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Abstract:  Reliable multi-temporal landslide detection over longer periods of time requires 

multi-sensor time series data characterized by high internal geometric stability, as well as 

high relative and absolute accuracy. For this purpose, a new methodology for fully 

automated co-registration has been developed allowing efficient and robust spatial 

alignment of standard orthorectified data products originating from a multitude of optical 

satellite remote sensing data of varying spatial resolution. Correlation-based co-registration 

uses world-wide available terrain corrected Landsat Level 1T time series data as the spatial 

reference, ensuring global applicability. The developed approach has been applied to a 

multi-sensor time series of 592 remote sensing datasets covering an approximately 

12,000 km
2
 area in Southern Kyrgyzstan (Central Asia) strongly affected by landslides. 

The database contains images acquired during the last 26 years by Landsat (E)TM, 

ASTER, SPOT and RapidEye sensors. Analysis of the spatial shifts obtained from  

co-registration has revealed sensor-specific alignments ranging between 5 m and more than 

400 m. Overall accuracy assessment of these alignments has resulted in a high relative 

image-to-image accuracy of 17 m (RMSE) and a high absolute accuracy of 23 m (RMSE) 

for the whole co-registered database, making it suitable for multi-temporal landslide 

detection at a regional scale in Southern Kyrgyzstan. 
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1. Introduction  

Landslides are a world-wide occurring natural hazard leading to severe loss of life and 

infrastructure. A global tendency towards steadily increasing landslide risk can be observed, because 

of the spreading of settlements in unfavorable regions and the consequences of climate change [1,2]. 

Against this background, improved understanding of landslide processes in space and time is of  

great importance, requiring multi-temporal landslide inventories [3ï5]. So far, they have been largely 

missing for most parts of the world, because of their time and labor intense preparation using 

conventional mapping methods [5ï7]. In this context, the increasing availability of optical satellite 

remote sensing data has opened up new opportunities for spatiotemporal analysis of landslide 

occurrence covering large areas [5,8ï10]. 

The completeness and quality of remote sensing-based landslide inventories depend on the used 

multi-temporal image database, whereas a high temporal repetition rate over the longest possible time 

period of data availability is required in order to perform longer term analysis of landslide occurrence, 

which is necessary for objective landslide hazard assessment [3ï5]. For this purpose, the global 

Landsat archive is of key importance, providing free access to the longest available time series of 

medium-resolution optical satellite remote sensing data [11]. However, in order to achieve the best 

possible temporal data coverage, multi-sensor data have to be used, resulting in a heterogeneous 

database of varying spatial and temporal resolution. 

Despite this variability, precise image-to-image co-registration has to be ensured for all  

multi-temporal and multi-sensor datasets, because insufficient spatial fit leads to various ambiguities, 

resulting in the detection of artifact changes [12,13], as well as incorrect spatial delineation of 

landslides. The creation of longer term inventories requires maintaining the geometric stability of the 

image database over several decades, taking into account seasonal and inter-annual landscape changes. 

Furthermore, the resulting multi-temporal remote sensing database has to be of sufficient absolute 

positional accuracy related to an external spatial reference system, allowing the combination of 

information derived from remote sensing analysis with other spatial data, such as GPS-based field 

measurements within a GIS environment in order to perform subsequent process and hazard analysis.  

The overall goal of the presented study has been the development and application of a methodology 

for automated image-to-image co-registration in order to create an image database that is suitable for 

longer term automated landslide detection within a 12,000 km
2
 study area in Southern Kyrgyzstan 

(Central Asia) strongly affected by landslides [8]. The original image database for this area comprises 

almost 600 datasets acquired by the multispectral Landsat-(E)TM, SPOT, ASTER and RapidEye 

satellite systems during the last 26 years. Most of these images were obtained in the form of 

orthorectified standard data products from the respective satellite data providers. Initial evaluation of 

the relative spatial fit between these higher-level data products has revealed that significant spatial 

offsets occur between most of them, including data acquired by the same sensor. 
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Against this background, the objective has been the development of a co-registration methodology 

that is suitable to correct for the spatial offsets between large amounts of orthorectified standard data 

products comprising longer term multi-sensor time series. Thus, the approach has to be able to handle 

various multi-sensor effects, such as differences between the spatial, spectral and radiometric 

properties of the image data, as well as multi-temporal effects, such as varying atmospheric, solar and 

land cover conditions, resulting from seasonal and long-term variability between the image  

datasets [14ï16]. Despite the large number of existing methods for automated co-registration, which 

are comprehensively discussed in Le Moigne et al., 2011 [14], Dawn et al., 2010 [17] and Zitova and 

Flusser, 2003 [18], only a few of these methods are capable of dealing with multi-sensor and  

multi-temporal effects at the same time. 

