR image is transformed into a label—fuzzy image 
FLI : 

            , ; , 1,2 , 0,1 , ,FL m mS SI l s s s S l s s m B N          (19) 

where the pixel belonging to the class 
BS  is labeled with ( ) 1l s  , and ( ) 2l s   for the class 

NS . 

The values in the matrix  ( ), ( ) | ,
i j L L

e l s l s d 


    are obtained by combining the membership values 

in a conjunctive way. In the fuzzy set theory, the fuzzy operator t-norm T  has a conjunctive behavior, 

which is a mapping :[0,1] [0,1] [0,1]T   . The frequently used T  operators are [33]: 

(1)    1 2 1 2
, ,T t t min t t  

(2)  1 2 1 2
,T t t t t   

(3)        
1/

1 2 1 2
, 1 1, 1 1

n
n n

T t t min t t     , 1n   

where 
1t  and 

2t  are variables in the interval [0,1] . In fact, the operator provides the largest values 

among T operators. The matrix  ( ), ( ) | ,
i j L L

e l s l s d 


    can be computed by using these T operators.  

From the resulting matrix, the autocorrelation feature is extracted, and given as follows: 
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        
  

,
i j

i j i j
l s l s

auto l s l s e l s l s    
(20) 

Figure 3 displays a block scheme of the procedure for computing the proposed V-LCM texture 

measure. Since the spatial statistics of the land-covers is considered, the robustness and effectiveness 

of the proposed V-LCM technique will be greatly improved compared with the original LCM technique.  

Figure 3. Procedure for the computation of V-LCM texture feature. 
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4.3. Built-up Area Extraction  

Based on the V-LCM texture measure, the procedure for the detection and extraction of the built-up 

areas in a SAR image is given as follows: 

(1) Pre-processing: Speckle noise significantly hinders the interpretation of a SAR image. Hence, 

the noise should be filtered. Various filtering techniques have been developed to enhance  

the image quality. In terms of the analysis of the urban landscapes in a SAR data,  
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structure-preserving speckle suppression techniques are required. The Enhanced Frost  

filter [34], being able to preserve the structures and texture information both in homogeneous 

and heterogeneous areas, is used in the proposed method. 

(2) Texture modeling and extraction: The spatial FCM technique is applied to cluster the amplitude 

of the SAR image, and a 5 × 5 window is incorporated into local membership function for the 

removal of noisy regions or spurious blobs. Two typical built-up samples and a vegetation 

sample are manually selected. The size of the samples should be large enough to achieve 

reliable statistics. Following the procedure shown in Figure 3, the texture feature can be 

extracted. However, before that, several parameters need to be estimated in the implementation 

of the V-LCM technique. First, an appropriate local window fw  should be considered, and  

fw  = 15 × 15 may be appropriate for an image having a resolution of about 3 m. Moreover, in a 

large scene of SAR image, the patterns of the built-up regions are usually diverse and arranged 

irregularly. Single orientation inadequately represents the texture pattern. Therefore, we take 

the four directions  0 , 45 ,90 ,135
   

  into account, and the texture measure is taken as the 

average of the four components. In terms of the distance d, 4d   was found to better represent 

the texture information in experiments. 

(3) Classification and Post-processing: The autocorrelation feature computed from the V-LCM 

technique is sufficient enough to highlight the presence of the built-up areas in a SAR image. 

The classification is implemented by using a simple Otsu thresholding method on the texture 

measure. Finally, morphological operations are used on the obtained classification result to 

remove sparse and spurious pixels. 

5. Experimental Results and Discussions 

In order to demonstrate the effectiveness of the proposed method, we use subsets of a  

COSMO-SkyMed (CSK) image referring to Hangzhou, China, and of two TerraSAR-X (TSX) images 

referring to Nanjing, China, and Barcelona, Spain, acquired in Stripmap mode. Some basic properties 

about the images are listed in Table 1. Quantitative results are computed by the comparisons with 

manual ground reference data. The reference samples used in the experiments have been taken 

manually from both the original SAR images and the corresponding high resolution optical images. 

The numerical values of the ground truths are listed in Table 2. 

Table 1. Properties of the synthetic aperture radar (SAR) images used in this paper. 

Test site Sensors Resolution Acquisition Date Polarization 

Nanjing, China TerraSAR-X 2.75 m 4 March 2008 VV 

Barcelona, Spain TerraSAR-X 3 m 15 May 2011 HH 

Hangzhou, China COSMO-SkyMed 3 m 8 January 2008 HH 
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Table 2. Ground truth data used in accuracy assessment. 

