Supplementary Information

Xiliang Ni 1,2,†, Taejin Park 2,*,†, Sungho Choi 2, Yuli Shi 2,3, Chunxiang Cao 1, Xuejun Wang 4, Michael A. Lefsky 5, Marc Simard 6 and Ranga B. Myneni 2

1 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; E-Mails: nixl@irs.ac.cn (X.N.); cao413@irs.ac.cn (C.C.)
2 Department of Earth and Environment, Boston University, 675 Commonwealth Avenue, Boston, MA 02215, USA; Emails: schoi@bu.edu (S.C.); ylshi.nuist@gmail.com (Y.S.); ranga.myneni@gmail.com (R.B.M.)
3 School of Remote Sensing, Nanjing University of Information Science and Technology, Nanjing 210044, China
4 Survey Planning and Design Institute, State Forest Administration of China, Beijing 100714, China; E-Mail: wangxuejun320@126.com
5 Center for Ecological Analysis of Lidar, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, USA; E-Mail: lefsky@cnr.colostate.edu
6 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; E-Mail: marc.simard@jpl.nasa.gov

† These authors contributed equally to this work.

* Author to whom correspondence should be addressed; E-Mail: partj@bu.edu; Tel.: +1-617-893-1988; Fax: +1-617-353-8399.

S1. List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASRL</td>
<td>Allometric Scaling and Resource Limitations</td>
</tr>
<tr>
<td>ASTER</td>
<td>Advanced Spaceborne Thermal Emission and Reflection Radiometer</td>
</tr>
<tr>
<td>CMDSSS</td>
<td>China Meteorological Data Sharing Service System</td>
</tr>
<tr>
<td>CONNA</td>
<td>Continental China</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital Elevation Model</td>
</tr>
<tr>
<td>DBH</td>
<td>Diameter at Breast Height</td>
</tr>
<tr>
<td>GDEM</td>
<td>Global Digital Elevation Map</td>
</tr>
<tr>
<td>GLA14</td>
<td>GLAS Level-2 Land Surface Altimetry</td>
</tr>
</tbody>
</table>
GLAS Geoscience Laser Altimeter System
H_{ASRL} Predicted Height from optimized ASRL model
H_{GLAS} Measured Height from valid GLAS waveform data
H_{NFI} Measured Height from NFI
LC Land Cover
MODIS Moderate Resolution Imaging Spectroradiometer
MRE Mean Relative Error
NFI National Forest Inventory
SD Standard Deviation
SFA State Forestry Administration
VCF Vegetation Continuous Fields

S2. Figures S1–S5

Figure S1. Geographical distribution of meteorological stations used for climatic variable construction ($n = 754$; in red color) and site-specific evaluation ($n = 14$; in blue color). The CMDSSS provides meteorological observations from these stations for a temporal period of 1951–2007. Forested lands are depicted in green color.
Figure S2. Distribution of maximum tree heights derived from (a) the valid GLAS shots and (b) the NFI dataset at a 1km spatial resolution. The GLAS altimetry was generated after filtering invalid GLAS shots and correcting topographic effects [S1]. The NFI tree heights were estimated using the allometric relationships between field-measured DBH and height (surveyed by the SFA [S2–S4]). Note that the NFI map is limited over the northeastern regions of CONNA since we considered the forested lands over the effective climate zones.
Figure S3. Distribution of relative errors for site-specific simulations of the optimized ASRL model: (a) two-fold cross validation and (b) bootstrapping validation. The MRE (dotted line) and SD of relative errors are notated in each plot.

Figure S4. Distribution of relative errors for continental-scale simulations of the optimized ASRL model: (a) two-fold cross validation with GLAS observations and (b) one-to-one validation with field measurements. The MRE (dotted line) and SD of relative error are notated in each plot.
Figure S5. Spatial distribution of prediction errors of the optimized ASRL model: comparisons against (a) test GLAS dataset \((H_{\text{ASRL}} - H_{\text{GLAS}}) \), and (b) field measurements \((H_{\text{ASRL}} - H_{\text{NFI}}) \). Note that the NFI map is limited over the northeastern regions of CONNA since we considered the forested lands over the effective climate zones.
S3. Table S1

Table S1. List of datasets to derive the valid GLAS tree heights. Ancillary data (LC, VCF, DEM, and slope) were used to filter invalid GLAS shots and to correct topographic effects.

<table>
<thead>
<tr>
<th>Data</th>
<th>Source</th>
<th>Spatial Resolution</th>
<th>Acquisition Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLAS</td>
<td>GLA14 [S5]</td>
<td>70 m (Circular footprint)</td>
<td>2003–2006 (Only in May–October)</td>
</tr>
<tr>
<td>LC</td>
<td>MODIS MCD12Q1 [S6]</td>
<td>500 m</td>
<td>2005</td>
</tr>
<tr>
<td>VCF</td>
<td>MODIS MOD44B [S6]</td>
<td>250 m</td>
<td>2005</td>
</tr>
<tr>
<td>DEM</td>
<td>ASTER GDEM V2 [S6]</td>
<td>30 m</td>
<td>2011</td>
</tr>
<tr>
<td>Slope</td>
<td>Derived from ASTER GDEM V2 [S7]</td>
<td>30 m</td>
<td>2011</td>
</tr>
</tbody>
</table>

Reference

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).