In general, the existing co-registration methods are classified into two main categories comprising 

feature-based and area-based techniques [18]. For accommodating multi-sensor effects during  

co-registration, feature-based techniques, such as scale-invariant feature transform (SIFT) [19] and 

speeded-up robust features (SURF) [20], are considered to be more suitable, because these techniques 

use salient features, such as edges, corners, intersections of linear structures and centroids of distinct 

geometric objects. These features are expected to be geometrically stable despite the sensor-related 

variability of the image data [21ï24]. However, in rural mountainous areas, like Southern Kyrgyzstan, 

such distinct time-invariant features are often scarce and unevenly distributed, which largely increases 

the likelihood for significant co-registration errors [21,25]. For such environments, area-based methods 

are considered to be more suitable, because co-registration is based on identifying distinctive 

properties for image matching using intensity information rather than local features [21,25]. Hence, 

area-based methods aim at identifying image areas that are similar in intensity, whereas the commonly 

used similarity measures are cross-correlation and sequential similarity detection [18,26]. 

Independent of the used co-registration method, most of the already existing approaches have not 

been developed for fully automated and efficient processing of big amounts of multi-sensor and  

multi-temporal image data covering large areas over longer periods of time. Therefore, the practical 

usability of these methods is often limited, because of the high methodological complexity, the big 

computational effort, as well as additional requirements specific to the analyzed datasets [15,17,22]. 

The presented study aims at the development of a robust and globally applicable methodology for 

automated co-registration, which is suitable for efficient correction of spatial offsets between 

orthorectified standard data products representing multi-sensor time series. 

In this context, a spatially and temporally consistent spatial reference system is required, allowing 

spatial alignment of all datasets with sufficient relative and absolute accuracy. For this purpose, 

globally available Landsat Level 1T time series data have been selected as a common spatial reference. 

They are characterized by sub-pixel image-to-image co-registration accuracy throughout the whole 

time series [27ï29], whereas the absolute accuracy of the global Landsat Level 1T database has been 

estimated to 15 m [27]. Both accuracies are considered to be sufficient for landslide detection at a 

regional scale. Moreover, Landsat data represent the only source of spatial reference information 

consistently and repeatedly covering the whole study area, allowing consistent spatial alignment of all 

time-series datasets, which, in part, are irregularly and patchil y distributed over the large study area. 

The developed co-registration approach is described in Section 3. The results of spatial alignment 

are presented in Section 4, comprising sensor-specific analysis for the complete database. In Section 5, 
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the relative and absolute accuracy of the achieved co-registration is analyzed for the whole database, 

including its influence on the multi-temporal delineation of landslides. The developed methodology is 

comprehensively discussed in Section 6, focusing on achievable accuracy and overall applicability.  

2. Study Area and Spatial Database 

2.1. Study Area in Southern Kyrgyzstan (Central Asia) 

The study area is located in Southern Kyrgyzstan in Central Asia and covers approximately 

12,000 km
2
 (Figure 1), whereas landslide occurrence is especially concentrated along the Eastern rim 

of the Fergana Basin in the foothills of the surrounding Tien Shan and Pamir mountain ranges. In this 

area of high tectonic activity and pronounced topographic relief, landslides are a widespread 

phenomenon, representing one of the most severe natural hazards to the local population. Landslides 

vary widely in their sizes, ranging between a few hundred square meters for small events and several 

hundred thousands or even millions of square meters for large failures [8,30].  

Since most of these landslides belong to the rotational and translational types, they cause 

widespread destruction of the mostly vegetated surface cover and, thus, are well detectable in optical 

imagery in general [8,31]. Most of these landslides are caused by complex interactions between 

geological, tectonic, seismic and hydrogeological factors, which have not been well understood, yet. 