Image Data Nanjing, China Barcelona, Spain Hangzhou, China 

No. of Built-up pixels 4,123,264 3,794,725 1,880,875 

The first experiment is to compare the performance of different texture measures. The SAR image 

shown in Figure 4a is a portion of the city of Nanjing, China. It is a sub-scene from a product in 

spatially enhanced (SE) single polarizations, and enhanced ellipsoid corrected projection (EEC). The 

number of looks for this data is four. The size of the subset is 2883 2949 . The scene mainly includes 

water (lake and river), vegetation, buildings, and a portion of an airport. The city of Nanjing has a high 

population density, which can be confirmed by the dense built-up areas. The patterns of the clusters of 

buildings are quite complicated. For instance, there are well-planned high-rise buildings, dense or 

scattered bungalows, plant buildings, etc. Figure 4b–e presents the autocorrelation features extracted 

by using the proposed V-LCM technique, the LCM technique and the traditional GLCM technique, 

and a semivariance feature image. The parameters used in computing these features are: the window 

size wv = 25 × 25, the window size wf = 17 × 17, the range ˆ 6ba  , and the quantized grey levels G = 2. 

One can see that V-LCM technique (see Figure 4b) achieves the most visually appealing results 

compared with other features, since almost all the built-up areas found in the scene have been 

highlighted. The LCM technique (see Figure 4c) and the variogram descriptor (see Figure 4e) have 

similar textural representation abilities; while the traditional GLCM technique (see Figure 4d) behaves 

worst in characterizing the built-up areas. The classification results based on the obtained features are 

shown in Figure 5.  

Referring to [35], the manually extracted reference map is shown in Figure 5a. The extraction result 

obtained by using the proposed V-LCM technique is shown in Figure 5b. Compared with the ground 

reference, almost all the built-up areas have been effectively extracted. The overall detected pixels are 

4,656,346 pixels (4,019,358 correctly detected pixels and 636,988 false detected pixels). A quantitative 

comparison of the accuracies by using different texture measures are listed in Table 3a. The detection 

accuracy by using the proposed V-LCM technique is 97.48%, where 4,019,358 correctly detected 

pixels were out of 4,123,264 pixels. The false alarm rate is 13.68%, where 636,988 false detected 

pixels were out of 4,656,346 overall detected pixels. The overall errors are 740,894 pixels which are 

636,988 false detected pixels plus 103,906 missed pixels, resulting in 8.71% error rate (740,894 errors 

out of the overall 8,501,967 pixels of the image). The overall accuracy can be obtained accordingly, 

and is 91.29%. Note that the classifications on Figure 4c,d were using the procedure introduced in [13]. 

In terms of the semivariance image in Figure 4e, the FCM technique was applied to the cluster feature 

image with two clusters involved [12]. By comparison, the detection accuracies obtained from the 

LCM technique and the variogram technique are 71.56% and 61.89%, respectively. However, it is 

merely 39.80% for the GLCM technique. Hence, the proposed V-LCM technique achieved the best 

performance. The processing times for this data by using different techniques are listed in Table 4a. 

The hardware platform used is shown in Table 4b. Though the time consuming for the proposed  

V-LCM technique is not satisfactory compared other methods, it can be tolerate. 
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Figure 4. Comparison of the capability of different texture measures in identifying the 

built-up areas on a SAR image. (a) A portion of TerraSAR-X image of Nanjing, China;  

(b) autocorrelation feature calculated from the V-LCM technique; (c) autocorrelation 

feature calculated from LCM technique; (d) autocorrelation feature calculated from GLCM 

technique; (e) semivariance feature. 
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Figure 5. Built-up areas extraction results by using the proposed technique on the TSX 

image of Nanjing, China. The built-up regions are highlighted by the contours.  

(a) Reference map; (b) obtained extraction result.  

  

(a) (b) 

Table 3. Comparisons of classification accuracies by using different texture measures.  

(a) Classification accuracies on the TSX image of Nanjing (China); (b) classification 

accuracies on the TSX image of Barcelona (Spain); (c) classification accuracies on the 

CSK image of Hangzhou (China). 

Methods Detection Accuracy (%) False Alarm (%) Overall Accuracy (%) 

Proposed V-LCM 97.48 13.68 91.29 

LCM 71.56 8.04 83.17 

GLCM 39.80 7.39 69.26 

Variogram 61.89 10.51 77.99 

(a) 

Methods Detection Accuracy (%) False Alarm (%) Overall Accuracy (%) 

Proposed V-LCM 97.24 16.01 91.15 

LCM 85.15 9.78 89.89 

GLCM 80.35 11.68 87.42 

Variogram 87.19 12.27 89.61 

(b) 

Methods Detection Accuracy (%) False Alarm (%) Overall Accuracy (%) 

Proposed V-LCM 94.12 28.30 91.63 

LCM 74.62 23.77 90.54 

GLCM 53.48 13.65 89.31 

Variogram 78.36 20.16 92.72 

(c) 
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Table 4. Comparisons of processing times on each data by using different techniques and 

the hardware conditions. (a) Processing times by using different techniques on each data; 

(b) software platform and hardware conditions. 

Methods Nanjing, China (min) Barcelona, Spain (min) Hangzhou, China (min) 

Proposed V-LCM 22.8 25.5 24.3 

LCM 16.1 16  16.7 

GLCM 11.7 11.5 12.2 

Variogram 9.4 12.7 10.7 

(a) 

Software Operation Systems CPU RAM 

Matlab 7.11.0.584 Windows 8 × 64 bit Intel i5-3350p 3.10 GHz 4 GB 

(b) 

Figure 6. Built-up areas extraction results by using the proposed technique on the TSX 

image of Barcelona, Spain. (a) SAR image; (b) reference map; (c) obtained extraction result. 
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The second scene is a portion of the city of Barcelona, which is available in [36]. It is acquired in 

ascending orbit with the incidence angle 35.2°, and on 15 May 2011. It is in single polarizations, and 

UTM, WGS 84 projection. The depicted scene is the urban and suburban area around the airport of 

Barcelona, Spain. One can see from Figure 6a that there are three densely populated areas, and a large 

area with crop fields among them. The test image is of size 2912×3135. The parameters used are: the 

range ˆ 7ba  , window size wv = 29 × 29, window size wf = 15 × 15, and quantized grey levels G = 2. 

The processing times for this data by using different techniques can refer to Table 4a. Figure 6b is the 

reference map. The extracted built-up areas by using the proposed technique are shown in Figure 6c. 

One can see that some false areas are detected. They are mainly caused by the high-speed roads, crop 

fields and vegetation, which present radar signatures similar to those of buildings. The qualitative 

comparisons of the results obtained from different techniques are shown in Table 3b. The proposed  

V-LCM technique achieves 97.24% detection accuracy, which is compared with 87.19% for the 

variogram technique and 85.15% for the LCM technique. The detection accuracy for the GLCM 

technique is only 80.35%. The omission errors are mainly due to the large factory buildings featuring 

flat roofs, where the radar signals are scattered away from the sensor. Thus, no energy is contributing 

to these areas resulting in low backscattering coefficients. 

The third scene is a portion of the city of Hangzhou, China. It is a single polarization, and geocoded 

ellipsoid corrected (GEC) product. The number of looks for this data is three. The size of the image is 

3078 × 3141. The landscape covers the river, crop fields, mountains, vegetation, and scattered small or 

large concentrated built-up areas. The parameters used in this example are: range ˆ 7ba  , window size 

wv = 25 × 25, window size wf = 15 × 15, and quantized grey levels G =2. The processing times for this 

scene by using different techniques can refer to Table 4a. The reference map is shown in Figure 7b. 

The classification result by using the proposed V-LCM technique is shown in Figure 7c. By 

comparison of Figure 7b,c, a portion of false areas associated with mountain regions are detected due 

to the similar backscattering coefficients. Table 3c provides the quantitative results by using different 

techniques. It can be learned that the proposed V-LCM technique achieves the best performance 

(94.12% detection accuracy), and the GLCM technique remains the worst (53.34% detection 

accuracy). The LCM and the variogram techniques achieve similar detection results with detection 

accuracies 74.62% and 78.36%, respectively.  

Since the spatial variety structures of the LC classes are considered, the proposed V-LCM technique 

shows very high detection rates in all cases. It is robust regardless of the backscattering variation, and 

can effectively indentify dense or scattered settlements with different characteristics. A limitation of 

the proposed method is related to the detection of the low-intensity built-up areas. In this case, the 

tuning of parameters may result in the false detection of mountains or other LC classes. Another 

critical situation is for built-up areas, featuring very low intensity and weak non-similarity. Figure 8 

shows an example found in the Hangzhou scene, where the built-up areas were not detected by all 

methods. The omitted area is zoomed-in and displayed together with the optical image from the Google 

Earth. One can see that trees are interspersed within the villas. When the radar system illuminates these 

regions, most of the signal is reflected by the plants and only few contributions are scattered by the 

buildings. Thus, these regions present a low intensity and very similar spatial variety structures to the 

vegetation. By comparison, the LCM technique can work well on built-up regions appearing bright. 