As a result, landslides occur frequently, but at the same time, irregularly throughout the whole study 

area and cannot be related to distinct triggering events, such as earthquakes and intense rainstorms [8]. 

In this region, landslides have been investigated since the 1950s, whereas approximately 3000 

landslides have been documented (Figure 1). However, regular monitoring has been limited to the time 

period between 1968 and 1992, focusing on larger settlements and their surroundings, whereas for 

most of the landslides, coordinate-based geographic locations are missing. Against this background, 

there is a great need for creating a spatiotemporal landslide inventory covering the whole area  

(Figure 1). 

2.2. Satellite Remote Sensing Database 

A multi-temporal database of optical remote sensing data has been created for the study area in 

Southern Kyrgyzstan. This multi-temporal database consists of 592 multispectral mid- and  

high-resolution satellite remote sensing images acquired by the Landsat-TM and ETM+, SPOT-1  

and -5, ASTER and RapidEye sensors during the last 26 years (Table 1). The spatial resolutions of the 

contributing sensors range between 30 m for Landsat and 5 m for RapidEye data. They also cover 

different spectral ranges by varying spectral bands and resolutions. However, all of these sensors 

represent multispectral instruments comprising the green, red and near-infrared (NIR) spectral bands  

as the lowest common spectral denominator, allowing comprehensive multi-sensor analysis of  

landslide-related surface changes. 
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Figure 1. Study area in Southern Kyrgyzstan. (Inset) The location within Kyrgyzstan 

(depicted as a red dashed line). (Main figure) The location of known landslides  

and reference information for accuracy assessment in Section 5 (check points (CPs), 

differential GPS (DGPS) points and analyzed landslides) within the study area, depicted as 

a transparent polygon overlay. 

 

Almost all of the remote sensing datasets were obtained from the respective satellite data providers 

in the form of orthorectified standard data products (Table 1) in order to minimize geometric 

preprocessing efforts and to facilitate the applicability of the developed methodology independent of 

local ground-truth information, such as GCPs. In the case of SPOT, radiometrically-calibrated  

Level 1A data were automatically orthorectified using standard orthorectification routines of the ENVI 
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software, which are based on orbital position parameters and a digital elevation model (SRTM). As a 

result, the established multi-temporal and multi-sensor satellite remote sensing database solely 

contains orthorectified datasets. 

Table 1. Optical satellite remote sensing database. 

Sensor 
Resolution 

(m) 

Swath Width, 

Extent (km) 

Spectral 

Range (nm) 

No. of 

Bands 
Time period 

Acquisition 

Dates  
Datasets 

Product 

Level 
Provider 

RapidEye 5 77, 25 × 25 440ï850 5 2009ï2012 51 503 3A BlackBridge 

SPOT-5 10 60, 60 × 60 500ï1750 4 2006ï2010 5 9 1A SPOT IMAGE 

ASTER 15ï90 60, 60 × 60 520ï2430 14 2000ï2008 20 30 3A 01 ASTER GDS 

SPOT-1 20 60, 60 × 60 500ï890 3 1986 2 3 1A SPOT IMAGE 

Landsat TM 30 
185,  

185 × 170 
450ï2350 7 

1989ï1999 

2009ï2012 
14 25 1T USGS GLS 

Landsat ETM+ 30 
185,  

185 × 170 
450ï2350 8 1999ï2003 13 24 1T USGS GLS 

Except for RapidEye, all other datasets have been contained in satellite remote sensing data 

archives. RapidEye data have been acquired in the frame of the RESA (RapidEye Science Archive) 

program, allowing customized tasking of data acquisition during pre-defined time periods. Due to the 

five independent satellites of the RapidEye system [32], a database of high spatial and temporal 

resolution could be created for the whole region of interest. In total, the database comprises 503  

Level 3A standard orthorectified data products characterized by a 5-m pixel size, resulting from cubic 

convolution resampling of the original 6.5-m RapidEye data. Each of these datasets belongs to one of 

the fixed 21 RapidEye tiles [33] covering the study area (Figure 2). 