Since only grey information is used, it may be susceptible to the backscattering variation.  
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Figure 7. Built-up areas extraction result by using the proposed technique on the CSK 

image of Hangzhou, China. (a) SAR image; (b) reference map; (c) obtained extraction result.  

  

(a) (b) 

 

(c) 

The detection accuracies, false alarms and overall accuracies obtained by using considered 

techniques on the three test images are shown in Table 3. One can see that as expected the proposed 

technique achieved higher detection accuracies and overall accuracies; however, false alarms were 

produced. Several issues are associated with the problem. Firstly, some vegetations present high 

intensity values (e.g., woods), resulting in the difficulties in discrimination. Secondly, some man-made 

structures such as roads, bridges, cars, found in the scene may cause strong backscattering because of 

the double bounce effects. Thirdly, the foreshortening and layover effects occurred in the mountains 

areas usually cause very strong backscattering. However, the errors caused by the mountainous can be 

eliminated by the use of auxiliary information (e.g., the geocoded incidence angle map (GIM)) [24].  
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Figure 8. A zoomed-in built-up areas and the optical image from the CSK image of 

Hangzhou, China.  

 

6. Conclusions 

In this paper, a novel texture measure for detecting the built-up areas in high resolution (HR) 

synthetic aperture radar (SAR) images is proposed. The variogram integrated labeled co-occurrence 

matrix (V-LCM) texture measure is obtained by combining the labeled co-occurrence matrix (LCM) 

method with the analysis of the spatial variability structure associated with each land-cover (LC) type 

in SAR images. Based on the observations of backscattering behaviors of different land-cover classes, 

only the built-up regions appearing bright can be identified by using the LCM technique. In SAR 

images, some built-up areas in medium and relatively low intensity may have similar backscattering 

coefficients with vegetations, resulting in confusions. An improved understanding between the built-up 

areas and other land-cover classes is required. The variogram provides a way to analyze the spatial 

variability of the surface, which actually reflects the spatial correlation. An example shown in paper 

illustrates that the vegetation and built-up areas, though they present similar grey values, have distinct 

spatial structures based on the variogram analysis. Therefore, in a given SAR image, we manually 

select three typical LC samples and train them to obtain the required parameters. Fuzzy membership 

functions can be established based on the acquired parameters, which are used to describe the built-up 

class and non built-up class separately. The co-occurrence matrix is defined in a conjunctive way by 

using the membership values. Finally, the classification procedure is performed on the autocorrelation 

feature image by using simple Otsu thresholding technique. The proposed V-LCM technique has been 

tested on two TerraSAR-X images and a COSMO-SkyMed image, and compared with other texture 

measures. The V-LCM technique achieved the best performance in all cases. The effectiveness and 

robustness has been confirmed. 

There are some issues associated with the V-LCM technique in comparison with other considered 

texture measures. First, by comparison with the LCM technique, the V-LCM technique is improved 
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greatly in characterizing the built-up areas in a SAR image regardless of the backscattering variation. 

The built-up areas in medium and relatively low intensity can be appropriately identified. Second, the 

labeled co-occurrence matrix is just chosen as the number of the considered classes. In this paper, two 

classes are used, specified by the built-up class and the non built-up class. In terms of the GLCM 

technique with grey values being quantized into 2-levels, poor classification accuracies were obtained 

in all cases because of the considerably lost image information. Finally, the variogram technique 

achieves similar detection and overall accuracy with the LCM technique. However, since only the 

spatial structure information of the surface is used, the variogram technique is not robust and effective 

as the proposed V-LCM technique. 

The test images contain complex landscapes which provide a challenging benchmark for the 

proposed method. Note that even if it can effectively indentify the built-up areas with the highest 

detection and overall accuracies, false alarms are present in the final map. The false alarms are mainly 

due to mountains, roads, and the vegetation found in the scenes, which can appear bright and with 

textures being similar to built-up areas in some specific cases. Therefore, the future work should focus 

on better eliminating the false alarms, although proper post-processing techniques can be considered or 

the auxiliary information (e.g., the geocoded incidence angle map (GIM) for elimination of mountain 

regions) can be used.  
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