Datasets acquired by different sensors vary in their spatial extent between 185 × 170 km
2
 for 

Landsat and 25 × 25 km
2
 for a single RapidEye tile. Therefore, for each sensor, varying numbers of 

datasets are required to cover the whole region of interest. Figure 2 illustrates the spatiotemporal 

coverage for the different sensors, whereas the numbers of temporal repetitions are color-coded. The 

diagrams at the bottom show the number of temporal repetition and their areal coverage of the study 

area, with maximum and minimum values depicted in grey.  

In the case of Landsat, the database contains 49 scenes covering 100% of the study area at least for 

23 different acquisition dates, whereas the maximum temporal repetition of 27 acquisition dates could 

be achieved for 80% of the area during the time period between 1989 and 2012. ASTER (30 scenes) 

and SPOT (10 scenes) have significantly lower temporal repetitions, with spatial coverage of the study 

area of 91% and 77%, respectively. RapidEye comprises the highest number of datasets, due to the 

high temporal repetition and the orthorectified datasets of a relatively small size (25 × 25 km
2
), 

resulting in a high number of datasets for a single acquisition date. Temporal repetition varies between 

13 and 28 coverages for the different parts of the study area and is almost as high as for Landsat, 

despite the much shorter acquisition period (4 versus 19 years). Overall, spatial and temporal coverage 

differs within the study area, because of its large size and the variety of used sensors, representing a 

challenge to co-registration, since the whole image database has to be transferred into one consistent 

spatial system. For this purpose, the Landsat Level 1T database has been selected, because it 

repeatedly covers the whole study area in a spatially consistent way (Section 2.3). 
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Figure 2. Maps depict sensor-specific spatiotemporal coverage of the study area. Diagrams 

show the number of temporal repetitions and the related areal coverage of the study area. 

 

The multi-temporal database is characterized by high seasonal and inter-annual variability of land 

cover, comprising additional challenges to co-registration. In Figure 3, this variability is exemplarily 

illustrated for a 6.8 × 7.2 km
2
 subset of the study area showing color infrared (CIR) visualizations of 

the image data of all sensors contained in the database acquired during different seasons between 1986 

and 2011. Seasonal variability mainly originates from differences in vegetation cover, whereas the 

period of most intense vegetation development lasts from May until early August, peaking in June. 

Another seasonal change is the decline of discharge in the river bed during the depicted time span 

(AprilïSeptember). Besides these regularly occurring changes, episodic changes can be observed, 

which are caused by agricultural land use and landslide occurrence. During the depicted period of time, 

the highest landslide activity can be observed between 2002 and 2004, resulting in a significant 

increase of landslide affected slopes (yellow ellipses in Figure 3), comparing the datasets acquired in 

2004 and 1986. 

The small subsets (Figure 3aïf) depicted at the bottom of Figure 3 illustrate the initial spatial offsets 

occurring between standard orthorectified datasets. The black cross hairs represent the center 

coordinates of the subsets, whereas the circle-shaped markers indicate an identical point represented by 

a road crossing. In Figure 3a, the cross hair and the marked point have the same position, whereas  

for all other subsets, a relative offset can be observed, amounting to a maximum of almost 400 m  

in the case of SPOT-1 (Figure 3d). This maximum geometric offset is caused by the applied 

orthorectification procedure that is solely based on orbital position parameters, which have been less 

accurate for SPOT-1 than for the later SPOT-5. Although, in the case of the other sensors, these offsets 

are less pronounced, they still amount to up to 60 m and need to be corrected in the process of 

automated co-registration. 
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Figure 3. Exemplary representation of multi-temporal time series (1986ï2011) (AïF) 

Color infrared (CIR) visualization of seasonal differing multi-sensor datasets; selected 

landslide prone areas are depicted by yellow dashed ellipses. (aïf) The geometric offsets 

within the time series. 

 

2.3. Spatial Reference Information 

2.3.1. Spatial Reference for Co-Registration 

In this study, terrain corrected Landsat Level 1T data are used as the spatial reference, while at the 

same time, they are part of the satellite remote sensing database (Section 2.2). They have been selected 

because they are freely and widely available and because they represent the only spatially consistent 

reference information for the whole study area. In contrast, datasets acquired by other sensors either do 


